Two examples concerning extendable and almost continuous functions


Krzysztof Ciesielski & Harvey Rosen

Real Anal. Exchange 25(2) (1999--2000), 579-598.

The main purpose of this paper is to describe two examples. The first is that of an almost continuous, Baire class two, non-extendable function f:[0,1]-->[0,1] with a G\delta graph. This answers a question of Gibson. The second example is that of a connectivity function F:R2-->R with dense graph such that F-1(0) is contained in a countable union of straight lines. This easily implies the existence of an extendable function f:R-->R with dense graph such that f-1(0) is countable.

We also give a sufficient condition for a Darboux function f:[0,1]-->[0,1] with a G\delta graph whose closure is bilaterally dense in itself to be quasicontinuous and extendable.

Full text on line in pdf format. Requires Adobe Acrobat Reader.

Full text in postscript form.

Full text in dvi form.

LaTeX 2e source file.

Requires rae.cls file amsmath.sty, amssymb.sty, and epic.sty.

Last modified October 13, 2000.