Line graphs containing 2-factors with bounded number of components

Hong-Jian Lai
Department of Mathematics
West Virginia University
Morgantown, WV 26506, U.S.A.
Email: hjlai@math.wvu.edu

Liming Xiong
School of Mathematics and Statistics
and Beijing Key Laboratory on MCAACL,
Beijing Institute of Technology
Beijing 100081, P.R. of China
Email: limxiong@bit.edu.cn

Huiya Yan *
Département of Mathematics and Statistics
University of Wisconsin-La Crosse
La Crosse, WI 54601, U.S.A.
Email: hyan@uwlaex.edu

Abstract

Let G be a connected simple graph of order n. We use $L(G)$ to denote the line graph of G, where $L(G)$ has the edge set of G as its vertex set and two vertices in $L(G)$ are adjacent if and only if the corresponding two edges in G share a common endvertex. A 2-factor of G is a spanning subgraph H of G such that every vertex in H has degree 2. A lot of results on the components of a 2-factor in G have appeared by studying the conditions on the

*the corresponding author

JCMCC 107 (2018), pp. 171-179
minimum degree of G. In this paper, instead of studying the minimum degree, we use a different approach and obtain the following: if
\[\max\{d(x), d(y)\} \geq \frac{n - \mu}{p} - 1 \]
holds whenever $xy \notin E(G)$ and $|U| \geq 3$, where $U = \{u : d(u) < \frac{n - \mu}{p} - 1\}$, $p > 0$ and $\mu \geq 0$ are integers, then for n sufficiently large relative to p and μ, $L(G)$ has a 2-factor with at most $p + 1$ components. Moreover, $L(G)$ has a 2-factor with at most p components if $|U| \leq 1$. Especially, it extends a result of [10] saying that if $\delta(G) \geq \frac{n}{p} - 1$, then $L(G)$ has a 2-factor with at most p components. We also show the graphs satisfying the conditions mentioned above are $(p+2)$-supereularian, i.e., they have a spanning even subgraph with at most $p+2$ components. All results are best possible.

Keywords: 2-factor; reduced graph; line graph; dominating Eulerian subgraph; k-supereularian graph

1 Introduction

We follow [1] for terminology and notation not defined here, and consider loopless finite graphs in which multiple edges are allowed. Let G be a graph and let $O(G)$ denote the set of all vertices in G with odd degrees. An Eulerian graph is a connected graph G with $O(G) = \emptyset$. The graph K_1 is an Eulerian graph. If a graph contains a spanning Eulerian subgraph, then it is called supereulerian. For literatures on supereulerian graphs, see the survey of Catlin [4] and its complement by Chen and Lai [5].

An Eulerian subgraph H of a graph G is dominating if $G - V(H)$ is edgeless, and in this case we call H a dominating Eulerian subgraph (DES).

We use $L(G)$ to denote the line graph of G, where $L(G)$ has $E(G)$ as its vertex set and two vertices in $L(G)$ are adjacent if and only if the corresponding two edges in G share a common endvertex. The following theorem explains the relationship between dominating Eulerian subgraphs in graph G and Hamiltonian cycles in the line graph $L(G)$.

Theorem 1. (Harary and Nash-Williams, [7]) Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is Hamiltonian if and only if G has a DES.

A 2-factor is a 2-regular spanning subgraph of G. A Hamiltonian cycle is then a 2-factor, and in one sense, it is the simplest 2-factor as it is composed of a single cycle. A circuit is an Eulerian subgraph with at least three vertices. Let F be a vertex subset of $V(G)$. An Eulerian subgraph H of G is called F-Eulerian if $F \subseteq V(H)$.

A star is the complete bipartite graph $K_{1,m}$. For a given graph G, we say that G has a p-system that dominates if there is a family S of edge-disjoint circuits and stars with at least three edges in G such that every
edge of G is either in one of the circuits or stars, or is incident to a circuit in S, where $p = |S|$. The following result gives a characterization of graphs G such that $L(G)$ contains a 2-factor with exactly p components.

