Parity Edge-Coloring of Graphs

Kevin Milans
milans@uiuc.edu

Joint work with David P. Bunde, Douglas B. West, Hehui Wu
University of Illinois at Urbana-Champaign

6 May 2006
Midwest Theory Day
Indiana University, Bloomington
Parity Vectors

Consider a graph G whose edges $E(G)$ are assigned colors from a set C. Let $f : E(G) \rightarrow C$ denote the coloring.
Parity Vectors

- Consider a graph G whose edges $E(G)$ are assigned colors from a set C. Let $f : E(G) \rightarrow C$ denote the coloring.
- Let W be a walk in G. The parity vector $\pi_f(W)$ records, for each $c \in C$, the parity of the number of times W traverses an edge with color c.

![Graph with vertices V_1, V_2, V_3, V_4, V_5 and edges connecting them with different colors.](image)
Consider a graph G whose edges $E(G)$ are assigned colors from a set C. Let $f : E(G) \rightarrow C$ denote the coloring.

Let W be a walk in G. The parity vector $\pi_f(W)$ records, for each $c \in C$, the parity of the number of times W traverses an edge with color c.

We also abuse notation and use $\pi_f(W)$ as the set of colors that appear an odd number of times in W.
Parity Vectors

Example

\[W = v_1 v_2 v_5 v_1 v_3 v_2 \]

\[\pi(W) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]
Parity Vectors

Example

\[\mathcal{W} = v_1 v_2 v_5 v_1 v_3 v_2 \]

\[\pi(\mathcal{W}) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \]
Parity Vectors

Example

\[W = v_1 v_2 v_5 v_1 v_3 v_2 \]

\[\pi(W) = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \]
Parity Vectors

Example

\[W = v_1 v_2 v_5 v_1 v_3 v_2 \]

\[\pi(W) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \]
Parity Vectors

Example

$$W = v_1 v_2 v_5 v_1 v_3 v_2$$

$$\pi(W) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
Parity Vectors

Example

\[W = v_1 v_2 v_5 v_1 v_3 v_2 \]

\[\pi(W) = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} \]
Parity Vectors

Example

\[W = v_1 v_2 v_5 v_1 v_3 v_2 \]

\[\pi(W) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \]

= \{ \text{blue, red, yellow} \}
Definition

A parity walk is a walk W with $\pi(W) = \vec{0}$.
Definition

A parity walk is a walk W with $\pi(W) = \vec{0}$.

- Parity walks can be closed ...
Parity Vectors

Definition

A parity walk is a walk W with $\pi(W) = \overrightarrow{0}$.

- Parity walks can be closed ...
- ... or open.
Hypercubes and Parity Walks

Definition

The hypercube Q_k is the graph with vertex set $\{0, 1\}^k$ with an edge between u and v iff u and v differ in 1 coordinate.
Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

$$\forall W \quad W \text{ is a parity walk} \iff W \text{ is closed}$$
Introduction

Hypercubes and Parity Walks

Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

$$\forall W \quad W \text{ is a parity walk } \iff W \text{ is closed}$$

Some graphs (e.g. odd cycles, $K_{2,3}$) are not subgraphs of any hypercube
Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

$$\forall W \; W \text{ is a parity walk} \iff W \text{ is closed}$$

- Some graphs (e.g. odd cycles, $K_{2,3}$) are not subgraphs of any hypercube
- All graphs have an edge-coloring in which every parity walk is closed
Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

\[\forall W \quad W \text{ is a parity walk } \iff W \text{ is closed} \]

Definition

A strong parity edge-coloring (spec) is an edge-coloring such that

\[\forall W \quad W \text{ is a parity walk } \implies W \text{ is closed.} \]

The strong parity edge chromatic number $\hat{p}(G)$ is the least k such that G has a spec using only k colors.
Theorem (Havel, Movárek (1972))

Let G be a connected graph. G is a subgraph of Q_k iff there is an edge-coloring of G using at most k colors such that

\[\forall W \quad W \text{ is a parity walk} \iff W \text{ is closed} \]

Definition

A strong parity edge-coloring (spec) is an edge-coloring such that

\[\forall W \quad W \text{ is a parity walk} \implies W \text{ is closed.} \]

The strong parity edge chromatic number $\hat{p}(G)$ is the least k such that G has a spec using only k colors.

