Degree sum and hamiltonian-connected line graphs

Jianping Liu a, Aimei Yu b, Keke Wang c, Hong-Jian Lai d

a College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
b Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
c Department of Mathematics, Embry-Riddle Aeronautical University, Prescott, AZ 86305, United States
d Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

A R T I C L E I N F O

Article history:
Received 27 July 2016
Received in revised form 6 January 2018
Accepted 5 February 2018
Available online 9 March 2018

Keywords:
Hamiltonian-connected
Line graphs
Spanning trailable graphs
Collapsible graphs
Reduction

A B S T R A C T

In 1984, Bauer proposed the problems of determining best possible sufficient conditions on the vertex degrees of a simple graph (or a simple bipartite graph, or a simple triangle-free graph, respectively) G to ensure that its line graph L(G) is hamiltonian. We investigate the problems of determining best possible sufficient conditions on the vertex degrees of a simple graph G to ensure that its line graph L(G) is hamiltonian-connected, and prove the following.

(i) For any real numbers a, b with 0 < a < 1, there exists a finite family $\mathcal{F}(a, b)$ such that for any connected simple graph G on n vertices, if $d_G(u) + d_G(v) \geq an + b$ for any $u, v \in V(G)$ with $uv \not\in E(G)$, then either L(G) is hamiltonian-connected, or $\kappa(L(G)) \leq 2$, or L(G) is not hamiltonian-connected, $\kappa(L(G)) \geq 3$ and G is contractible to a member in $\mathcal{F}(a, b)$.

(ii) Let G be a connected simple graph on n vertices. If $d_G(u) + d_G(v) \geq \frac{n}{2} - 2$ for any $u, v \in V(G)$ with $uv \not\in E(G)$, then for sufficiently large n, either L(G) is hamiltonian-connected, or $\kappa(L(G)) \leq 2$, or L(G) is not hamiltonian-connected, $\kappa(L(G)) \geq 3$ and G is contractible to W_8, the Wagner graph.

(iii) Let G be a connected simple triangle-free (or bipartite) graph on n vertices. If $d_G(u) + d_G(v) \geq \frac{3n}{2}$ for any $u, v \in V(G)$ with $uv \not\in E(G)$, then for sufficiently large n, either L(G) is hamiltonian-connected, or $\kappa(L(G)) \leq 2$, or L(G) is not hamiltonian-connected, $\kappa(L(G)) \geq 3$ and G is contractible to W_8, the Wagner graph.

© 2018 Elsevier B.V. All rights reserved.

1. The problem

We consider finite loopless graphs but multiple edges are permitted and follow [4] for undefined terms and notation. As in [4], $\kappa(G)$ and $\kappa'(G)$ denote the connectivity and edge-connectivity of a graph G, respectively. We define $\kappa'(K_1) = \infty$. An edge cut with size k is called a k-edge-cut. For an integer $i \geq 0$, we define $V_i(G) = \{v \in V(G) \mid d_G(v) = i\}$ and $d_i(G) = |V_i(G)|$. For vertices $u, v \in V(G)$, a (u, v)-path (a (u, v)-trail, respectively) is a path (a trail, respectively) from u to v. A graph is hamiltonian if it has a spanning cycle, and is hamiltonian-connected if for any distinct vertices u and v, G contains a spanning (u, v)-path. It is well known that every hamiltonian-connected graph must be 3-connected. The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have at least one vertex in common.

If $X \subseteq E(G)$, the contraction G/X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. We define $G/\emptyset = G$. If H is a subgraph of G, we write G/H for $G/E(H)$. If H is a connected subgraph of G and v_H is the vertex in G/H onto which H is contracted, then H is the preimage of v_H and is denoted by $Pl_G(v_H)$.

E-mail addresses: ljping01@163.com (J. Liu), yuaimeimath@163.com (A. Yu), wangkk87@gmail.com (K. Wang), hjlai@math.wvu.edu (H.-J. Lai).

https://doi.org/10.1016/j.disc.2018.02.008
0012-365X/© 2018 Elsevier B.V. All rights reserved.
In [1,2], Bauer proposed the problems of determining best possible sufficient conditions on the vertex degrees of a simple graph (or a simple bipartite graph, or a simple triangle-free graph, respectively) G to ensure that its line graph $L(G)$ is hamiltonian. These problems have been settled by Catlin [6] and Lai [15]. Similar problems are considered in this paper. We seek best possible sufficient degree conditions of a simple graph to assure that $L(G)$ is hamiltonian-connected. The graph W_8 depicted in Fig. 1(c) is the Wagner graph. Our main results in this paper are the following.

Theorem 1.1. Let $n \geq 3$ be an integer. For any real numbers a, b with $0 < a < 1$, there exists a family $\mathcal{F}(a, b)$ of finitely many graphs each of which has a non-hamiltonian-connected line graph, such that for any connected simple graph G on n vertices, if
\[
d_c(u) + d_c(v) \geq an + b \quad \text{for any} \quad u, v \in V(G) \quad \text{with} \quad uv \notin E(G),
\]
then exactly one of the following must hold:
(i) $L(G)$ is hamiltonian-connected;
(ii) $\kappa(L(G)) \leq 2$;
(iii) $L(G)$ is not hamiltonian-connected, $\kappa(L(G)) \geq 3$ and G is contractible to a member in $\mathcal{F}(a, b)$.

Theorem 1.2. Let $n \geq 3$ be an integer, and G be a connected simple graph on n vertices. If
\[
d_c(u) + d_c(v) \geq \frac{n}{4} - 2 \quad \text{for any} \quad u, v \in V(G) \quad \text{with} \quad uv \notin E(G),
\]
then for sufficiently large n, exactly one of the following must hold:
(i) $L(G)$ is hamiltonian-connected;
(ii) $\kappa(L(G)) \leq 2$;
(iii) $L(G)$ is not hamiltonian-connected, $\kappa(L(G)) \geq 3$ and G is contractible to W_8.

Theorem 1.3. Let G be a connected simple triangle-free (or bipartite) graph on n vertices. If
\[
d_c(u) + d_c(v) \geq \frac{n}{8} \quad \text{for any} \quad u, v \in V(G) \quad \text{with} \quad uv \notin E(G),
\]
then for sufficiently large n, exactly one of the following must hold:
(i) $L(G)$ is hamiltonian-connected;
(ii) $\kappa(L(G)) \leq 2$;
(iii) $L(G)$ is not hamiltonian-connected, $\kappa(L(G)) \geq 3$ and G is contractible to W_8.

In the next section, we present our associate results and develop some needed tools. In Section 3, we assume the truth of the associate results to prove our main results on hamiltonian-connected line graphs. The proofs for our associate results will be given in the last section.

2. Strongly spanning trailable graphs

For a graph G, let $O(G)$ denote the set of odd degree vertices in G. A graph G is eulerian if G is connected with $O(G) = \emptyset$, and is supersuer eulerian if G has a spanning eulerian subgraph. Supereulerian graphs are first introduced by Boesch, Suffel, and Tindell in [3], and are closely related to the study of hamiltonian line graphs. Catlin [7] presented the first survey on supereulerian graphs. Supplemented or updated surveys on supereulerian graphs can be found in [11,16].

A graph G is collapsible if for any subset $R \subseteq V(G)$ with $|R| \equiv 0 \pmod{2}$, G has a spanning connected subgraph H such that $O(H) = R$. If G is collapsible, then by definition with $R = \emptyset$, G is supereulerian and so $\kappa'(G) \geq 2$. In [6], Catlin showed that for any graph G, every vertex of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G', is obtained from G by contracting all nontrivial maximal collapsible subgraphs of G. A graph is reduced if it is the reduction of some graph. As shown in [6], a reduced graph is simple.
For $u, v \in V(G)$, a (u, v)-trail is a trail of G from u to v. Thus a (u, u)-trail is an eulerian subgraph of G. For $e, e' \in E(G)$, an (e, e')-trail is a trail of G having end-edges e and e'. An (e, e')-trail T is dominating if each edge of G is incident with at least one internal vertex of T; and T is spanning if T is a dominating trail with $V(T) = V(G)$. A graph G is spanning trailable if for each pair of edges e_1 and e_2, G has a spanning (e_1, e_2)-trail.

Suppose that $e = u_1v_1$ and $e' = u_2v_2$ are two edges of G. If $e \neq e'$, then the graph $G(e, e')$ is obtained from G by replacing $e = u_1v_1$ with a path $u_1v_1v_1$, and by replacing $e' = u_2v_2$ with a path $u_2v_2v_2$, where v_e, $v_{e'}$ are two new vertices not in $V(G)$. If $e = e'$, then $G(e, e')$, also denoted by $G(e)$, is obtained from G by replacing $e = u_1v_1$ with a path $u_1v_1v_1$. For the recovering operation, we let $c_G(G(e, e'))$ be the graph obtained from $G(e, e')$ by replacing the path $u_1v_1v_1$ with the edge $e = u_1v_1$. Thus, $c_G(G(e, e')) = G$.

For a graph G and an integer $k > 0$, a k-edge-cut X of G is an essential k-edge-cut of G if each side of $G - X$ has at least one edge. If a connected graph does not have an essential k-edge-cut for any $k < k$, then G is essentially k-edge-connected. Thus when $L(G)$ is not a complete graph, $L(G)$ is k-connected if and only if G is essentially k-edge-connected. The largest integer k such that G is essentially k-edge-connected is denoted by $\kappa'(G)$.

As defined in [19], a graph G is strongly spanning trailable if for any $e, e' \in E(G)$, $G(e, e')$ has a $(v_e, v_{e'})$-trail T with $V(G) = \{v_e, v_{e'}\}$. Since $e = e'$ is possible, strongly spanning trailable graphs are both spanning trailable and supereulerian. The theorem below indicates that the study of strongly spanning trailable graphs should be focused on graphs with edge-connectivity less than 4.

Theorem 2.1 (Luo et al. [20], see also Theorem 4 of [9]). If $\kappa'(G) \geq 4$, then G is strongly spanning trailable.

As the Wagner graph W_6 is spanning trailable but not strongly spanning trailable [23], strongly spanning trailable graphs and spanning trailable graphs are not equivalent.

2.1. Associate results on strongly spanning trailable graphs

Harary and Nash-Williams showed that there is a close relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 2.2 (Harary and Nash-Williams, [13]). Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is hamiltonian if and only if G has an eulerian subgraph H with $E(G - V(H)) = \emptyset$.

Let G be a graph such that $\kappa(L(G)) \geq 3$ and $G \neq K_{1,n-1}$. The core of this graph G, denoted by G_0, is obtained from $G - V_1(G)$ by contracting exactly one edge xy or yz for each path xyz in G with $d_G(y) = 2$. Lemma 2.3(iii) is proved by using a similar argument in the proof of Theorem 2.2.

Lemma 2.3 (Shao, [22]). Let G be a connected nontrivial graph such that $\kappa(L(G)) \geq 3$, and let G_0 denote the core of G.