Theorem 2. (Gould and Hynds, [6]) Let G be a graph without isolated vertices. The line graph $L(G)$ contains a 2-factor with p components if and only if G has a p-system that dominates.

There have been efforts using minimum degree or Ore-type degree sums to study the existence of 2-factors with a bounded number of components. Niu and Xiong applied this approach to line graphs and obtained the following result.

Theorem 3. (Niu and Xiong, [10]) Let G be a connected simple graph of order n and p a positive integer such that $\delta(G) \geq \lceil n/p \rceil - 1$. If n is sufficiently large relative to p, then G has an even factor with at most p components, and then $L(G)$ has a 2-factor with at most p components.

Catlin [3] showed the following:

Theorem 4. (Catlin, [3]) Let G be a connected simple graph of order n, and let $p \geq 2$ be an integer. If $d(u) + d(v) > \frac{2n}{p} - 2$ whenever $uv \notin E(G)$, and if $n \geq 4p^2$, then exactly one of the following conclusions holds:

(1) G has a spanning Eulerian subgraph;

(2) G is contractible to a graph G_1 of order less than p and containing no spanning Eulerian subgraph;

(3) $p = 2$, and $G - x = K_{n-1}$ for some $x \in V(G)$ with $d(x) = 1$.

Motivated by the theorems above, in this paper, we are going to show the following main result, of which Theorem 3 is a special case.

Theorem 5. Let G be a connected simple graph of order n, and let p be a positive integer, μ a nonnegative integer, $U = \{v : d(v) < \frac{n-\mu}{p} - 1\}$, where $G[U]$ is a clique. If $n > p^3 + 6p^2 + 6p + \mu + \mu$ and $|U| \geq 3$, and if $\max\{d(x), d(y)\} \geq \frac{n-\mu}{p} - 1$ whenever $xy \notin E(G)$, then $L(G)$ has a 2-factor with at most $p + 1$ components. Moreover, if $|U| \leq 1$, then $L(G)$ has a 2-factor with at most p components. Especially, if $\delta(G) \geq \frac{n}{p} - 1$ (this implies $U = \emptyset$), then $L(G)$ has a 2-factor with at most p components.

We organize the paper as follows. In Section 2, we present Catlin's reduction method which will be used in the proof of Theorem 5 (in Section 3); Section 4 is devoted to a corollary; the sharpness of Theorem 5 is presented in the last section.
2 Introduction to Catlin's reduction method

In 1988, Catlin defined collapsible graphs in [2]. Let G be a graph. For $R \subseteq V(G)$, a subgraph Γ of G is called an R-subgraph if both $O(\Gamma) = R$ and $G - E(\Gamma)$ is connected. A graph is collapsible if G has an R-subgraph for every even set $R \subseteq V(G)$. Apparently, K_1 is a collapsible graph. Let H be a connected subgraph of G. We use G/H to denote the graph obtained from G by contracting H, that is to say, we replace H with a vertex v_H such that the number of edges in G/H joining any $v \in V(G) - V(H)$ to v_H in G/H equals the number of edges joining v in G to H. We say G is contractible to G' if G contains pairwise vertex-disjoint connected subgraphs H_1, H_2, \ldots, H_k with $\bigcup_{i=1}^{k} V(H_i) = V(G)$ such that G' is obtained from G by successively contracting H_1, H_2, \ldots, H_k. Each subgraph H_i of G is called the preimage of the vertex v_{H_i} in G', and v_{H_i} is called the image of H_i. If H_i is not a single vertex in G, then we call v_{H_i} a nontrivial vertex in G'. For any vertex $v \in V(H_1)$, we also say that v_{H_1} is the image of the vertex v. Catlin [2] showed that every graph G has a unique collection of pairwise vertex-disjoint maximal collapsible subgraphs H_1, H_2, \ldots, H_k such that $\bigcup_{i=1}^{k} V(H_i) = V(G)$. The reduction of G is the graph obtained from G by successively contracting H_1, H_2, \ldots, H_k. A nontrivial vertex in the reduction of G is a vertex which is the image of a nontrivial connected subgraph of G. If a graph is the reduction of some graph, then we say the graph is reduced.

