Hierarchical segmentation in a directed graph setting which optimizes a graph cut energy

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University
and
MIPG, Department of Radiology, University of Pennsylvania

Centre for Image Analysis, Uppsala University, Sweden,
September 10, 2018
Outline

1. Image segmentation in graph cut setting
2. Dijkstra algorithm in general setting
3. Oriented IFT and graph cut optimization
4. HLOIFT: Hierarchical Layered OIFT algorithm
5. Experimental results for HLOIFT
6. Summary
Outline

1. Image segmentation in graph cut setting
2. Dijkstra algorithm in general setting
3. Oriented IFT and graph cut optimization
4. HLOIFT: Hierarchical Layered OIFT algorithm
5. Experimental results for HLOIFT
6. Summary
Image segmentation example 1: CT, cervical spine

A slice of an original 3D image

Surface rendition of segmented three vertebrae, together

Color surface rendition of the segmented three vertebra
Example 2: CT, thoracic-abdominal axial cross section

Figure: right lung (O_1), liver (O_2), heart (O_3), left lung (O_4), aorta (O_5) and the thoracic-abdominal region (O_6).
Image segmentation — formal setting

- **Image**: An *image* is a map f from a set V (of spels) into \mathbb{R}^k.

 The value $f(c)$ represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.

- **Segmentation problem**: Given an image $f : V \rightarrow \mathbb{R}^k$,

 find a “desired” family $\{O_1, \ldots, O_M\}$ of subsets of V.

- We will assume the objects are indicated by disjoint sets S_i of seeds, imposing that $S_i \subset O_i$.
Image, its graph, and graph cut

An image, with intensity map $f : V \rightarrow \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, with some edge weights

Object O and its graph cut edges $c(O)$ in bold

- Vertices $v \in V$ are image pixels. Direct edges: all $\langle c, d \rangle, \langle d, c \rangle \in E$, with $c, d \in V$ nearby (e.g. 4 adjacency).

- Edge weights: $w(\langle c, d \rangle) = \text{some function of } f(c) - f(d)$.

- Graph cut of O: $c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}$.

Only in one direction!
Graph cut measures: ℓ_p-norms, $1 \leq p \leq \infty$

Assuming $\langle c, d \rangle \in E \iff \langle d, c \rangle \in E$ and $w(\langle c, d \rangle) \geq 0$

ℓ_p-norm of $c(O)$ is defined as

$$\varepsilon_p(O) \overset{\text{def}}{=} \| w \upharpoonright c(O) \|_p = \begin{cases} \left(\sum_{e \in c(O)} w(e)^p \right)^{1/p} & \text{if } p < \infty \\ \max_{e \in c(O)} w(e) & \text{if } p = \infty. \end{cases}$$

Standard analysis fact: $\| w \|_p \to p \to \infty \| w \|_\infty$ for any map w.
Known algorithms minimizing ℓ_p-norms of graph cut

$p = 1$: Minimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm minimizes ε_1.

$p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

ε_∞ minimized objects are returned by the algorithms:
- Power Watershed, PW [C. Couprie et al, 2011]
- Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC,
- Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

Fact: Inclusion-minimal ℓ_p-normed minimized delineations converge, as $p \to \infty$ to ℓ_∞-normed minimized delineation.

This talk’s Main Algorithm, HLOIFT, minimizes ℓ_∞-norm of cut.
Outline

1. Image segmentation in graph cut setting
2. Dijkstra algorithm in general setting
3. Oriented IFT and graph cut optimization
4. HLOIFT: Hierarchical Layered OIFT algorithm
5. Experimental results for HLOIFT
6. Summary
Paths and Optimal Path Forest OPF

- Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w).

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_j, v_{j+1} \rangle \in E$ for $j < \ell$;
 p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$;
 $p^w = \langle v_0, \ldots, v_\ell, w \rangle$; Π_G – all paths in G.

- Path cost function: any map $\psi : \Pi_G \to \mathbb{R}$.