(i) G_0 is uniquely determined by G with $\kappa'(G_0) \geq 3$.

(ii) (see also Lemma 2.9 of [17]) If for any $e, e' \in E(G_0)$, $G_0(e, e')$ has a spanning $(v_e, v_{e'})$-trail, then $L(G)$ is hamiltonian-connected.

(iii) (see also Proposition 2.2 of [17]) $L(G)$ is hamiltonian-connected if and only if for any pair of edges $e, e' \in E(G)$, G has a dominating (e, e')-trail.

Lemma 2.3 indicates that the study of hamiltonian-connected line graphs is closely related to the study of strongly spanning trailable graphs. For an integer $B > 0$, define

$$S_0(B) = \{G : G \text{ is reduced with } |V(G)| \leq B \text{ and with vertices } u, v \in V(G) \text{ such that } G \text{ has no spanning } (u, v)\text{-trails}\}.$$

Since a reduced graph is simple, the number of reduced graphs with at most B vertices is finite, and so $S_0(B)$ is a finite family. Let v_e and $v_{e'}$ be the two vertices in $G(e, e')$ obtained by subdividing the edges e, e' in G, respectively. Let $G(e, e')$ be the reduction of $G(e, e')$. Define

$$c(G(e, e')) = \begin{cases}
G(e, e') & \text{if } v_e, v_{e'} \notin V(G(e, e')), \\
\c_G(G(e, e')) & \text{if } v_e \in V(G(e, e')), v_{e'} \notin V(G(e, e')), \\
\c_{e'}(G(e, e')) & \text{if } v_e \notin V(G(e, e')), v_{e'} \in V(G(e, e')), \\
\c_{e}(\c_{e'}(G(e, e'))) & \text{if } \{v_e, v_{e'}\} \subset V(G(e, e')).
\end{cases}$$

Let $\mathcal{N} = \{G : G \text{ is not a strongly spanning trailable graph}\}$, and define

$$S(B) = \{G' : G' = c(G(e, e')), \text{ for some } G \in \mathcal{N} \text{ and } e, e' \in E(G), (G(e, e') \in S_0(B))\}.$$

Since $G(e, e') \in S_0(B)$ and since $S_0(B)$ is a finite family, $S(B)$ is also finite. In order to prove our main results in this paper, we shall prove the following associate results on strongly spanning trailable graphs.
Theorem 2.4. Let G be a connected simple graph on n vertices with $\kappa'(G) \geq 2$, $\text{ess}'(G) \geq 3$ and $|V_2(G)| \leq 1$. For any real numbers a and b with $0 < a < 1$, there exists an integer $B = \max\left\{ \frac{12-b}{a}, \frac{(b+2)(a+1)}{a}, [19+\frac{6}{a}] \right\}$ such that if (1.1) holds, then either G is strongly spanning trailable or G is contractible to a member in $\mathcal{S}(B)$.

Theorem 2.5. Let G be a connected simple graph on $n \geq 217$ vertices with $\kappa'(G) \geq 2$, $\text{ess}'(G) \geq 3$ and $|V_2(G)| \leq 1$. If (1.2) holds, then either G is strongly spanning trailable or G is contractible to W_0 with $n \equiv 0 \pmod{8}$ in such a way that the preimage of every vertex of W_0 is the complete graph K_8 or $K_8 - e$ for some $e \in E(K_8)$.

Theorem 2.6. Let G be a connected simple triangle-free (or bipartite) graph on $n \geq 577$ vertices with $\kappa'(G) \geq 2$, $\text{ess}'(G) \geq 3$ and $|V_2(G)| \leq 1$. If (1.3) holds, then either G is strongly spanning trailable or G is contractible to W_0 with $n \equiv 0 \pmod{16}$ in such a way that the preimage of every vertex of W_0 is the complete bipartite graph $K_{\frac{n}{8}, \frac{n}{8}}$ or $K_{\frac{n}{8}, \frac{n}{8}} - e$ for some $e \in E(K_{\frac{n}{8}, \frac{n}{8}})$.

2.2. Some tools

Let $F(G)$ be the minimum number of additional edges that must be added to G such that the resulting graph has two edge-disjoint spanning trees. We use the symbols $P(10)$ and $P(10)(e)$ to denote the Petersen graph and the graph obtained from $P(10)$ by subdividing an edge, respectively. The following lemma summarizes some properties of collapsible graphs and reduced graphs.

Lemma 2.7. Let G be a connected graph and G' be the reduction of G. For integer $k \geq 2$, let C_k denote a cycle on k vertices. Then each of the following holds.

(i) [6] The graph C_2 is collapsible. Moreover, if $n = 1$ or $n \geq 3$, then the complete graph K_n is also collapsible.

(ii) (Lemma 1 of [5]) Every subdivision of K_4 with at most 6 vertices is collapsible. Particularly, $K_{3,3}$ is collapsible, where $K_{3,3}$ is the graph obtained from $K_{3,3}$ by deleting an edge.

(iii) (Theorem 3 and 8 of [6]) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G/H is collapsible. Particularly, G is collapsible if and only if $G' = K_1$.

(iv) (Lemma 2.3 of [8]) If G is reduced, then $F(G) = 2|V(G)| - |E(G)| - 2$.

(v) (Theorem 1.3 of [8]) If $F(G) \leq 2$, then $G' \in \{K_1, K_2\} \cup \{K_{2,t}: t \geq 1\}$.

(vi) [23] Let G be a connected simple graph with $n (\leq 12)$ vertices, $d_1(G) = 0$ and $d_2(G) \leq 1$. Then either $G' \in \{K_1, K_2, K_{1,2}, K_{1,3}, K_{2,2}, K_{2,3}, K_{2,3}', P(10), P(10)(e)\}$ or G is a superedgerian graph on 12 vertices, where $K_{2,3}'$ is a graph obtained from $K_{2,3}$ by adding a pendant edge to a vertex with degree 2 of $K_{2,3}$.

(vii) [18] Let G be a connected simple graph with $|V(G)| \leq 8$, $V_1(G) = \emptyset$ and $|V_2(G)| \leq 2$. Then the reduction of G is K_1 or K_2.

Lemma 2.8 (Lemma 2.2 of [18]). If G is collapsible, then for any $u, v \in V(G)$, G has a spanning (u, v)-trail.

Lemma 2.9 (Lemma 2.5 of [19], see also [23]). Let $e, e' \in E(G), H$ be a collapsible subgraph of $G(e, e')$ and v_H denote the vertex in $G(e, e')/H$ onto which H is contracted. Define

$$v'_e = \begin{cases} v_e & \text{if } v_e \notin V(H), \\ v_H & \text{if } v_e \in V(H), \end{cases}$$

and

$$v'_e' = \begin{cases} v'_e & \text{if } v'_e \notin V(H), \\ v_H & \text{if } v'_e \in V(H). \end{cases}$$

If $G(e, e')/H$ has a spanning (v'_e, v'_e')-trail, then $G(e, e')$ has a spanning (v_e, v_e')-trail.

Lemma 2.10 ([23]). If $\kappa'(G) \geq 3$ and if G is not strongly spanning trailable, then $|V(G)| \geq 8$, and $|V(G)| \leq 8$ if and only if $G \cong W_6$.

Lemma 2.11. Let G be a connected simple graph with $\kappa'(G) \geq 2$, $\text{ess}'(G) \geq 3$ and $|V_2(G)| \leq 1$. Let $e, e' \in E(G)$ and $G(e, e')$ be the reduction of $G(e, e')$. Denote $d_1 = |V(G(e, e'))|$. Then each of the following holds.

(i) $2F(G(e, e')) = 4|V(G(e, e'))|-2|E(G(e, e'))|-4 = \sum_{i \geq 2}(4-i)d_i - 4$.

(ii) If $G(e, e')$ has no spanning (v_e, v_e')-trails, then $F(G(e, e')) \geq 3$ and $2d_2 + d_3 \geq 10 + \sum_{i \geq 2}(i-4)d_i$.

Proof. As $d_1 = 0$ follows from $\kappa'(G) \geq 2$, we have $|V(G(e, e'))| = \sum_{i \geq 2}d_i$ and $2|E(G(e, e'))| = \sum_{i \geq 2}id_i$. By Lemma 2.7(iv), (i) holds immediately.

Assume that $G(e, e')$ has no spanning (v_e, v_e')-trails. Now we show that $F(G(e, e')) \geq 3$. By Lemma 2.7(v), it suffices to show that $G(e, e') \notin \{K_1, K_2\} \cup \{K_{2,t}: t \geq 1\}$. If $G(e, e') = K_1$, then by Lemma 2.7(iii), $G(e, e')$ is collapsible. Then by Lemma 2.8, $G(e, e')$ has a spanning (v_e, v_e')-trail, contrary to the assumption. Hence $G(e, e') \neq K_1$.

Since $\kappa'(G) \geq 2$, we have $\kappa'(G(e, e')) \geq 2$ and so $G(e, e') \notin \{K_2, K_{2,1}\}$. Since $\text{ess}'(G) \geq 3$ and $|V_2(G)| \leq 1$, $G(e, e')$ has at most three vertices of degree 2. Hence $G(e, e') \notin \{K_{2,t}: t \geq 1, t \neq 3\}$. If $G(e, e') = K_{2,3}$, then for any $u, v \in V_2(G(e, e'))$, $G(e, e')$ has a spanning (u, v)-trail. It follows by Lemma 2.9 that $G(e, e')$ has a spanning (v_e, v_e')-trail, a contradiction. Hence $F(G(e, e')) \geq 3$. This completes the proof of Lemma 2.11. ■
Lemma 2.12. Suppose that \(G \) is a simple graph with \(|V(G)| \leq 10 \) and \(\kappa'(G) \geq 3 \). For any \(e_0 \in E(G) \), if \(G(e_0) \) is not collapsible, then \(G(e_0) = P(10)(e_0) \).

Proof. Suppose that \(G \) and \(G(e_0) \) are the graphs satisfying the conditions of Lemma 2.12. Then \(|V(G(e_0))| \leq 11 \), \(d_1(G(e_0)) = 0 \) and \(d_2(G(e_0)) = 1 \). Let \(H \) be the reduction of \(G(e_0) \). By Lemma 2.7(vi), \(H \) \(\in \{K_1, K_2, K_{1,2}, K_{2,3}, K'_{2,3}, P(10), P(10)(e_0)\} \). Since \(G(e_0) \) is not collapsible, \(H \neq K_1 \). By \(\kappa'(G(e_0)) \geq 3 \), we have \(\kappa'(G(e_0)) \geq 2 \) and \(\kappa'(H) \geq 2 \). Hence \(H \notin \{K_2, K_{1,2}, K'_{2,3}\} \). Since \(\kappa'(G) \geq 3 \), \(G(e_0) \) has a unique 2-edge-cut, and then \(H \) has at most one 2-edge-cut. Thus \(H \neq K_{2,3} \) and so \(H \in \{P(10), P(10)(e_0)\} \). If \(G(e_0) \neq H \), then as every collapsible simple graph has at least 3 vertices, \(|V(H)| \leq |V(G(e_0))| - 2 = 9 \). This forces that \(G(e_0) = H = P(10)(e_0) \). ■

Definition 2.13 ([12]). Let \(s_1, s_2, s_3, m, l, t \) be natural numbers with \(m, l, t \geq 1 \).