Corollary

If T is a tree, $\hat{p}(T)$ is the least k so that $T \subseteq Q_k$.
What is $\hat{\rho}(K_n)$?

Example

- $\hat{\rho}(K_1) = 0$

Proposition

If $n = 2^k$, then $\hat{\rho}(K_n) = n - 1$.

Proof.

Label the vertices from $\{0, 1\}$ and color an edge uv with $u + v$. We call this the canonical coloring.
What is $\hat{\rho}(K_n)$?

Example

- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
What is $\hat{\rho}(K_n)$?

Example

- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
- $\hat{\rho}(K_3) = 3$
What is $\hat{\rho}(K_n)$?

Example

- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
- $\hat{\rho}(K_3) = 3$
- $\hat{\rho}(K_4) = ?$
What is $\hat{p}(K_n)$?

Example
- $\hat{p}(K_1) = 0$
- $\hat{p}(K_2) = 1$
- $\hat{p}(K_3) = 3$
- $\hat{p}(K_4) = ?$
What is $\hat{\rho}(K_n)$?

Example

- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
- $\hat{\rho}(K_3) = 3$
- $\hat{\rho}(K_4) = ?$

Proposition

If $n = 2^k$, then $\hat{\rho}(K_n) = n - 1$.

Proof.

Label the vertices from $\{0, 1\}^k$ and color an edge uv with $u + v$. We call this the canonical coloring.
What is $\hat{\rho}(K_n)$?

Example

- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
- $\hat{\rho}(K_3) = 3$
- $\hat{\rho}(K_4) = 3$

Proposition

If $n = 2^k$, then $\hat{\rho}(K_n) = n - 1$.

Proof.

Label the vertices from $\{0, 1\}^k$ and color an edge uv with $u + v$. We call this the canonical coloring.
What is $\hat{\rho}(K_n)$?

Example
- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
- $\hat{\rho}(K_3) = 3$
- $\hat{\rho}(K_4) = 3$

Proposition
If $n = 2^k$, then $\hat{\rho}(K_n) = n - 1$.
What is $\hat{\rho}(K_n)$?

Example
- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
- $\hat{\rho}(K_3) = 3$
- $\hat{\rho}(K_4) = 3$

Proposition
If $n = 2^k$, then $\hat{\rho}(K_n) = n - 1$.

Proof.
Label the vertices from $\{0, 1\}^k$ and color an edge $u\mathbf{v}$ with $u + v$. We call this the **canonical coloring**.
What is $\hat{p}(K_n)$?

Example
- $\hat{p}(K_1) = 0$
- $\hat{p}(K_2) = 1$
- $\hat{p}(K_3) = 3$
- $\hat{p}(K_4) = 3$
- $\hat{p}(K_5) = ?$

Proposition
If $n = 2^k$, then $\hat{p}(K_n) = n - 1$.

Proof.
Label the vertices from $\{0, 1\}^k$ and color an edge uv with $u + v$. We call this the canonical coloring.
What is $\hat{\rho}(K_n)$?

Example
- $\hat{\rho}(K_1) = 0$
- $\hat{\rho}(K_2) = 1$
- $\hat{\rho}(K_3) = 3$
- $\hat{\rho}(K_4) = 3$
- $\hat{\rho}(K_5) \in \{4, 5, 6, 7\}$

Proposition
If $n = 2^k$, then $\hat{\rho}(K_n) = n - 1$.

Proof.
Label the vertices from $\{0, 1\}^k$ and color an edge uv with $u + v$. We call this the canonical coloring.
What is $\hat{p}(K_n)$?