- A path p (from $S \subset V$) to v is ψ-optimal provided
 \[\psi(p) = \max \{ \psi(q) : q \text{ is a path (from } S \text{) to } v \} . \]

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to find (S-rooted) forest, OPF, composed of ψ-optimal paths.

- HLOIFT is a DA for appropriate path cost map and graph.
Dijkstra Algorithm, DA, *aiming* to find ψ-optimal forest

Data: $G = \langle V, E \rangle$ and a path cost map $\psi : \Pi_G \to \mathbb{R}$

Result: an array $\pi[]$ of paths, aiming for being ψ-optimal

1. foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle$
2. $Q \leftarrow V$
3. while $Q \neq \emptyset$ do
 4. remove an element w of $\max_{u \in Q} \psi(\pi[u])$ from Q
 5. foreach x such that $\langle w, x \rangle \in E$ do
 6. if $\psi(\pi[x]) < \psi(\pi[w]^x)$ then $\pi[x] \leftarrow \pi[w]^x$

DA is very efficient: *quasi-linear* w.r.t. the size of the graph.
For what path cost ψ DA works properly?

If w is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- **FC/IFT:** $\psi_{\text{min}}(\langle v_0, \ldots, v_\ell \rangle) = \min_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$ for $\ell > 0$

 $\psi_{\text{min}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, \hspace{1cm} $\psi_{\text{min}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$

- $\psi_{\text{sum}}(\langle v_0, \ldots, v_\ell \rangle) = -\sum_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$ for $\ell > 0$

 $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, \hspace{1cm} $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$

- **HLOIFT** uses DA with ψ_{min} and oriented w, a problem!
DA with oriented variant of ψ_{min}

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with ith object O_i having its oriented weights w_i and

$$\psi^*_{\text{min}}(\langle v_0, \ldots, v_\ell \rangle) = \min_{1 \leq j \leq \ell} w_i(v_{j-1}, v_j) \text{ with } v_0 \text{ a seed of } O_i.$$

Theorem (Ciesielski, Herman, Kong, 2016)

*For ψ^*_{min} as above*

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ^*_{min}, the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ^*_{min}.
Outline

1. Image segmentation in graph cut setting
2. Dijkstra algorithm in general setting
3. Oriented IFT and graph cut optimization
4. HLOIFT: Hierarchical Layered OIFT algorithm
5. Experimental results for HLOIFT
6. Summary
\(\psi^*_{\text{min}} \) for which DA returns delineation with optimal cut

Let \(\psi^*_{\text{min}} \) denotes \(\psi^*_{\text{min}} \) in object/background setting such that

\[
 w_1(c, d) = w_0(d, c)
\]

for all \(\langle c, d \rangle \in E \).

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object \(O \) is an output of DA run with \(\psi^*_{\text{min}} \), then the graph cut

\[
 c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}
\]

minimizes the \(\ell_\infty \) norm

\[
 \varepsilon_\infty(O) \overset{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c, d)
\]

among all objects satisfying the constrains.

Assumption \(w_1(c, d) = w_0(d, c) \) is needed to ensure that incorporating \(\langle c, d \rangle \) in a path from either object or background influences the path strength the same way.
Is OIFT a DA run with ψ_{min}? Close, but formally not.

Assume that $w_1(c, d) = w_0(d, c)$ for all $\langle c, d \rangle \in E$ and let

$$\psi_{\text{last}}(\langle v_0, \ldots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell) \text{ when } \ell > 0 \text{ and } v_0 \text{ a seed of } O_i.$$

$$\psi_{\text{last}}(\langle v_0 \rangle) = \infty \text{ when } v_0 \text{ a seed and } \psi_{\text{last}}(\langle v_0 \rangle) = -\infty \text{ otherwise.}$$

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with ψ_{min}^*)

Any output of OIFT is an output of a particular implementation of DA with ψ_{min}^*.