(i) Let \(M \equiv K_{1,3} \) with center \(a \) and ends \(a_1, a_2, a_3 \). Define \(K_{1,3}(s_1, s_2, s_3) \) to be the graph obtained from \(M \) by adding \(s_1 \) vertices with neighbors \(\{a, a_1\} \), where \(i \equiv 1, 2, 3 \mod 3 \);

(ii) Let \(K_{2,t}(u, u') \) be a \(K_{2,t} \) with \(u, u' \) being the nonadjacent vertices of degree \(t \). Let \(K'_{2,t}(u, u', u'') \) be the graph obtained from a \(K_{2,t}(u, u') \) by adding a new vertex \(u'' \) that joins to \(u' \) only. Hence \(u'' \) has degree 1 and \(u \) has degree \(t \) in \(K'_{2,t}(u, u', u'') \);

(iii) Let \(K''_{2,t}(u, u', u'') \) be the graph obtained from a \(K_{2,t}(u, u') \) by adding a new vertex \(u'' \) that joins to a vertex of degree 2 of \(K_{2,t} \). Hence \(u'' \) has degree 1 and \(u \) and \(u' \) have degree \(t \) in \(K''_{2,t}(u, u', u'') \). We shall use \(K'_{2,t} \) and \(K''_{2,t} \) for \(K'_{2,t}(u, u', u'') \) and \(K''_{2,t}(u, u', u'') \), respectively;

(iv) Let \(S(m, l) \) be the graph obtained from a \(K_{2,m}(u, u') \) and a \(K_{2,l}(w, w', w'') \) by identifying \(u \) with \(w \) and \(u'' \) with \(w'' \);

(v) Let \(J(m, l) \) denote the graph obtained from a \(K_{2,m+1}(u, u') \) and a \(K'_{2,l}(w, w', w'') \) by identifying \(u \) with \(w \) and \(u'' \) with \(w'' \), where \(uv \in E(K_{2,m+1}) \), \(d_{K_{2,m+1}}(u) = 2 \) and \(d_{K_{2,m+1}}(v) = m + 1 \);

(vi) Let \(J''(m, l) \) denote the graph obtained from a \(K_{2,m+2}(u, u') \) and a \(K''_{2,l}(w, w', w'') \) by identifying \(u \) and \(u'' \) with two vertices of degree 2 in \(K_{2,m+2} \), respectively.

In Fig. 2, we depict some graphs in Definition 2.13 with small parameters. Let \(F_0 = \{K_1, K_2, P(10)\} \cup \{K_{2,t}, K'_{2,t}, K''_{2,t} : t \geq 1\} \cup \{K_{1,3}(s_1, s_2, s_3) : s_1, s_2, s_3 \geq 0\} \cup \{S(m, l), J(m, l), J''(m, l) : m, l \geq 1\} \).

Lemma 2.14 ([12]). If \(G \) is a connected reduced graph with \(|V(G)| \leq 11 \) and \(F(G) \leq 3 \), then \(G \in F_0 \).

Lemma 2.15. Let \(G \) be a connected simple graph with \(\kappa'(G) \geq 2 \) and \(|V(G)| = 1 \). Let \(G(e, e') \) be the reduction of \(G(e, e') \). If \(7 \leq |V(G(e, e'))| \leq 9 \) and \(F(G(e, e')) = 3 \), then \(G(e, e') \in \{J'(1, 2), J''(1, 1), K_{1,3}(1, 1, 1)\} \).

Proof. Suppose that \(G \) is a graph satisfying the conditions of Lemma 2.15 and \(G(e, e') \) be the reduction of \(G(e, e') \). Since \(7 \leq |V(G(e, e'))| \leq 9 \) and \(F(G(e, e')) = 3 \), by Lemmas 2.14 and 2.7(v), \(G(e, e') \in \{K''_{2,t}, K''_{2,t} : t \geq 1\} \cup \{K_{1,3}(s_1, s_2, s_3) : s_1, s_2, s_3 \geq 0\} \cup \{S(m, l), J(m, l), J''(m, l) : m, l \geq 1\} \). Since \(\kappa'(G) \geq 2 \), we have \(\kappa'(G(e, e')) \geq 2 \), which implies that \(G(e, e') \notin \{K''_{2,t}, K''_{2,t} : t \geq 1\} \). Hence \(G(e, e') \notin \{K_{1,3}(s_1, s_2, s_3) : s_1, s_2, s_3 \geq 0\} \cup \{S(m, l), J(m, l), J''(m, l) : m, l \geq 1\} \). Since \(|V_2(G(e, e'))| = 3 \), it is routine to verify that \(G(e, e') \in \{J'(1, 2), J''(1, 1), K_{1,3}(1, 1, 1)\} \) (see Fig. 3 and the Appendix). ■
3. Applications of Theorems 2.4–2.6

In this section, we assume the validity of Theorems 2.4–2.6 to prove our main results stated in Theorems 1.1–1.3. Let \(a \) and \(b \) be real numbers with \(a > 0 \). Define a family of connected simple graphs as follows:

\[
\mathcal{G}(a, b) = \{ G : G \text{ satisfying (1.1) with } n = |V(G)| \geq \max\left\{ \frac{5 - b}{a}, 5 \right\} \text{ and } \kappa(L(G)) \geq 3 \}.
\]

Lemma 3.1. If \(G \in \mathcal{G}(a, b) \), then \(\text{ess}'(G) \geq 3 \) and \(|V_1(G) \cup V_2(G)| \leq 1 \).

Proof. Since \(\kappa(L(G)) \geq 3 \), we have \(\text{ess}'(G) \geq 3 \). As \(n \geq 4 \) and \(\kappa(L(G)) \geq 3 \), \(V_1(G) \cup V_2(G) \) is an independent set of \(G \). By contradiction, assume first that \(V_1(G) \cup V_2(G) \) contains two vertices \(u \) and \(v \). By (1.1), \(4 \geq d_G(u) + d_G(v) \geq an + b \), implying \(n \leq \frac{4 - b}{a} \), contrary to the assumption that \(n \geq \max\{\frac{5 - b}{a}, 5\} \). Hence we must have \(|V_1(G) \cup V_2(G)| \leq 1 \). \(\blacksquare \)

Lemma 3.1 motivates the following definition.

Definition 3.2. Let \(\mathcal{G} = \{ G \in \mathcal{G}(a, b) : V_1(G) = \emptyset \text{ and } |V_2(G)| = 1 \} \). For each \(G \in \mathcal{G} \), we assume that \(z \in V_2(G) \) with \(N_G(z) = \{ z', z'' \} \). Define

\[
\begin{align*}
\mathcal{G}_1 &= \{ G : G \in \mathcal{G} \text{ and } z'z'' \notin E(G) \}, \\
\mathcal{G}_2 &= \{ G : G \in \mathcal{G} \text{ and } z'z'' \in E(G) \text{ and } \text{ess}'(G - z) \geq 3 \}, \\
\mathcal{G}_3 &= \{ G : G \in \mathcal{G} \text{ and } z'z'' \in E(G), \text{ess}'(G - z) \leq 2, \text{ and } z'z'' \text{ is not in any 3-cycle of } G - z \}, \\
\mathcal{G}_4 &= \{ G : G \in \mathcal{G} \text{ and } z'z'' \in E(G), \text{ess}'(G - z) \leq 2, \text{ and } z'z'' \text{ is in a 3-cycle of } G - z \}.
\end{align*}
\]

If \(G \in \mathcal{G}(a, b) \) with \(V_1(G) \neq \emptyset \) or if \(G \in \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3 \), then define

\[
G_1 = G - V_1(G) \quad \text{if } V_1(G) \neq \emptyset; \tag{3.1}
\]

\[
G_2 = \begin{cases}
G/zz'' & \text{if } G \in \mathcal{G}_1, \\
G - z & \text{if } G \in \mathcal{G}_2, \\
G/\{z', z'', z'z''\} & \text{if } G \in \mathcal{G}_3.
\end{cases}
\]

The following **Lemma 3.3** can be proved by using a similar argument in the proof of Lemma 2.6 of [19] (see also Lemma 3.2.3 of [23]).

Lemma 3.3. Let \(G \) be a graph with \(\kappa'(G) \geq 2 \) and \(\text{ess}'(G) \geq 3 \), and let \(G_1, G_2, \ldots, G_k \) be the blocks of \(G \). Then the following are equivalent.

(i) \(G \) is strongly spanning trailable.

(ii) For every \(i \in \{1, 2, \ldots, k\} \), \(G_i \) is strongly spanning trailable.

Lemma 3.4. Let \(G \in \mathcal{G} \), and let \(z', z'', z''' \) be defined as in **Definition 3.2**. Each of the following holds.

(A) If \(z'z'' \in E(G) \) and \(\text{ess}'(G - z) \leq 2 \), then \(G \) must have the structure as depicted in **Fig. 4(a)**.

(B) If \(G \in \mathcal{G}_4 \), then there exist connected subgraphs \(H_1, H_2 \) of \(G \) such that \(E(G) = E(H_1) \cup E(H_2) \) and \(V(H_1) \cap V(H_2) = \{ z' \} \) (as depicted in **Fig. 4(c)**). Moreover, each of the following holds.

(i) For each \(1 \leq i \leq 2 \),

\[
d_{H_i}(u) + d_{H_i}(v) \geq a|V(H_i)| + b \text{ for any } u, v \in V(H_i) \text{ with } uv \notin E(H_i). \tag{3.2}
\]

(ii) If \(G \) is not strongly spanning trailable, then there exists \(H_i \) \((1 \leq i \leq 2) \) such that \(H_i \) is not strongly spanning trailable.

(iii) Fix \(i \in \{1, 2\} \). Then \(\kappa'(H_i) \geq 2, \text{ess}'(H_i) \geq 3 \) and \(|V_2(H_i)| \leq 1 \); and if \(H_i \) is contractible to a graph \(\Gamma' \), then \(G \) is also contractible to \(\Gamma' \).
Proof. (A) We use the notation in Definition 3.2. If $z'z'' \in E(G)$ and $\text{ess}^*(G - z) \leq 2$, then as $\text{ess}^*(G) \geq 3$, there exists an essential edge cut X in $G - z$ such that $|X| = 2$ and $z'z'' \in X$, and so Lemma 3.4(A) holds.