Example
- $\hat{p}(K_1) = 0$
- $\hat{p}(K_2) = 1$
- $\hat{p}(K_3) = 3$
- $\hat{p}(K_4) = 3$
- $\hat{p}(K_5) = 7$

Proposition
If $n = 2^k$, then $\hat{p}(K_n) = n - 1$.

Proof.
Label the vertices from $\{0, 1\}^k$ and color an edge uv with $u + v$. We call this the canonical coloring.
Main Theorem

Theorem

\[\hat{\rho}(K_n) = 2^{\lceil \log n \rceil} - 1 \]
Main Theorem

Theorem

\[\hat{p}(K_n) = 2^{\lceil \log n \rceil} - 1 \]

Lemma (Augmentation)

If \(n \) is not a power of two, then \(\hat{p}(K_n) = \hat{p}(K_{n+1}) \).
Main Theorem

Theorem

\[\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1 \]

Lemma (Augmentation)

If \(n \) *is not a power of two, then* \(\hat{p}(K_n) = \hat{p}(K_{n+1}) \).

- Strategy: add vertex, color new edges without introducing an open parity walk.
Main Theorem

Theorem

\[\hat{p}(K_n) = 2^{\lceil \log n \rceil} - 1 \]

Lemma (Augmentation)

If n is not a power of two, then \(\hat{p}(K_n) = \hat{p}(K_{n+1}) \).

- Strategy: add vertex, color new edges without introducing an open parity walk.
- We have a lot to worry about.
Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.
Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(\Rightarrow).

- Let W' be an open parity uv-walk
Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(\implies). Let W' be an open parity uv-walk. Let $W = W'vu$.
Spec Characterization Lemma

Lemma (Spec Characterization)

*Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.***

Proof.

(\Rightarrow).

- Let W' be an open parity uv-walk.
- Let $W = W'vu$.
- $\pi(W) = \{a\}$.
Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(\Leftarrow). Let W be a closed walk with $\pi(W) = \{a\}$.

K_n
Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(\Leftarrow).
- Let W be a closed walk with $\pi(W) = \{a\}$
- Let vu be an edge in W of color a
Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

$(\Leftarrow).$

- Let W be a closed walk with $\pi(W) = \{a\}$.
- Let vu be an edge in W of color a.
- Let W' be the uv-walk obtained by removing vu.
Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Proof.

(\Leftarrow).

- Let W be a closed walk with $\pi(W) = \{a\}$.
- Let vu be an edge in W of color a.
- Let W' be the uv-walk obtained by removing vu.
- W' is an open parity walk.
Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

Augmentation only worries about introducing closed walks W with $|\pi(W)| = 1$.
Lemma (Spec Characterization)

Fix an edge-coloring of K_n. There is an open parity walk iff there is a closed walk W with $|\pi(W)| = 1$.

- Augmentation only worries about introducing closed walks W with $|\pi(W)| = 1$
- Linear algebra means we can worry even less!
The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{ \pi(W) : W \text{ is closed} \}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The **parity space** of f is

$$L_f = \{ \pi(W) : W \text{ is closed} \}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let $W = u$. $\pi(W) = \overrightarrow{0} \in L_f$
Proposition

Let f be an edge-coloring of a connected graph G. The *parity space* of f is

$$L_f = \{ \pi(W) : W \text{ is closed} \}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let W_1, W_2 be closed walks

The Parity Space
The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{\pi(W) : W \text{ is closed}\}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let W_1, W_2 be closed walks
- Let P be a path from W_1 to W_2
The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{ \pi(W) : W \text{ is closed} \}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let W_1, W_2 be closed walks
- Let P be a path from W_1 to W_2
- Let $W = W_1PW_2\overline{P}$
The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{ \pi(W) : W \text{ is closed} \}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let W_1, W_2 be closed walks
- Let P be a path from W_1 to W_2
- Let $W = W_1 PW_2 \overline{P}$
The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{ \pi(W) : W \text{ is closed}\}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let W_1, W_2 be closed walks
- Let P be a path from W_1 to W_2
- Let $W = W_1PW_2P$
Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{ \pi(W) : W \text{ is closed} \}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let W_1, W_2 be closed walks
- Let P be a path from W_1 to W_2
- Let $W = W_1 PW_2 \overline{P}$
The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity space of f is

$$L_f = \{ \pi(W) : W \text{ is closed} \}.$$

L_f is a linear subspace of \mathbb{F}_2^k.