Thus, a graph cut of any object returned by OIFT minimizes the ℓ_∞ norm among all objects satisfying the constrains.
Some properties of OIFT

- Can incorporate image brightness increase/decrease in weight function. If we like to favor transitions from bright to dark pixels when passing from object to the background, we can define, for some $\alpha \in (0, 1)$,

$$w_1(c, d) = \begin{cases}
(1 - \alpha)e^{-\|f(c) - f(d)\|} & \text{if } \|f(c)\| > \|f(d)\| \\
(1 + \alpha)e^{-\|f(c) - f(d)\|} & \text{otherwise.}
\end{cases}$$

- Can incorporate shape constraints like geodesic star convexity [Mansilla, Jackowski, Miranda, 2013], geodesic band constraints [Braz, Miranda, 2014], Hedgehog Shape Prior, and other to be explored.
Outline

1. Image segmentation in graph cut setting
2. Dijkstra algorithm in general setting
3. Oriented IFT and graph cut optimization
4. HLOIFT: Hierarchical Layered OIFT algorithm
5. Experimental results for HLOIFT
6. Summary
HLOIFT is, essentially, OIFT algorithm run on a modified graph.

Input: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects; \(\rho \geq 0 \) giving minimal distance between boundaries of objects.
Forming HLOIFT’s graph

Let $f : V \rightarrow \mathbb{R}^k$ be an (n-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map h, with $h(i) = j$ meaning that O_j is a parent of O_i.

For every $i \in \mathcal{L} = \{1, \ldots, m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image f and object O_i. The edges and weights can include other constraints, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to ith object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p : \mathcal{N} \rightarrow V$ be a projection, $p(i, c) = c$.
Labeling of objects

HLOIFT, being essentially OIFT run on \mathcal{N}, returns a single object $O \subset \mathcal{N}$.

It encodes the objects and the background as

$$O_i = \{ t \in V : (i, t) \in O \} = p[O \cap (\{i\} \times V)] \text{ and } O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets $\langle S_0, \ldots, S_m \rangle$ in V indicate objects $\langle O_0, \ldots, O_m \rangle$, then $\bar{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$ indicates object O in \mathcal{N}, while $\bar{S}_0 = \mathcal{L} \times S_0$ indicates its complement in \mathcal{N}.

Sets \bar{S}_0 and \bar{S}_1 are used to define ψ_{last} in \mathcal{N}.
Inter-layer edges indicating inclusions

If O_j is the parent of O_i (i.e., $h(i) = j$),
we add all edges $\langle (i, c), (j, d) \rangle$ with $\|c - d\| \leq \rho$.

For $s = (i, c)$ and $t = (j, d)$ we define

$$w_1(s, t) = w_0(t, s) = \infty \text{ and } w_0(s, t) = w_1(t, s) = -\infty.$$
If \(O_i \) and \(O_j \) are siblings (i.e., \(h(i) = h(j) \) and \(i \neq j \)),

we add all edges \(\langle (i, c), (j, d) \rangle \) with \(\|c - d\| \leq \rho \).

For \(s = (i, c) \) and \(t = (j, d) \) we define

\[
 w_1(s, t) = w_0(t, s) = w_0(s, t) = w_1(t, s) = \infty.
\]
Illustration of the inter-layer arc construction

Figure: Illustration of the inter-layer arc construction, involving three objects O_i, O_j, and O_k, where O_k is the parent of two sibling objects, O_i and O_j, i.e., $h(i) = h(j) = k$.
HLOIFT Algorithm

Data: Weighted digraph \mathcal{N}; ψ_{last} from image and sets \bar{S}_0, \bar{S}_1