(B) Assume that $G \in \mathcal{G}_4$, and so $z'z''$ lies in a 3-cycle C' of $G - z$. As $\text{ess}^*(G) \geq 3$ and $\text{ess}^*(G - z) \leq 2$, $G - z$ must have an essential 2-edge-cut containing $z'z''$, and so z' or z'' (say z') must be a cut vertex of G, as depicted in Fig. 4(b). Hence there exist connected subgraphs H_1, H_2 of G such that $E(G) = E(H_1) \cup E(H_2)$ and $V(H_1) \cap V(H_2) = \{z'\}$. For $1 \leq i \leq 2$, to prove H_i satisfies (3.2), it is sufficient to show that for any $u \in V(H_i)$ with $uz' \not\in E(H_i)$,

$$d_{H_i}(u) + d_{H_i}(z') \geq a|V(H_i)| + b.$$

As for any $u \in V(H_i)$ with $uz' \not\in E(H_i)$, we have $uz' \not\in E(G)$. It follows from (1.1) that $d_G(u) + d_G(z) \geq a|V(G)| + b$, whence we have $d_{H_i}(u) = d_G(u) \geq a|V(G)| + b - 2$. Since z' is a cut vertex of G and by $\text{ess}^*(G) \geq 3$, we have $d_{H_i}(z') \geq 3$, and so (3.2) holds. This proves Lemma 3.4(B)(i).

As Lemma 3.4(B)(ii) follows from Lemma 3.3, and Lemma 3.4(B)(iii) follows from the definition of contractions and from the assumption that $|V(G)| \leq 1$, Lemma 3.4 is proved.

Lemma 3.5. Let $G \in \mathcal{G}(a, b)$ with $V_1(G) \neq \emptyset$ or $G \in \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3$, and let G_1 and G_2 be defined in (3.1). Each of the following holds.

(i) $\kappa'(G_1) \geq 2$, $\text{ess}'(G_1) \geq 3$, $|V_2(G_1)| = 0$ and for any distinct nonadjacent vertices $u, v \in V(G_1)$,

$$d_{G_1}(u) + d_{G_1}(v) \geq a|V(G_1)| + b.$$

(ii) $\kappa'(G_2) \geq 2$, $\text{ess}'(G_2) \geq 3$, $|V_2(G_2)| \leq 1$ and for any distinct nonadjacent vertices $u, v \in V(G_2)$,

$$d_{G_2}(u) + d_{G_2}(v) \geq a|V(G_2)| + b.$$

Proof. Let $G \in \mathcal{G}(a, b)$. By Lemma 3.1, we have $\text{ess}'(G) \geq 3$ and $|V_1(G) \cup V_2(G)| \leq 1$.

(i) Suppose that $V_1(G) \neq \emptyset$. We may assume that $V_1(G) \cup V_2(G) = V_1(G) = \{v_1\}$, and then $G_1 = G - V_1(G)$. Since $\text{ess}'(G) \geq 3$, the degree of the unique vertex adjacent to v_1 is no less than 4. Hence $|V(G_1)| = n - 1$, $|V_1(G_1)\cup V_2(G_1)| = 0$, $\kappa'(G_1) \geq 2$ and $\text{ess}'(G_1) \geq 3$. Thus, let $u, v \in V(G_1)$.

(ii) Suppose that $V_2(G) \neq \emptyset$. We may assume that $V_1(G) \cup V_2(G) = V_2(G) = \{z\}$. By (3.1), we have $\kappa'(G_2) \geq 2$. We shall show that in any case,

both $\text{ess}'(G_2) \geq 3$ and $|V_2(G_2)| \leq 1$.

(3.3)

If $G \in \mathcal{G}_1$, then $G_2 = G/zz''$, and so (3.3) must hold. Therefore, assume that $G \in \mathcal{G}_2 \cup \mathcal{G}_3$. We claim that $|V_2(G)\cap \{z', z''\}| \leq 1$. Assume, by contradiction, that $|V_2(G)\cap \{z', z''\}| = 2$ and there exist vertices u', u'' with $N_G(z') = \{z, z', u'\}$ and $N_G(z'') = \{z, z', u''\}$. Then $\{z' u', z'' u''\}$ is an essential 2-edge-cut of G, contrary to $\text{ess}'(G) \geq 3$. Hence $|V_2(G)\cap \{z', z''\}| \leq 1$. If $G \in \mathcal{G}_2$, then by (3.1), $G_2 = G - z$. Thus $|V_2(G)| = n - 1$, $\text{ess}'(G_2) = \text{ess}'(G - z) \geq 3$ and $|V_2(G_2)| = |V_2(G)\cap \{z', z''\}| \leq 1$, and so (3.3) holds also. If $G \in \mathcal{G}_3$, then by (3.1), $G_2 = G/zz'$, zz'', $z'z''$. Thus $|V_2(G)| = n - 2$, $\text{ess}'(G_2) = \text{ess}'(G/zz', zz'', z'z'') \geq 3$ and $|V_2(G_2)| = 0$, and so (3.3) holds also.

To complete the proof of (ii), let $u, v \in V(G_2)$ with $uv \not\in E(G_2)$. By the definition of G_2, we may conclude that $uv \not\in E(G)$. By (1.1), $d_{G_2}(u) = d_G(u) \geq an + b - d_G(z) = an + b - 2$. As $d_G(v) \geq \kappa'(G_2) \geq 2$, we have $d_{G_2}(u) + d_{G_2}(v) \geq an + b - 2 + d_{G_2}(v) \geq an + b > a(n - 1) + b > a(n - 2) + b$. This, together with (3.3), proves (ii).

Lemma 3.6. Let G_1 and G_2 be the graphs defined in (3.1) and G_0 be the core of G. Then G_0 is strongly spanning-trainable if one of the following holds:

(i) $|V_1(G)| = 1$ and G_1 is strongly spanning-trainable, or
(ii) $|V_2(G)| = 1$ and G_2 is strongly spanning-trainable.
Proof. By Definition 3.2 and Lemma 3.1, we observe that if $|V(G)| = 1$, then $G_0 = G_1$, and so if G_1 is strongly spanning-trainable, then G_0 is strongly spanning-trainable. Assume that $V_G(G) = \{z\}$ with $N_G(z) = \{z', z''\}$. If $z'z'' \in E(G)$, then let e', e'' denote the two parallel edges of G_0 with ends z' and z''. By (3.1),

$$G_2 = \begin{cases} G_0 & \text{if } G \in \mathcal{G}_1, \\ G_0 - e'' & \text{if } G \in \mathcal{G}_2, \\ G_0/[e', e''] & \text{if } G \in \mathcal{G}_3. \end{cases}$$

Hence when $G \in \mathcal{G}_1$, if G_2 is strongly spanning-trainable, then G_0 is strongly spanning-trainable.

Assume from now on that $G \in \mathcal{G}_2 \cup \mathcal{G}_3$. Then $G_0([e', e''])$ is a 2-cycle. By contradiction, we assume further that

there exist edges $e_1, e_2 \in E(G_0)$ such that $G_0(e_1, e_2)$ does not have a spanning (v_{e_1}, v_{e_2})-trail. \hfill (3.4)

Case 1. $G \in \mathcal{G}_2$.

If $|\{e_1, e_2\} \cap \{e', e''\}| \leq 1$, then any spanning (v_{e_1}, v_{e_2})-trail of $G_2(e_1, e_2)$ is a spanning (v_{e_1}, v_{e_2})-trail of $G_0(e_1, e_2)$. Assume now that $e_1, e_2 = \{e', e''\}$. Pick an edge $f = uz' \in E(G_2)$ for some $u \neq z'$. As G_2 is strongly spanning-trainable, $G_2(f, e')$ has a spanning $(v_f, v_{e'})$-trail T'_1. Thus exactly one of $v_f, v_{e'}$ is in T'_1. Define

$$T_1 = \begin{cases} G_0([E(T'_1) - \{uy\}] \cup \{v_{e'}z'\}) & \text{if } uyz' \in E(T'_1), \\ G_0([E(T'_1) - \{uy\}] \cup \{v_{e'}z', f\}) & \text{if } uyf \in E(T'_1). \end{cases}$$

Then T_1 is a spanning $(v_{e'}, v_{e'})$-trail of $G_0(e_1, e_2)$, contrary to (3.4). This proves Case 1.

Case 2. $G \in \mathcal{G}_3$.

Then we use K_3 to denote $G[[z, z', z'']]$ and $e_0, z'z''$ to denote an essential edge cut of $G - z$. If $|\{e_1, e_2\} \cap \{e', e''\}| = 0$, $G_2(e_1, e_2) = G_0(e_1, e_2)/K_3$. As G_2 is collapsible, it follows by Lemma 2.9 that if $G_2(e_1, e_2)$ has a spanning (v_{e_1}, v_{e_2})-trail, then $G_0(e_1, e_2)$ has a spanning (v_{e_1}, v_{e_2})-trail, contrary to (3.4). If $|\{e_1, e_2\} \cap \{e', e''\}| = 1$, then assume that $e_1 = e'$ and, when $e_1 \neq e_2$, $e_2 \not\in \{e', e''\}$. Assume first that $e_1 \neq e_2$. Pick $e_3 = uz' \in E(G_2) - \{e_2\}$. By assumption, $G_2(e_3, e_2)$ has a spanning (v_{e_3}, v_{e_2})-trail T'_2. Define

$$T_2 = \begin{cases} G_2(e_2)[E(T'_2 - uw_{e_2}) \cup \{e_3\}] & \text{if } uw_{e_3} \in E(T'_2), \\ G_2(e_2)[E(T'_2 - z'z_{e_2})] & \text{if } z'z_{e_3} \in E(T'_2). \end{cases}$$

Then T_2 is a spanning (z', v_{e_2})-trail of $G_2(e_2)$. As $G_2(e_2) = G_0(e_1, e_2)/K_3$ and K_3 is collapsible, it follows by Lemma 2.9 that T_2 can be lifted to a spanning (v_{e_2}, v_{e_2})-trail of $G_0(e_1, e_2)$, contrary to (3.4). If $e_1 = e_2 = e'$, then by assumption, G_2 has a spanning eulerian subgraph L'_2. As $G_2 = G_0/K_3$ and as $e' \in E(K_3)$, by Lemma 2.9, L'_2 can be lifted to a spanning eulerian subgraph L_2 of $G_0(e_1)$. This also leads to a contradiction of (3.4). Hence we only need to prove the case when $e_1, e_2 = \{e', e''\}$. By assumption, $G_2(e_0)$ has a spanning closed trail, implying that G_2 has a spanning trail T_3 containing e_0. Since $e_0 \in E(T'_3)$, each of z' and z'' is of odd degree in $G(E(T'_3))$. It follows that $T_3 = G_0(e_1, e_2)[E(T'_3) \cup \{v_{e'}z', v_{e''}z''\}]$ is a spanning $(v_{e'}, v_{e''})$-trail of $G_0(e_1, e_2)$, contrary to (3.4). This proves Case 2, as well as the lemma.

Lemma 3.7. Let G, G_1, G_2 be the graphs defined in (3.1). Each of the following holds.

(i) If G_1 is contractible to a graph H, then G is also contractible to H.

(ii) If $G \in \mathcal{G}_1 \cup \mathcal{G}_3$ and G_2 is contractible to a graph H, then G is also contractible to H.

