Unions of Rectifiable Curves in Euclidean Space and the Covering Number of the Meagre Ideal


Juris Steprans

30 pages, to appear in J. Symbolic Logic

To any metric space it is possible to associate the cardinal invariant corresponding to the least number of rectifiable curves in the space whose union is not meagre. It is shown that this invariant can vary with the metric space considered, even when restricted to the class of convex subspaces of separable Banach spaces. As a corollary it is obtained that it is consistent with set theory that that any set of reals of size \aleph_1 is meagre yet there are \aleph_1 rectifiable curves in R3 whose union is not meagre. The consistency of this statement when the phrase "rectifiable curves" is replaced by "straight lines" remains open.

LaTeX 2e source file.

DVI and Postscript files are available at the Topology Atlas preprints side.