Proof.

- Let W_1, W_2 be closed walks
- Let P be a path from W_1 to W_2
- Let $W = W_1PW_2\overline{P}$
- $\pi(W) = \pi(W_1) + \pi(W_2) \in L_f$
Lemma (Span Lemma)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

$$\{\pi(T) : T \text{ is a triangle containing } v\}$$

spans L_f.

Augmentation only worries about triangles at v.

Attack from other direction

Argue K_n has a rich parity space, before augmentation.
Lemma (Span Lemma)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

$$\{ \pi(T) : T \text{ is a triangle containing } v \}$$

spans L_f.

- Augmentation only worries about triangles at v
A Parity Space Spanning Set

Lemma (Span Lemma)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

$$\{\pi(T) : T \text{ is a triangle containing } v\}$$

spans L_f.

- Augmentation only worries about triangles at v
- Attack from other direction
A Parity Space Spanning Set

Lemma (Span Lemma)

Let f be an edge-coloring of a graph G with a dominating vertex v. Then

$$\{ \pi(T) : T \text{ is a triangle containing } v \}$$

spans L_f.

- Augmentation only worries about triangles at v
- Attack from other direction
- Argue K_n has a rich parity space, before augmentation
Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.
Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

- Collapse a and b to new color d to form coloring g.
Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

- Collapse a and b to new color d to form coloring g
- g is not a spec
Triple Color Lemma

Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

- Collapse a and b to new color d to form coloring g
- g is not a spec
- Let W' be a parity uv-walk
Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

\[\pi_g(W') = \emptyset \]
Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

- $\pi_g(W') = \emptyset$
- $\pi_f(W') = \{a, b\}$
Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

- $\pi_g(W') = \emptyset$
- $\pi_f(W') = \{a, b\}$
- Let $c = f(uv)$, let $W = W'vu$
Lemma (Triple Color Lemma)

Let f be a minimum spec of K_n. Then for every pair of colors $\{a, b\}$, there is a third color c and a closed walk W with $\pi(W) = \{a, b, c\}$.

Proof.

- $\pi_g(W') = \emptyset$
- $\pi_f(W') = \{a, b\}$
- Let $c = f(uv)$, let $W = W'vu$
- $c \notin \{a, b\}$
Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.
Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Theorem

A spec of G is perfect if it uses $\Delta(G)$ colors. If f is a perfect spec of K_n, then n is a power of two and f is the canonical coloring.
Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Theorem

A spec of G is perfect if it uses $\Delta(G)$ colors. If f is a perfect spec of K_n, then n is a power of two and f is the canonical coloring.

Proof (sketch).

Starting with a single vertex, the proof finds larger and larger canonically colored subgraphs of K_n inductively.
Uniqueness of Perfect Specs of K_n

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Theorem

A spec of G is **perfect** if it uses $\Delta(G)$ colors. If f is a perfect spec of K_n, then n is a power of two and f is the canonical coloring.

- If n is not a power of two, each vertex misses a color
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

- Choose a vertex v
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

Choose a vertex v

Because n is not a power of two, v is not incident to some color a.
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

- Choose a vertex v.
- Because n is not a power of two, v is not incident to some color a.
- Introduce a new vertex u. Color uv with a.

Introduction

- **Cliques**
- **Open Problems**
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

Choose another vertex w. How do we color uw?

K_n
Augmentation Lemma

Lemma (Augmentation)

If \(n \) is not a power of two, then \(\hat{p}(K_n) = \hat{p}(K_{n+1}) \).