(iii) If $G \in \mathcal{G}_2$ and G_2 is contractible to a graph H, then there is a graph H' with $|V(H^*)| = |V(H)| + 1$ such that G is contractible to H'.

(iv) If G_1 or G_2 is contractible to a member in a finite family S, then there is a finite family S' such that G is contractible to a member in S'.

Proof. By Definition 3.2, (i) and (ii) hold immediately, and (iv) follows from (i), (ii) and (iii). Suppose that $G \in \mathcal{G}_2$. By (3.1), $G_2 = G - z$. If G_2 is contractible to a graph H, then there exists a subset $X_G \subseteq E(G)$ such that $(G - z)/X_G = H$ and so G/X_G is a graph with $|V(H)| + 1$ vertices. Thus (iii) holds as well.

Proof of Theorem 1.1. Let G be a graph satisfying the hypotheses of Theorem 1.1 with $\kappa(U(G)) \geq 3$ and $n = |V(G)|$. We assume that $\lambda(G)$ is not hamiltonian-connected to prove the existence of F. By Lemma 2.3, G_0 is 3-edge-connected and not strongly spanning-trainable. By Lemma 2.3, G is not strongly spanning-trainable.

Take $B = \max(\lceil \frac{3n}{2} \rceil, 5)$. If $n < B$, clearly there exists a finite family S such that G is contractible to a member in S. If $n \geq \max(\lceil \frac{3n}{2} \rceil, 5)$, then $G \in \mathcal{G}(a, b)$. We distinguish the following two cases.

Assume first that $G \in \mathcal{G}_4$. By Lemma 3.4, G has connected subgraphs H_1 and H_2 with $E(G) = E(H_1) \cup E(H_2)$ and $V(H_1) \cap V(H_2) = \{z\}$. By Lemma 3.3, we may assume that H_1 satisfies the conditions of Theorem 2.4 and is not strongly spanning-trainable. By Theorem 2.4, there exists a finite family S' such that H_1 is contractible to a member in S'. Since $H_1 = G/H_2$, G is also contractible to a member in S'.

If $G \not\in G_4$, let G_1 and G_2 be the graphs defined in (3.1). By (3.1), if $V_1(G) \neq \emptyset$, then $G_1 = G_0$; if $V_2(G) = \{z\}$ with $N_G(z) = \{z', z''\}$ and $z'z'' \not\in E(G)$, then $G_2 = G_0$. For notational convenience, we redefine that $G_1 = G_0$ if $|V_2(G)| = 0$. By Lemma 3.6, either $|V_2(G)| = 0$ and G_1 is not strongly spanning retrievable, or $|V_2(G)| = 1$ and G_2 is not strongly spanning retrievable. Fix $i \in \{1, 2\}$. By Lemma 3.5, G_i satisfies (1.1). By the assumption that G_i is not strongly spanning retrievable, it follows from Theorem 2.4 that there exists a finite family $S_i = S_i(a, b)$ such that G_i is contractible to a member in S_i. By Lemma 3.7, if $G \in G_2$, then G is contractible to a member in the finite family S'_2 whose existence is warranted by Lemma 3.7; otherwise, G is contractible to a member in the finite family $S_1 \cup S_2$. Hence G is contractible to a member in the finite family $\mathcal{F} = S \cup S' \cup S_1 \cup S_2 \cup S'_2$. This proves Theorem 1.1. ■

To proceed the following arguments, we need one more lemma.

Lemma 3.8. Let H be a graph with $\kappa'(H) \geq 3$ which is not contractible to W_3. Suppose that for some edges $e_1, e_2 \in E(H), H(e_1, e_2)$ does not have a spanning (v_{e_1}, v_{e_2})-trail. Let $H(e_1, e_2)'$ be the reduction of $H(e_1, e_2)$ and $d_i = |V(H(e_1, e_2))|$ for each $i \geq 2$. Then $n' - d_2 \geq 9$, $d_3 \geq 6$ and $\sum_{i=3}^{5} d_i \geq 8$.

Proof. As $H(e_1, e_2)$ does not have a spanning (v_{e_1}, v_{e_2})-trail, it follows by $\kappa'(H) \geq 3$ and by Lemma 2.11(ii),

$$2d_2 + d_3 \geq 10 + \sum_{i=5}^{7} (i - 4) d_i. \tag{3.5}$$

If $n' - d_2 \leq 8$, then $c(H(e_1, e_2))$ is a 3-edge-connected graph with at most 8 vertices. By Lemma 2.10, $c(H(e_1, e_2))$ must be isomorphic to W_8. By definition, $c(H(e_1, e_2))$ is a contraction of H, and so H is contractible to W_8 as well, contrary to the assumption of the lemma. Hence $n' - d_2 \geq 9$. As $d_3 \leq 2$, by (3.5), $d_3 \geq 6$. If $\sum_{i=3}^{5} d_i \leq 7$, then as $n' - d_2 \geq 9$, $\sum_{i=5}^{7} d_i \geq n' - d_2 - \sum_{i=3}^{5} d_i \geq 2$. By (3.5), we have $2d_2 + d_3 \geq 10 + \sum_{i=6}^{7} (i - 4) d_i \geq 14$, and so $d_3 \geq 14 - 2d_2 \geq 10$, contrary to $\sum_{i=3}^{5} d_i \leq 7$. Hence we always have $d_3 \geq 6$ and $\sum_{i=3}^{5} d_i \geq 8$. ■

Proof of Theorem 1.2. Let G be a graph satisfying the hypotheses of Theorem 1.2 with $\kappa(L(G)) \geq 3$ and $n = |V(G)| \geq 219$. Thus $G \in \mathcal{G}(a, b)$ with $a = \frac{1}{4}$ and $b = -2$. We shall assume that $L(G)$ is not hamiltonian-connected to show that Theorem 1.2(iii) must hold.

Case 1. $G \in G_4$.

Let $V_2(G) = \{z\}$ with $N_G(z) = \{z', z''\}$ and $z'z'' \not\in E(G)$. By Lemma 3.4, we may assume that G has two connected subgraphs H_1 and H_2 such that $E(G) = E(H_1) \cup E(H_2)$ and $V(H_1) \cap V(H_2) = \{z\}$. Let G_0 be the core of G. Then $G_0 = G/zz''$. As G_0 is a contraction of G, for $i \in \{1, 2\}$, G_0 has a subgraph H_i' which is the contraction image of H_i. Thus $E(G_0) = E(H_1') \cup E(H_2')$ with $V(H_1') \cap V(H_2') = \{z\}$. By Lemma 3.6, G_0 is not strongly spanning retrievable and $\kappa'(G_0) \geq 3$. By Lemma 3.3, we may assume that H_1' is not strongly spanning retrievable. If H_1' is contractible to W_3, then as H_1' is a contraction of G, G is also contractible to W_3, and so Theorem 1.2(iii) must hold. Therefore, we assume that H_1' is not contractible to W_3. Choose a vertex $u \in V(H_1') - \{z\}$ such that $d_H(u) = \min\{d_{H_1}(v) | v \in V(H_1) - \{z\}\}$, and set $d = d_H(u)$. Pick a vertex $u' \in V(H_2) - \{z\}$. Then by (1.2), we have

$$|V(H_2)| \geq d_H(u') + 1 \geq \frac{n}{4} - 1 - d, \text{ and so } |V(H_1)| = n + 1 - |V(H_2)| \leq \frac{3n}{4} + d + 2. \tag{3.6}$$

Since H_1' is not strongly spanning retrievable, there exist edges $e_1, e_2 \in E(H_1')$ such that $H_1'(e_1, e_2)$ has no spanning (v_{e_1}, v_{e_2})-trails. Let J be the reduction of $H_1'(e_1, e_2)$, $n' = |V(J)|$ and $d_i = |V(J)|$ for each $i \geq 2$. Hence by Lemma 3.8, $n' - d_2 \geq 9$, $d_3 \geq 6$ and $\sum_{i=3}^{5} d_i \geq 8$. Since $d_H(z) = 2$, by (1.2), for any $v \in V(G) - \{z, z', z''\}$,

$$d_G(v) \geq \frac{n}{4} - 4. \tag{3.7}$$

As J is a contraction of $H_1(e_1, e_2)$, there exist disjoint nontrivial connected subgraphs L_1', L_2', \ldots, L_6' of $H_1(e_1, e_2)$ which are contracted to vertices $u_1, u_2, \ldots, u_6 \in \bigcup_{i=1}^{6} V(J)$, respectively. Thus there exist disjoint connected subgraphs L_1, L_2, \ldots, L_6 of $G_0(e_1, e_2)$ such that L_i is mapped into L_i' in the process of mapping H_1 onto $H_1(e_1, e_2)$ where $1 \leq i \leq 8$. If $z \in V(H_1)$, then $d = 2$ and we may assume that $z', z'' \not\in V(L_1)$ for $1 \leq i \leq 6$. For each i with $1 \leq i \leq 6$, pick a $u_i \in V(L_1)$ and so by (3.7), $|V(L_1)| \geq 1 + d_G(u_i) - d_i(u_i) \geq \frac{n}{4} - 8$. By (3.6), we have $\frac{3n}{4} + 4 \geq |V(H_1)| \geq \sum_{i=1}^{6} |V(L_i)| \geq 6 \left(\frac{n}{4} - 8 \right) = \frac{6n}{4} - 48$, and so $n \leq 69$, contrary to the assumption that $n \geq 219$. If $z \not\in V(H_1)$, then $z'' \not\in V(H_1)$ and so we may assume that $z' \not\in V(L_1)$ for $1 \leq i \leq 7$. For each i with $1 \leq i \leq 7$, pick a $u_i \in V(L_1)$. Then by (3.7) and by $d_i(u_i) \leq 5$, we have $|V(L_i)| \geq 1 + d_G(u_i) - d_i(u_i) \geq \frac{n}{4} - 3 - d_i(u_i) \geq \frac{n}{4} - 8$. This, together with $d_1 + d_2 + d_5 \geq 8$ and (3.6), implies that $\frac{3n}{4} + 2 \geq |V(H_1)| \geq \sum_{i=1}^{7} |V(L_i)| \geq 7 \left(\frac{n}{4} - 8 \right) = \frac{7n}{4} - 58$, and so $n \leq 60$. On the other hand, as $u \in V(H_1) - \{z'\}$, we may assume that $u \not\in V(L_1)$ for $1 \leq i \leq 6$. For each i with $1 \leq i \leq 6$, since $d_i(u_i) \leq 5$, we have $|N_G(u_i) \cap V(L_1)| \leq 5$ and so $d = |N_G(u_i)| \leq |V(G) - \bigcup_{i=1}^{6} V(L_i) - N_G(u_i)| \leq n - 6 \left(\frac{n}{4} - 8 \right) = 78 - \frac{n}{4}$. This, together with $n \leq d + 60$, leading to $n \leq 92$, contradicts the assumption that $n \geq 219$.

Case 2. $G \not\subseteq G_0$.