Theorem 6. (Catlin, [2]) Let G be a connected graph and G' the reduction of G. Then each of the following holds.

(a) G is supereulerian if and only if G' is supereulerian;

(b) G' is triangle-free with $\delta(G') \leq 3$;

(c) If G is reduced, then G is a simple graph with $\delta(G') \leq 3$ and with either $G \in \{K_1, K_2\}$, or $|E(G)| \leq 2|V(G)| - 4$;

(d) If G is collapsible, then G is supereulerian, i.e., G has a spanning Eulerian subgraph;

(e) Let L be a collapsible subgraph of G, v_L the vertex in G/L to which L is contracted, and $M \subseteq V(G) - V(L)$. Then G has an Eulerian subgraph H such that $M \cup V(L) \subseteq V(H)$ if and only if G/L has an Eulerian subgraph H' such that $M \cup \{v_L\} \subseteq V(H')$.

174
3 Proof of Theorem 5

Define

\[J_p(G) = \{ v \in V(G) : d(v) \geq \frac{n - \mu}{p} - 1 \}. \]

Let \(G' \) be the reduction of \(G \) and \(n' = |V(G')| \). Let \(p \) be a positive integer, and consider the condition that for any \(xy \notin E(G) \),

\[\max\{d(x), d(y)\} \geq \frac{n - \mu}{p} - 1. \tag{3.1} \]

We shall assume that (3.1) holds and that \(n \) is sufficiently large (say \(n > p^3 + 6p^2 + 6p + \mu p + \mu \)). Let \(U = \{ v : d(v) < \frac{n - \mu}{p} - 1 \} \), where \(G[U] \) is clearly a complete subgraph (clique) of \(G \). Moreover, \(d(v) \geq \frac{n - \mu}{p} - 1 \) for any \(v \in V(G) \setminus U \).

Let \(c = p + 5 \) and let

\[W = \{ v \in V(G') : d_{G'}(v) \leq c \} \text{ and } W' = \{ v \in W : v \text{ is nontrivial} \}. \]

We shall prove several claims to help us establish the conclusion in our main result.

Claim 1. \(|W \setminus W'| \leq 1. \)

Proof: Since every vertex \(v \) of \(W \setminus W' \) is trivial, \(d_G(v) = d_{G'}(v) \leq c < \frac{n - \mu}{p} - 1 \) when \(n > p^3 + 6p + \mu \). Hence \(W \setminus W' \subseteq U \). Recall that \(G[U] \) is a complete subgraph of \(G \). Since every complete graph with order at least 3 is collapsible, \(G[U] \) is contracted to one vertex in \(G' \) if \(|U| \geq 3 \). Hence \(W' \setminus W' \) contains at most one vertex in \(G' \). This proves Claim 1. \(\Box \)

Furthermore, Claim 1 implies the stronger statement that if \(W \neq W' \), then it forces \(|U| = 1 \) and \(W - W' = U \).

Claim 2. For any \(v \in W' \), if \(H_v \) denotes the preimage of \(v \) in \(G \) and either \(|U| \leq 1 \) or \(G[U] \not\subseteq H_v \), then

\[|V(H_v)| \geq \frac{n - \mu}{p} - d_{G'}(v). \tag{3.2} \]

Proof: Since \(v \) is nontrivial, \(|V(H_v)| \geq 3 \). Hence we can take a vertex \(x \in V(H_v) - U \) because either \(|U| \leq 1 \) or \(G[U] \not\subseteq H_v \). Then we have

\[\frac{n - \mu}{p} - 1 \leq d_G(x) \leq d_{H_v}(x) + d_{G'}(v), \]

which implies

\[d_{H_v}(x) \geq \frac{n - \mu}{p} - 1 - d_{G'}(v). \]
\[d_{\mathcal{C}^*}(v). \text{ So } |V(H_u)| \geq d_{H_u}(x) + 1 \geq \frac{n - \mu}{p} - d_{\mathcal{C}^*}(v). \text{ This proves Claim 2.} \]

\[\square \]

Claim 3. If \(|U| \leq 1\), then \(|W'| \leq p\); if \(|U| \geq 3\), then \(|W'| \leq p + 1\).