Proof.

- Choose another vertex \(w \). How do we color \(uw \)?
- Let \(b = f(vw) \)
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

- Choose another vertex w. How do we color uw?
- Let $b = f(vw)$
- By Triple Color Lemma, there is a closed walk W with $\pi_f(W) = \{a, b, c\}$.
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

- Choose another vertex w. How do we color uw?
- Let $b = f(vw)$
- By Triple Color Lemma, there is a closed walk W with $\pi_f(W) = \{a, b, c\}$.
- Color uw with c.
Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

- Choose another vertex w. How do we color uw?
- Let $b = f(vw)$
- By Triple Color Lemma, there is a closed walk W with $\pi_f(W) = \{a, b, c\}$.
- Color uw with c.
- Let g be the coloring of K_{n+1}.
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.
- We show that g is a spec.
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

- We show that g is a spec.
- By Spec Characterization Lemma, it suffices to show that $L_g \subseteq L_f$.
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then $\tilde{p}(K_n) = \tilde{p}(K_{n+1})$.

Proof.

- We show that g is a spec.
- By Spec Characterization Lemma, it suffices to show that $L_g \subseteq L_f$.
- By Span Lemma, it suffices to show, for each triangle T containing v, $\pi_g(T) \in L_f$.

Diagram: K_n with vertices u, v, and w. u is connected to both v and w, and v and w are connected.
Augmentation Lemma

Lemma (Augmentation)

*If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.***

Proof.

- We show that g is a spec.
- By Spec Characterization Lemma, it suffices to show that $L_g \subseteq L_f$.
- By Span Lemma, it suffices to show, for each triangle T containing v, $\pi_g(T) \in L_f$.
- If $u \notin T$, then $\pi_g(T) = \pi_f(T) \in L_f$.
Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then \(\hat{p}(K_n) = \hat{p}(K_{n+1}) \).

Proof.

Otherwise, \(T = uvwu \) for some \(w \) in \(K_n \) and \(\pi_g(T) = \pi_f(W) \in L_f \) for some closed walk \(W \) by definition of \(g \).
Lemma (Augmentation)

If n is not a power of two, then $\hat{p}(K_n) = \hat{p}(K_{n+1})$.

Proof.

- Otherwise, $T =uvwu$ for some w in K_n and $\pi_g(T) = \pi_f(W) \in L_f$ for some closed walk W by definition of g.
- Hence, g is a spec.
An Application

Theorem (Daykin, Lovász (1974))

Let \(\mathcal{F} \) be a family of \(n \) finite sets, and let

\[
\mathcal{G} = \{ A_1 \triangle A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F} \}.
\]

Then \(|\mathcal{G}| \geq n - 1 \). If \(n \) is not a power of two, then \(|\mathcal{G}| \geq n \).
An Application

Theorem (Daykin, Lovász (1974))

Let \mathcal{F} be a family of n finite sets, and let

$$\mathcal{G} = \{A_1 \triangle A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F}\}.$$

Then $|\mathcal{G}| \geq n - 1$. If n is not a power of two, then $|\mathcal{G}| \geq n$.

Quotation (with changes in notation)

“The example where \mathcal{F} is all subsets of a [finite set] show that the theorem is best possible. Closer examination of the proof shows that if $|\mathcal{G}| = n - 1$ then \mathcal{F} is very similar to the former example, but details are omitted.”
An Application

Corollary

Let \mathcal{F} be a family of n finite sets, and let

$$\mathcal{G} = \{A_1 \triangle A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F}\}.$$

Then $|\mathcal{G}| \geq 2^{\lceil \lg n \rceil} - 1$.
Corollary

Let \mathcal{F} be a family of n finite sets, and let

$$\mathcal{G} = \{ A_1 \triangle A_2 : A_1 \neq A_2 \text{ and } A_1, A_2 \in \mathcal{F} \}.$$

Then $|\mathcal{G}| \geq 2^{\lceil \lg n \rceil} - 1$.