Let G_1 and G_2 be the graphs defined in (3.1). By (3.1), if $V_1(G) \neq \emptyset$, then $G_1 = G_0$; if $V_2(G) = \{z\}$ with $N_G^i(z) = \{z', z''\}$ and $z'z'' \notin E(G)$, then $G_2 = G_0$. For notational convenience, we redefine that $G_1 = G_0$ if $|V_2(G)| = 0$. By Lemma 2.3, G_0 is not strongly spanning trailable. By Lemma 3.6, either $|V_2(G)| = 0$ and G_1 is not strongly spanning trailable, or $|V_2(G)| = 1$ and G_2 is not strongly spanning trailable. Fix $i \in \{1, 2\}$. By Lemma 3.5, G_i satisfies (1.2). By (3.1), $|V(G)| \geq |V(G)| - 2 \geq 217$. By Theorem 2.5, G_i is contractible to W_8.

We claim that $V_1(G) \cup V_2(G) \neq \emptyset$ is impossible. Otherwise, there is a vertex v with $d_G(v) \leq 2$, and so by (1.2), $d_G(v) \geq \frac{n}{4} - 4 > 3$ for any vertex $v \notin \{z, z'\} \subseteq N_G(z)$. Then there are at least 6 vertices of W_8 whose preimages are nontrivial graphs. Let L_1, L_2, \ldots, L_6 be the preimages of these 6 vertices. Pick $u_i \in V(L_i)$. Then $|V(L_i)| \geq |N_G(u_i) \cap V(L_i)| + 1 \geq \frac{n}{4} - 4 - 3 + 1 = \frac{n}{4} - 6$. It follows that $n \geq \sum_{i=1}^6 |V(L_i)| \geq 6(\frac{n}{4} - 6)$, leading to a contradiction that $219 \leq n \leq 72$. Hence $V_1(G) \cup V_2(G) = \emptyset$, and so $G_1 = G$ is contractible to W_8. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let G be a graph satisfying the hypotheses of Theorem 1.3 with $\kappa(|L(G)| \geq 3$ and $n = |V(G)| \geq 578$. Thus $G \subseteq G(a, b)$ with $a = \frac{1}{8}$ and $b = 0$. We assume that $L(G)$ is not hamiltonian-connected to show that Theorem 1.3(iii) must hold. As G is triangle-free, $G \not\subseteq G_2 \cup G_3 \cup G_4$. Hence $|V_2(G)| = 0$ or $G \not\subseteq G_1$.

Let G_1 be the graph defined in (3.1). By (3.1), if $V_1(G) \neq \emptyset$, then $G_1 = G_0$. For notational convenience, we redefine that $G_1 = G_0$ if $|V_2(G)| = 0$. By Lemma 2.3, G_0 is not strongly spanning trailable. By Lemma 3.6, G_1 is not strongly spanning trailable. By Lemma 3.5, G_1 satisfies (1.2). As $|V(G)| \geq |V(G)| - 1 \geq 577$, by Theorem 2.6, G_1 is contractible to W_8, and G is also contractible to W_8.

If $G \subseteq G_1$, then $\mathcal{E}^0(G) \geq 3$ and $\kappa^0(G) \geq 2$ and $|V_2(G)| = 1$. Let $V_2(G) = \{z\}$ with $e = e'z', e''z'' \in E(G)$. It is easy to see that $G(e', e'')$ has no spanning $(v_e, v_{e'})$-trails, and so G is not strongly spanning trailable. As G_1 satisfies (1.3) and $n \geq 578$, it follows by Theorem 2.6 that G is contractible to W_8.

Now we show that it is impossible that $|V_1(G)| = 1$ or $G \not\subseteq G_1$. Otherwise, there is a vertex $v \in V(G)$ with $d_G(v) \leq 2$. By (1.3), for any vertex $v \notin \{z\} \cup N_G(z), d_G(v) \geq \frac{n}{2} - 2 > 3$. Hence there are at least 6 vertices of W_8 whose preimages do not contain the vertices in $N_G(z)$ and are nontrivial connected graphs. Let L_1, L_2, \ldots, L_6 be the preimages of these 6 vertices. Pick an edge $u_iu_j \in E(L_i)$. Since G is triangle-free, $N_G(u_i) \cap N_G(u_j) = \emptyset$, and so $|V(L_i)| \geq |N_G(u_i) \cap V(L_i)| + |N_G(u_j) \cap V(L_i)| \geq 2(\frac{1}{4} - 2) - 3 = \frac{n}{4} - 7$. It follows that $n \geq \sum_{i=1}^6 |V(L_i)| \geq 6\left(\frac{n}{4} - 7\right)$, leading to a contradiction that $578 \leq n \leq 84$. This completes the proof of Theorem 1.3.

4. Strongly spanning trailable graphs

For any real numbers a, b with $0 < a < 1$, fix a graph $G \subseteq G(a, b)$. For $e, e' \in E(G)$, let $G(e, e')$ be the reduction of $G(e', e')$. Define

$$W = W_{a, b} = \{v \in V(G) : d_G(v) < \frac{1}{2}(an + b)\} \quad (4.1)$$

and

$$I_{a, b} := \begin{cases} G(W) & \text{if } e, e' \notin E(G[W]), \\ G(W[x]) & \text{if } |(e, e') \cap E(G[W])| = 1 \text{ and } |x| = |e, e'| \cap E(G[W]), \\ G(W[e, e']) & \text{if } e, e' \in E(G[W]). \end{cases}$$

(4.2)

Let $I_{a, b}^*$ be the reduction of $I_{a, b}$ and $w = |W|$. We denote

$$W* := \{v \in V(G(e, e')) : |V(\text{Pl}_{G(e, e')}(v)) \cup V(I_{a, b}^*| \not= \emptyset) \text{ and } I_{a, b}^*(v) = G(e, e')\} \quad (4.3)$$

For a vertex $v \in V(G(e, e'))$, if $\text{Pl}_{G(e, e')}(v) = K_1$, then v is called a trivial vertex of $G(e, e')$. Otherwise, v is called a nontrivial vertex. Thus if v is a trivial vertex of $G(e, e')$, then $d_{G(e, e')}(v) = d_{G(e, e')}(v)$. Then the following result holds.

Lemma 4.1. For any real numbers a, b with $0 < a < 1$, let $I_{a, b}^*$ be the graph defined in (4.3). Then each of the following holds.

(i) If $w \geq 4$, $I_{a, b}^* \subseteq K_1$; if $1 \leq w \leq 3$, $I_{a, b}^* \subseteq \{K_1, K_2, K_1, 2, C_4, C_5\}$.

(ii) $I_{a, b}^*$ has at most three trivial vertices $v \in V(G(e, e')) - \{v_e, v_{e'}\}$ with $2 \leq d_{G(e, e')}(v) < \frac{1}{2}(an + b)$.

Proof. Since G satisfies (1.1), $G[W]$ is a complete graph. Hence if $1 \leq w \leq 3$, then $I_{a, b}^* \subseteq \{K_1, K_2, K_3, K_4, K_5(e, e')\}$; if $w \geq 4$, then $I_{a, b}^* \subseteq \{K_w, K_w(e, e'), K_w(e, e')\}$. Note that $K_{1, 2} = K_2(x), C_4 = K_3(x)$, and $C_5 = K_3(x, e', e)$). By Lemma 2.7(i) and (ii), $K_4, K_4(e, e'), K_4(e, e')$ are collapsible. Assume that $1 \leq w \leq 3$. By definition, if $I_{a, b}^* \subseteq \{K_1, K_2\}$, then $I_{a, b}^* = K_1$. If $I_{a, b}^* = K_2$, then $I_{a, b}^* = \{K_1, K_2\}$. Assume that $I_{a, b}^* = K_{1, 2}$, and let v denote the only vertex in $V_2(I_{a, b}^*)$ such that $d_{G(e, e')}(v) = 2$. Since collapsible graphs are 2-edge-connected, if there exists a nontrivial collapsible subgraph H of $G(e, e')$ with $v \notin V(H)$, then $V(I_{a, b}^*) \subseteq V(H)$ and $I_{a, b}^* = K_1$. Thus if $I_{a, b}^* = K_{1, 2}$, then $I_{a, b}^* \subseteq \{K_1, K_1, 1, 2\}$. Similarly, if $I_{a, b}^* = C_4$, then $I_{a, b}^* \subseteq \{K_1, C_4\}$; if $I_{a, b}^* = C_5$, then $I_{a, b}^* \subseteq \{K_1, C_4, C_5\}$. This completes the proof of (i) and (ii) follows immediately.
In the following proof, we always assume that G is a simple graph with n vertices. If G is not strongly spanning treailable, by definition, there exists $e, e' \in E(G)$ such that $G(e, e')$ has no spanning (v_e, v_e')-trails. Let $G(e, e')$ be the reduction of $G(e, e')$ and $n' = |V(G(e, e'))|$. Define v_e' and v_e'' as in (2.3). Thus $G(e, e')$ has no spanning (v_e', v_e'')-trails. For any $v \in V(G(e, e'))$, define $H(v) = V(G(e, e'))(v) - \{v_e', v_e''\}$ and $h(v) = |H(v)|$.

For each integer $i > 0$, we define $V_i = V(G(e, e')) = \{v \in V(G(e, e')) : d_{G(e, e')}(v) = i\}$ and $d_i = |V_i(G(e, e'))|$. Let

$$T_i = \{v \in V_i - \{v_e', v_e''\} : |P_{G(e, e')}(v)| = K_i\}, \quad \bar{T}_i = V_i - T_i \cup \{v_e', v_e''\}, \quad t_i = |T_i| \quad \text{and} \quad \bar{t}_i = |\bar{T}_i|.$$

(4.4)

By ess$(G) \geq 3$ and $d_2(G) \leq 1$, we have $t_2 \leq 1$, $\bar{t}_2 = 0$ and $t_i = d_i - t_{i-1}$ for $i \geq 3$. Let $T = \bigcup_{i=2}^{\infty} T_i$, $\bar{T} = \bigcup_{i=2}^{\infty} \bar{T}_i$, $t = |T| = \sum_{i=2}^{\infty} t_i$ and $\bar{t} = |\bar{T}| = \sum_{i=2}^{\infty} \bar{t}_i$. Let $v_1, v_2, \ldots, v_{\bar{t}}$ be the nontrivial vertices in T such that $h(v_1) \leq h(v_2) \leq \cdots \leq h(v_{\bar{t}})$.