Proof: Suppose first that \(|U| \leq 1\). For any \(v \in W'\), by Claim 2 we have
\[|V(H_u)| \geq \frac{n - \mu}{p} - d_{\mathcal{C}^*}(v), \text{ so } n \geq |W'| \left(\frac{n - \mu}{p} - c \right). \]
This is equivalent to
\[|W'| \leq \frac{np}{n - \mu - pc}. \]
Since \(|W'|\) is an integer, we have \(|W'| \leq p\) when \(n > p^3 + 6p^2 + 5p + \mu p + \mu\).

Suppose next that \(|U| \geq 3\). Since the collapsible complete subgraph \(G[U]\) is contracted to one vertex in \(G'\), there must be exactly one vertex \(u \in W'\) such that \(G[U] \subseteq H_u\). By Claim 2, \(n - 1 \geq (|W'| - 1) \left(\frac{n - \mu}{p} - c \right)\).

This is equivalent to \(|W'| \leq \frac{(n - 1)p}{n - \mu - pc} + 1\). Since \(|W'|\) is an integer, we have \(|W'| \leq p + 1\) when \(n > p^3 + 6p^2 + 4p + \mu p + \mu\). \(\square\)

Claim 4. \(V(G') = W\).

Proof: By contradiction, we assume that \(V(G') \setminus W \neq \emptyset\). Note that every vertex in \(V(G') \setminus W\) has degree at least \(c + 1\) in \(G'\). Since \(G'\) is simple (\(G'\) is reduced), this means
\[n' \geq c + 2. \quad (3.3) \]

We count the adjacencies to get \(c|V(G') \setminus W| \leq 2|E(G')| \leq 4n' - 8\) by Theorem 6 (c), which means \(|V(G') \setminus W| \leq \frac{4n' - 8}{c}\). So it follows that
\[|W| = n' - |V(G') \setminus W| \geq \left(1 - \frac{4}{c} \right) n' + \frac{8}{c}. \quad (3.4) \]

By Claims 1 and 3, \(|W| \leq |W'| + 1 \leq p + 2\). Hence by (3.3) and (3.4),
\[\left(1 - \frac{4}{c} \right) (c + 2) + \frac{8}{c} \leq \left(1 - \frac{4}{c} \right) n' + \frac{8}{c} \leq p + 2. \]

It follows that \(p + 5 = c \leq p + 4\), a contradiction. Therefore, we must have \(V(G') = W\). \(\square\)

Claim 5. Every vertex in \(J_p(G)\) is contained in the preimage of some vertex in \(W'\).
Proof: Since $n > p^2 + 6p + \mu$, the degree of vertices in $J_p(G)$ will exceed c, and so Claim 5 follows from Claim 4. \(\square\)

Note that by Claim 5 and by Theorem 6 (e), if G' has a W'-Eulerian subgraph, then G has a $J_p(G)$-Eulerian subgraph. Here we do not distinguish whether G' has a W'-Eulerian subgraph or not. Since all vertices in W' are nontrivial, we can suppose that $W' = \{v_1, v_2, \ldots, v_m\}$. For any $v_i \in W'$, the pre-image of v_i in G denoted by H_i is collapsible and hence has a spanning Eulerian subgraph by Theorem 6. Moreover, $|V(H_i)| \ge 3$ since every vertex in W' is nontrivial. By Claim 1, we divide G' into m parts P_1, P_2, \ldots, P_m, where each P_i is an induced subgraph of v_i and its neighbors (trivial) from $W \setminus W'$. Therefore, G is divided into m parts which are the corresponding pre-images of P_1, P_2, \ldots, P_m and each part has a dominating Eulerian subgraph H_i, thus $\bigcup_{i=1}^m H_i$ is an m-system of G that dominates. By Theorem 2, $L(G)$ has a 2-factor with m components. Since $m = |W'| \le p + 1$ (by Claim 3), it follows that $L(G)$ has a 2-factor with at most $p + 1$ components. Moreover, if $|U| \le 1$, then $m = |W'| \le p$ by Claim 3, so $L(G)$ has a 2-factor with at most p components. Therefore, the proof of Theorem 5 is completed. \(\square\)