Result: Array $\pi[\cdot]$ of paths, $\pi[t]$ being a path from a seed to t

1. **foreach** $t \in \mathcal{N}$ **do** $\pi[t] \leftarrow \langle t \rangle$ and $S(t) \leftarrow 0$
2. $Q \leftarrow \bar{S}_0 \cup \bar{S}_1$
3. **while** $Q \neq \emptyset$ **do**
 4. **remove** an element s of $\max_{t \in Q} \psi_{\text{last}}(\pi[t])$ **from** Q
 5. $S(s) \leftarrow 1$
 6. **foreach** x such that $\langle s, x \rangle \in E$ and $S(x) = 0$ **do**
 7. **if** $\psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s] \wedge x)$ and $[\pi[s] \text{ is from } \bar{S}_1 \text{ or } s \text{ and } x \text{ are not siblings}]$ **then**
 8. $\pi[x] \leftarrow \pi[s] \wedge x$
 9. **if** $x \notin Q$ **then** insert t in Q
Theorem (Leon, Ciesielski, Miranda, submitted)

An object \(O \) returned by HLOIFT generates objects \(\langle O_0, \ldots, O_m \rangle \) which are consistent with the seeds \(\langle S_0, \ldots, S_m \rangle \) and the hierarchy indicated by \(h \).

Moreover, the graph cut \(c(O) \) associated with \(O \) minimizes its \(\ell_\infty \) norm among all such objects, where

\[
c(O) = \{ \langle s, t \rangle \in E : s \in O \& t \notin O \& s \text{ and } t \text{ are not siblings} \} \\
\cup \{ \langle s, t \rangle \in E : s, t \in O \& s \text{ and } t \text{ are siblings} \}.
\]
<table>
<thead>
<tr>
<th></th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Image segmentation in graph cut setting</td>
</tr>
<tr>
<td>2</td>
<td>Dijkstra algorithm in general setting</td>
</tr>
<tr>
<td>3</td>
<td>Oriented IFT and graph cut optimization</td>
</tr>
<tr>
<td>4</td>
<td>HLOIFT: Hierarchical Layered OIFT algorithm</td>
</tr>
<tr>
<td>5</td>
<td>Experimental results for HLOIFT</td>
</tr>
<tr>
<td>6</td>
<td>Summary</td>
</tr>
</tbody>
</table>
Experiment #1

Figure: Example of two object segmentation by HLOIFT, where O_2 is parent of O_1. Each object has different high-level priors – db: polarity from dark to bright pixels, bd: polarity from bright to dark pixels and g: geodesic star convexity prior. We used $\rho = 1.5$. Only two seeds.
Experiment #2

Figure: Example showing how changing the ρ value from 0 to 2 can improve the archaeological fragment segmentation by HLOIFT, avoiding a result with touching objects.
Figure: Knee segmentation composed of three objects in a CT image.
(a-b) Result by IFT where the O_1 is mixing bright & dark boundaries.
(c-d) An improved result is obtained by HLOIFT with boundary polarity from bright to dark pixels, requiring fewer seeds.
Experiment #4

Figure: Talus (O_1) and calcaneus (O_2) segmentation. The two objects are sibling objects. For HLOIFT, we used $\rho = 0$, the geodesic star convexity and boundary polarity ($\alpha = -0.75$).
Exper. #5: CT, thoracic-abdominal axial cross section

Figure: right lung (O_1), liver (O_2), heart (O_3), left lung (O_4), aorta (O_5) and the thoracic-abdominal region (O_6).
Figure: Flower segmentation in two objects, the central part in cyan and the petals in yellow, using the inclusion relation. (a) The input image. (b) Result by the min-cut/max-flow algorithm in layered graphs. (c) Result by HLOIFT.
The running times for the flower segmentation by HLOIFT and the min-cut/max-flow algorithm in layered graphs using different image sizes.
Outline

1. Image segmentation in graph cut setting
2. Dijkstra algorithm in general setting
3. Oriented IFT and graph cut optimization
4. HLOIFT: Hierarchical Layered OIFT algorithm
5. Experimental results for HLOIFT
6. Summary
We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.

We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.

We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.

We proved that the output of HLOIFT minimizes appropriate graph cut energy.

Thank you for your attention!