Proof of Theorem 2.4. Let G be a simple graph satisfying the hypotheses of Theorem 2.4 and $B = \max\{\lceil \frac{12b-1}{a} \rceil, \lceil \frac{\sqrt{b+2}+2}{a} \rceil, \lceil 19 + \frac{6}{a} \rceil, 5\}$. Since nonstrongly spanning treailable graphs with at most B vertices can always be contractible to a member in $S(B)$, we assume that $n = |V(G)| > B$ and G is not strongly spanning treailable. We shall show that G can be contracted to $S(B)$. Define $W, \Gamma_{(a,b)}$ and $\Gamma_{(a,b)}^*$ as those in (4.1)–(4.3). Let

$$X_S = \{v \in V(G(e, e')) : d_{G(e, e')}(v) \leq 5\} \quad \text{and} \quad X'_S = \{v \in X_S - V(\Gamma_{(a,b)}^*): P_{G(e, e')}(v) \neq K_1\}. \quad \text{(4.5)}$$

Claim 1. For any $v \in X'_S$, then $h(v) \geq \frac{1}{2}(an + b) + 1$.

Let $v \in X'_S$ and $xy \in E(G)$ be an arbitrary edge such that $x \in V(P_{G(e, e')}(v))$ and $y \not\in V(P_{G(e, e')}(v))$. As $d_{G(e, e')}(v_e) = d_{G(e, e')}(v_e') = 2$, if $x \in \{v_e, v_e'\}$, then $\kappa(P_{G(e, e')}(v)) = 1$, contrary to the fact that $P_{G(e, e')}(v)$ is collapsible. Thus $x \not\in \{v_e, v_e'\}$. Since $n \geq \lceil \frac{12b-1}{a} \rceil$, we have $\frac{1}{2}(an + b) \geq 6$. By (4.5), $d_{G(e, e')}(x) = d_G(x) \geq \frac{1}{2}(an + b) \geq 6$. Let $N'_x = N_G(x) - \{v_e, v_e'\}$ and $N''_x = |\{w \in V(P_{G(e, e')}(v)) : w \text{ is incident with an edge not in } V(P_{G(e, e')}(v)) - N'_x\}|$. Since $d_{G(e, e')}(v) \leq 5$, we have $|N'_x| + |N''_x| \leq 5$ and there are at least 6 – $|N'_x \cup \{x\}| \geq 1$ vertices $z \in N'_x \cap V(P_{G(e, e')}(v))$ with $N_G(z) \subseteq H(v)$. Assume that we have $w \in \{v_e, v_e'\} \cap V(P_{G(e, e')}(v))$ with w_1, w_2 being the two neighbors of w in $P_{G(e, e')}(v)$. If $|N'_x| \geq 3$, then we can choose $x \not\in \{v_1, v_2\}$; if $|N'_x| \leq 2$, then $6 - |N'_x \cup \{x\}| \geq 3$, we choose $z \in N'_x \cap V(P_{G(e, e')}(v)) - \{v_e, v_e'\}$. Hence we can always assume that $z \not\in \{v_e, v_e'\}$ with $N_G(z) \subseteq H(v)$. It follows that $h(v) \geq d_G(z) + 1 \geq \frac{1}{2}(an + b) + 1$. This completes the proof of Claim 1.

By Claim 1, $|X'_S| \{\frac{1}{2}(an + b) + 1\} \leq \sum_{v \in X'_S} h(v) \leq n$. Since $n \geq \lceil \frac{\sqrt{b+2}+2}{a} \rceil$, we have

$$|X'_S| \leq \frac{2n}{an + b + 2} \leq \frac{2}{a} + 1. \quad \text{(4.6)}$$

As $n \geq \frac{10b}{a}$, we have $\frac{an+b}{2} > 5$, and so together with (4.5), $X_S - X'_S = \{v \in X_S : P_{G(e, e')}(v) = K_1\} \cup \{v \in X_S : P_{G(e, e')}(v) \neq K_1\}$ and $v \in V(\Gamma_{(a,b)}^*) \subseteq V(\Gamma_{(a,b)}^*) \cup \{v_e, v_e'\}$. By Lemma 4.1(i),

$$|X_S - X'_S| = |V(\Gamma_{(a,b)}^*)| \leq 2 \leq 7. \quad \text{(4.7)}$$

To show that n' is a finite number, pick any $v \in V(G(e, e')) - X_S$, we have $d_{G(e, e')}(v) \geq 6$. Hence

$$6 \mid V(G(e, e')) - X_S \mid \leq \sum_{v \in V(G(e, e')) - X_S} d_{G(e, e')}(v) \leq \sum_{v \in V(G(e, e'))} d_{G(e, e')}(v) = 2 \mid E(G(e, e')) \mid.$$

By Lemma 2.11, we have $2 \mid E(G(e, e')) \mid \leq 4n' - 10$, and so

$$|V(G(e, e')) - X_S| \mid \leq \frac{2n' - 5}{3}. \quad \text{(4.8)}$$

Combining (4.6), (4.7) and (4.8), we have

$$n' = |X'_S| + |X_S - X'_S| + |V(G(e, e')) - X_S| \leq \frac{2}{a} + 8 + \frac{2n' - 5}{3}.$$

Solving the inequality, we have $n' \leq 19 + \frac{6}{a} \leq B$. Then G can be contracted to $S(B)$. This completes the proof of Theorem 2.4.

Since the proof of Theorem 2.6 (see Appendix) is similar to that of Theorem 2.5, we only prove Theorem 2.5 here.

Proof of Theorem 2.5. Suppose that G is a simple graph satisfying the hypotheses of Theorem 2.5, and G is not strongly spanning treailable. We shall show that G can be contracted to W_b. Let

$$W = W_{\lceil \frac{1}{4} - 2 \rceil} = \{v \in V(G) : d_G(v) < \frac{1}{8}n - 1\},$$
If $w \geq 4$, then $I^* = K_1$.

By Lemma 4.1(ii),

\[
I^* \text{ has at most three trivial vertices } v \in V(G(e, e')) - \{v_e, v_e'\} \text{ with } 2 \leq d_{G(e, e')}(v) < \frac{n}{8} - 1. \tag{4.10}
\]

We have the following claims.

Claim A. (i) If there is a vertex $v_i \in \mathcal{T}$ such that $h(v_i) \leq 6$, then $d_c(v) \leq 11$ for any $v \in H(v_i)$, and $3 \leq h(v_i) \leq 6$.

(ii) For $2 \leq i \leq \mathcal{T}$, $h(v_i) \geq 7$.

(iii) For $1 \leq i \leq \mathcal{T}$, if $h(v_i) \geq 7$, then there is a vertex $z \in H(v_i)$ such that $N_C(z) \subseteq H(v_i)$, and then

\[
h(v_i) \geq d_c(z) + 1 = d_{G(e, e')}(z) + 1. \tag{4.9}
\]

Suppose that $h(v_i) \leq 6$. As $d_{G(e, e')}(v_i) \leq 6$, $d_c(v) \leq 11$ for any $v \in H(v_i)$. Since $P_{G(e, e')}(v_i)$ is a simple collapsible graph, it follows by Lemma 2.7(i) that $3 \leq h(v_i) \leq 6$. Hence Claim A(i) holds.

Suppose that $h(v_i) \leq h(v_2) < 7$. As $11 \geq \frac{n}{4} - 1$, by Claim A(i), $h(v_1) \cup H(v_1) \subseteq W$ and so by Claim A(i), $w \geq h(v_1) + h(v_2) \geq 6$. By (4.9), $I^* = K_1$, a contradiction. Hence $h(v_i) \geq 7$ for $2 \leq i \leq \mathcal{T}$. Thus Claim A(ii) must hold.

Suppose that $h(v_1) \geq 7$. By the argument similar to that of Claim 1 in Theorem 2.4, there is a vertex $z \in H(v_i)$ such that $N_C(z) \subseteq H(v_i)$, and then $h(v_i) \geq d_c(z) + 1 = d_{G(e, e')}(z) + 1$. Thus Claim A(iii) holds as well.

Claim B. Let $v_i, v_j \in \mathcal{T}$. Then each of the following holds.

(i) If there is a vertex $v_i \in \mathcal{T}$, then for any $v_j \in \mathcal{T}$, $h(v_i) \geq \frac{n}{4} - d_{G(e, e')}(u) - 1 \geq \frac{n}{4} - 7$.

(ii) If $7 \leq h(v_i) \leq h(v_j)$, then $h(v_i) + h(v_j) \geq \frac{n}{4}$.

(iii) If $3 \leq h(v_i) \leq 6$ and $v_i \neq v_j$, then $h(v_i) + h(v_j) \geq \frac{n}{4} - 2$. Hence Claim B(i) holds.

Let $u \in \mathcal{T}$ and $u \in T$. Then $d_{G(e, e')}(v_i) \leq 6$ and $d_{G(e, e')}(u) = d_{G(e, e')}(u) = d_{G(e, e')}(u) \leq 6$. We first assume that $3 \leq h(v_i) \leq 6$. If there is a vertex $z \in H(v_i)$ such that $u \notin E(G)$, by Claim A(i) and (1.2), we have

\[
17 = 11 + 6 \geq d_{G(e, e')}(z) + d_{G(e, e')}(u) = d_{G(e, e')}(z) + d_{G(e, e')}(u) \geq \frac{n}{4} - 2,
\]

contrary to $n \geq 217$. Hence for any $z \in H(v_i)$, we have $uz \notin E(G)$. By $3 \leq h(v_i) \leq 6$ and (1.2), there are three vertices $z_1, z_2, z_3 \in H(v_i)$ such that $G(e, e')(z_1, z_2, z_3, u)$ is K_4, or the graph obtained from K_4 by subdivided one edge, or the graph obtained from K_4 by subdivided two edges. By Lemma 2.7(ii), $G(e, e')(z_1, z_2, z_3, u)$ is a collapsible graph, contrary to the assumption. Hence $h(v_i) \geq 7$. By Claim A(iii), there is a vertex $z \in H(v_i)$ such that $N_C(z) \subseteq H(v_i)$, and then $h(v_i) \geq d_c(z) + 1 = d_{G(e, e')}(z) + 1$. Since $N_C(z) \subseteq H(v_i)$, we have $zu \notin E(G)$. By (1.2), $h(v_i) \leq 1 + d_{G(e, e')}(u) \geq d_{G(e, e')}(z) + d_{G(e, e')}(u) = d_{G(e, e')}(z) + d_{G(e, e')}(u) \geq \frac{n}{4} - 2$. As $u \notin T$, $d_{G(e, e')}(u) \leq 6$, and so $h(v_i) \geq \frac{n}{4} - 1 - d_{G(e, e')}(u) \geq \frac{n}{4} - 7$. This proves Claim B(i).

Let $u_i, u_j \in \mathcal{T}$ and $7 \leq h(v_i) \leq h(v_j)$. By Claim A(iii), there is a vertex $z_i \in H(v_i)$ such that $N_C(z_i) \subseteq H(v_i)$ and $h(v_i) \geq d_c(z_i) + 1$. Similarly, there is a vertex $z_j \in H(v_j)$ such that $N_C(z_j) \subseteq H(v_j)$ and $h(v_j) \geq d_c(z_j) + 1$. Since $z_i z_j \notin E(G)$, by (1.2), $h(v_i) + h(v_j) \geq d_c(z_i) + d_c(z_j) \geq 2 \geq \frac{n}{4}$. Hence Claim B(ii) holds.