Proof.

View \mathcal{F} as the vertex set of K_n. Coloring an edge A_1A_2 with the symmetric difference of A_1 and A_2, we obtain a spec of K_n using only colors from \mathcal{G}. The bound on $|\mathcal{G}|$ follows.
Tournaments

Proposition

If T is an n-vertex tournament, then $\hat{\rho}(T) \geq \lceil \lg n \rceil$.
Proposition

If T is an n-vertex tournament, then $\hat{\rho}(T) \geq \lceil \lg n \rceil$.

Question

- What is the maximum of $\hat{\rho}(T)$ when T is an n-vertex tournament?
Proposition

If T is an n-vertex tournament, then $\hat{\rho}(T) \geq \lceil \lg n \rceil$.

Question

- What is the maximum of $\hat{\rho}(T)$ when T is an n-vertex tournament?
- Is it $O(\log n)$?
Proposition

\[\hat{\rho}(G \square H) \leq \hat{\rho}(G) + \hat{\rho}(H) \]
Graph Products

Proposition

$\hat{\rho}(G \square H) \leq \hat{\rho}(G) + \hat{\rho}(H)$

Question

For which graphs G, H does equality hold?
Graph Products

Proposition
\[\hat{p}(G \Box H) \leq \hat{p}(G) + \hat{p}(H) \]

Question
- For which graphs G, H does equality hold?
- Does it hold for all graphs?
What is $\hat{\rho}(K_{m,n})$?

Theorem

Let $m \leq n$ and $m' = 2^{\lceil \lg m \rceil}$. Then

$$\hat{\rho}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right\rceil.$$

Further,

$$\hat{\rho}(K_{2,n}) = n + (n \mod 2).$$
What is $\hat{p}(K_{m,n})$?

Theorem

Let $m \leq n$ and $m' = 2^{\lceil \log m \rceil}$. Then

$$\hat{p}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right\rceil.$$

Further,

$$\hat{p}(K_{2,n}) = n + (n \mod 2).$$

Question

- What is $\hat{p}(K_{m,n})$? Is the upper bound tight?
What is $\hat{\rho}(K_{m,n})$?

Theorem

Let $m \leq n$ and $m' = 2^{\lceil \lg m \rceil}$. Then

$$\hat{\rho}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right\rceil.$$

Further,

$$\hat{\rho}(K_{2,n}) = n + (n \mod 2).$$

Question

- What is $\hat{\rho}(K_{m,n})$? Is the upper bound tight?
- Does $\hat{\rho}(K_{n,n}) = 2^{\lceil \lg n \rceil}$? Note: $\hat{\rho}(K_{5,5}) = 8$ and $\hat{\rho}(K_{9,9}) \in \{14, 15, 16\}$.
What is $\hat{p}(K_{m,n})$?

Theorem

Let $m \leq n$ and $m' = 2^{\lceil \lg m \rceil}$. Then

$$\hat{p}(K_{m,n}) \leq m' \left\lceil \frac{n}{m'} \right\rceil.$$

Further,

$$\hat{p}(K_{2,n}) = n + (n \mod 2).$$

Question

- What is $\hat{p}(K_{m,n})$? Is the upper bound tight?
- Does $\hat{p}(K_{n,n}) = 2^{\lceil \lg n \rceil}$? Note: $\hat{p}(K_{5,5}) = 8$ and $\hat{p}(K_{9,9}) \in \{14, 15, 16\}$.
- Lower bounds apply to $|\{A_1 \triangle A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}|$ with $m = |\mathcal{F}_1|$ and $n = |\mathcal{F}_2|$.
Stability of the Canonical Coloring

Question (Dhruv Mubayi)

Is there a (strong) parity edge-coloring of K_{2^k} which uses only $(1 + o(1))2^k$ colors but is “far” from the canonical coloring?
Many other open problems in our paper.
Thank You.