4 A Corollary

A graph is called k-supereulerian, if G has a spanning even subgraph with at most k components. The following result was proved recently.

Theorem 7. (Niu, Lai and Xiong, [9]) Let G be a connected graph and G' be the reduction of G. Then G is k-supereulerian if and only if G' is k-supereulerian.

By Theorem 7 and by the proof of Theorem 5, we obtain the following consequence.

Corollary 8. Let G be a connected simple graph of order n, and let p be a positive integer and μ a nonnegative integer. If $\max\{d(x), d(y)\} \ge \frac{n - \mu - 1}{p}$ holds for any $xy \notin E(G)$, then for $n > p^2 + 6p^2 + 6p + \mu p + \mu$, G is $(p + 2)$-supereulerian if $|U| \ge 3$, where $U = \{v : d(v) < \frac{n - \mu - 1}{p}\}$, and G is $(p + 1)$-supereulerian if $|U| \le 1$. Moreover, G is p-supereulerian if $U = \emptyset$.

5 Sharpness

In this section, we shall give an example to show the sharpness of Theorem 5 and Corollary 8. Let G_1, G_2, \ldots, G_p be p vertex-disjoint complete graphs
of order \(\frac{n-\mu}{p} \) and \(G_\mu \) an additional complete graph of order \(\mu \). Obtain \(G \) by joining exactly one vertex of \(G_i \) to exactly one vertex of \(G_\mu \) for \(i = 1, 2, \ldots, p \). Note that \(\max\{d(x), d(y)\} \geq \frac{n-\mu}{p} - 1 \) whenever \(xy \notin E(G) \) (where \(\mu = |\{v : d(v) < \frac{n-\mu}{p} - 1\}| \) and the equation can be achieved for some pairs of nonadjacent vertices \(x, y \). If \(\mu > 2 \) and \(n \) is sufficient large, then \(L(G) \) does not have a 2-factor with at most \(p \) components; if \(\mu = 1 \), then \(L(G) \) has no 2-factor with \(p - 1 \) components; if \(\mu = 2 \) and \(p \geq 3 \), then \(L(G) \) has no 2-factor with at most \(p \) components by the fact that \(G \) has no \(p \)-system that dominates. Especially, when \(\mu = 2 \), if \(p \leq 2 \) and any one of the two vertices in \(G_p \) is adjacent to at most one of \(G_i \), then \(L(G) \) has no 2-factors at all since \(G \) has no system that dominates. For \(\mu = 0 \), let \(G' \) be the graph of order \(n \) obtained from \(G_1, G_2, \ldots, G_p \) such that \(G/G_1, G_2, \ldots, G_p \) is a tree. Then \(G' \) satisfies the condition of Theorem 5 and \(L(G') \) has a 2-factor with \(p \) components. This shows Theorem 5 is best possible.

If \(\mu = 2 \), \(G \) is \((p + 2)\)-supereulerian but not \((p + 1)\)-supereulerian; if \(\mu \neq 2 \), then \(G \) is \((p + 1)\)-supereulerian but not \(p \)-supereulerian; if \(\mu = 0 \) then \(G' \) is \(p \)-supereulerian but not \((p - 1)\)-supereulerian. This shows that Corollary 8 is best possible.

Acknowledgements. This work has been supported by the National Natural Science Foundation of China (No.11471037, No.11671037)

References