Suppose that $3 \leq h(v_1) \leq 6$ and $v_i \neq v_j$. By Claim A(ii), $h(v_i) \geq 7$. By Claim A(iii), there is a vertex $z \in H(v_i)$ such that $N_C(z) \subseteq H(v_i)$ and $h(v_i) \geq d_c(z_1) + 1$. For any $z_1 \in H(v_i)$, we have

\[
h(v_i) \geq |N_{H(v_1)}(z_1) \cup \{z_1\}| \geq d_c(z_1) - d_{G(e, e')}(v_i) + 1.
\]

Since $z_i z_j \notin E(G)$, by (1.2),

\[
h(v_i) + h(v_j) \geq d_c(z_1) + d_c(z_j) - d_{G(e, e')}(v_1) + 1 \geq \frac{n}{4} - d_{G(e, e')}(v_1) \geq \frac{n}{4} - 6.
\]

If $T \geq 6$, by $n \geq 217$, we have $n \geq \sum_{i=1}^{T} h(v_i) \geq \sum_{i=2}^{T} (h(v_i) + h(v_i)) - 4h(v_1) \geq 5 \left(\frac{n}{4} - 6 \right) - 24 = \frac{5n}{4} - 54 > n$, a contradiction. Thus $T \leq 5$. This proves Claim B(iii).

Claim C. (i) $T \subseteq V(I^*)$ and $t \leq 3$.

(ii) If $t \neq 0$, then $T \leq 4$; if $t = 0$, then $T \leq 8$.

Let $v \in T$. For $n \geq 217$, we have $d_c(v) = d_{G(e, e')}(v) \leq 6 < \frac{n}{8} - 1$ and then $v \in V(I^*)$. So $T \subseteq V(I^*)$ and by (4.10), $t \leq 3$.

Suppose that $t \neq 0$ and $T \geq 5$. By Claim B(i),(ii) and as $n \geq 217$, we have $n \geq \sum_{i=1}^{T} h(v_i) \geq 5 \left(\frac{n}{4} - 7 \right) > n$, a contradiction. It follows that $T \leq 4$.

Now we assume that $t = 0$ and $T \geq 9$. Since $T \geq 9$, by Claim B(iii), for each $1 \leq i \leq T$, $h(v_i) \geq 7$. By Claim B(ii) and $n \geq 217, n \geq \sum_{i=1}^{T} h(v_i) \geq 4 \cdot \frac{n}{4} + 7 > n$, a contradiction. Therefore $T \leq 8$. This completes the proof of Claim C.
By Claim C, we have
\[t_3 \leq 3; \]
(4.11)
if \(t_3 \neq 0 \), then \(\bar{t}_3 = d_3 - t_3 \leq 4 \); if \(t_3 = 0 \), then \(\bar{t}_3 = d_3 \leq 8 \).

Since \(k'(G) \geq 2 \), \(ess'(G) \geq 3 \) and \(|V_2(G)| \leq 1 \), we have \(d_1 = 0, d_2 \in \{0, 1, 2, 3\} \) and \(n' = |V(G(e, e'))| = \sum_{i=2}^{d_i} d_i \). By Lemma 2.11(ii),
\[2d_2 + d_3 \geq \sum_{i=2}^{d_i} (i - 4)d_i + 10. \]
(4.13)
In the following analysis, we will show that \(G \) is contractible to \(W_6 \) in the desirable way in Case 3 below, and a contradiction is obtained in all other cases.

Case 1 \(d_2 = 0 \). By (4.13), \(d_3 \geq 10 \). By (4.11), if \(t_3 \neq 0 \), then \(\bar{t}_3 = d_3 - t_3 \geq 7 \); if \(t_3 = 0 \), then \(\bar{t}_3 = d_3 \geq 10 \), contrary to (4.12).

Case 2 \(d_2 = 1 \). By (4.13), \(d_3 \geq 8 \). By (4.11), if \(t_3 \neq 0 \), then \(\bar{t}_3 \geq 5 \); if \(t_3 = 0 \), then \(\bar{t}_3 = d_3 \). By (4.12), \((t_3, \bar{t}_3) = (0, 8) \). By Claim C(ii), we have \(\bar{t}_3 = 8 \) and so \(t = 0 \). Thus \(d_1 = 0 \) for any \(i \geq 4 \), forcing \(n' = d_2 + \bar{t}_3 = 9 \). Note that \(ess'(G(e, e')) \geq 3 \), \(d_2 = 1 \) and \(G(e, e') \) has no spanning \((v'_w, v'_{w'})\)-trails. By Lemma 2.12, we have \(G(e, e') = P(10)(e) \), which contradicts \(n' \).

Case 3 \(d_2 = 2 \). By (4.13), \(t_3 + \bar{t}_3 = d_3 \geq 6 \). Then by (4.11) and (4.12), \(t_3 \neq 1 \) and \((t_3, \bar{t}_3) = (2, 4) \). By (4.12), if \((t_3, \bar{t}_3) = (3, 4) \), by Claim C, \(d_4 = d_5 = 0 \). Then \(G(e, e') \) has 7 vertices with odd degrees, which is impossible. For other cases, by (4.13) and Claim C(ii), it is routine to verify that \(n' \leq 10 \) (see Table 1).

Suppose that \(u \) and \(v \) are the two vertices with degree 2 in \(G(e, e') \). We claim that \(\{u, v\} = \{v_w, v_{w'}\} \). If \(\{u, v\} \neq \{v_w, v_{w'}\} \), then \(t_2 = 1 \). By Claim C(i), \(t_2 \leq 4 \). By (4.11), if \(t_3 \neq 0 \), then \(\bar{t}_3 \geq 5 \); if \(t_3 = 0 \), then \(\bar{t}_3 = d_3 \). Hence \(n' = d_2 + d_3 = 0 \) and \(n' = d_2 + t_3 = 8 \). As \(G(e, e') \) is reduced, by Lemma 2.7(vii), \(G(e, e') \) is \(K_1 \) or \(K_2 \), contrary to \(n' \leq 8 \). Hence \(\{u, v\} = \{v_w, v_{w'}\} \).

Adding a new vertex \(w \) and two new edges \(wu \) and \(wv \) in \(G(e, e') \), we get a new graph \(H \) with \(|V(H)| \leq 11 \). As \(d_2(H) = 1 \) and \(G(e, e') \) has no spanning \((u, v)\)-trails, \(H \) is not superregular. By Lemma 2.12, \(H = P(10)(e) \), which implies \(d_1 = 1 \). Hence \((t_3, \bar{t}_3) = (0, 8) \). Since \(t_3 = 8 \) and 5, by Claim B(iii), for each \(1 \leq i \leq 5 \), \(h(v_i) \geq 7 \). By Claim B(ii), \(n \geq \sum_{i=1}^{h(v_i)} = 4 \). Hence for any \(1 \leq i \leq 8 \), \(h(v_i) \geq 7 \). By Lemma 2.2, we have \(G(e, e') = P(10)(e) \), which contradicts \(n' \).

Case 4 \(d_2 = 3 \). In this case, \(|V_2(G)| = \{0, 9\} \). Suppose \(V_2(G) = \{z_0, z_1, \ldots, z_9\} \). Then \(z_0, v_w, v_w \) are the three vertices with degree 2 in \(G(e, e') \), which implies \(t_2 = 1 \). By Claim C(i), \(t_2 \leq 2 \). By Claim C(ii), \(n' \leq 4 \). By (4.13), we have \(d_3 \geq 4 \). It follows that \((t_3, \bar{t}_3) = (0, 4) \), \((1, 3), (1, 4), (2, 2), (2, 3) \). By (4.13), \(d_3 \geq 4 \). Hence \(n' \geq d_2 + t_3 + \bar{t}_3 = 3 + 1 + 4 + 1 = 9 \). Hence \((t_3, \bar{t}_3) = (2, 3) \), by (4.13), \(d_3 \leq 12 \). By (4.13), \(d_3 \leq 12 \), by (4.13), \(d_3 \leq 12 \). Hence \(n' = d_2 + t_3 + \bar{t}_3 \). For other cases, it is routine to verify that \(7 \leq d_2 + d_3 \leq 15 \).

By Lemma 2.11(i), \(2F(G(e, e')) = \sum_{i=2}^{d_i} (2 - i)d_i - 4 \). Hence, if \((t_3, \bar{t}_3) = (0, 4) \), \((1, 3) \), \((1, 4) \), \((2, 2) \), \((2, 3) \), then \(7 \leq (d_2 + d_3) \leq n' \leq 9 \). By Lemma 2.15, \(G(e, e') = f(1', 1), K_{13}(1, 1, 1) \). Then there exists a spanning \((v_w, v_{w'})\)-trail in \(G(e, e') \) (see Fig. 3), contrary to the assumption. Hence \((t_3, \bar{t}_3) = (2, 4) \). By (4.12), for any vertex \(w \in V(G) \), \(v_w \), \(v_w' \), \(d_c(w) = d_c(e, e') \), \(w \geq 3 \). Hence \(d_c(z'') = d_c(z'') = 3 \) and \(z'z'' \in E(G) \). It follows that \(G \) has an essential 2-edge-cut, contrary to the assumption \(ess'(G) \geq 3 \). This completes the proof of Theorem 2.5.

Table 1
The cases occurred in Case 3 of the proof of Theorem 2.5.

<table>
<thead>
<tr>
<th>(d_2)</th>
<th>(t_3)</th>
<th>(\bar{t}_3)</th>
<th>(t_4)</th>
<th>(\bar{t}_4)</th>
<th>(t_5)</th>
<th>(\bar{t}_5)</th>
<th>(t_6)</th>
<th>(\bar{t}_6)</th>
<th>(n')</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>≤1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>≤9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>≤1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>≤9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>≤2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>≤10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2
The cases occurred in Case 4 of the proof of Theorem 2.5.

<table>
<thead>
<tr>
<th>d_3</th>
<th>t_3</th>
<th>\tilde{t}_3</th>
<th>t_4</th>
<th>\tilde{t}_4</th>
<th>t_5</th>
<th>\tilde{t}_5</th>
<th>t_6</th>
<th>\tilde{t}_6</th>
<th>η'</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>4 ≤2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>≤9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3 ≤1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>≤9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2 ≤2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>≤9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4 ≤0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3 ≤0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4 ≤0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgments

We would like to thank the referees for their carefully reading the manuscript and their many helpful comments and suggestions.

Funding

The research of Jianping Liu is partially supported by the NNSF of China (Nos. 11471077 and 11301440), the 2016 program for New Century Excellent Talents in Fujian Province University (No. 2016), and by the fund “Overseas Training Program of Excellent Talents in Universities of Fujian in 2013” (No. 2013). The research of Aimei Yu is partially supported by the National Natural Science Foundation of China (No. 11371193), the Beijing Higher Education Young Elite Teacher Project (No. YETP0573), Fundamental Research Funds for the Central Universities of China (No. 2015JBM107) and the 111 Project of China (B16002). The research of Hong-Jian Lai is partially supported by National Natural Science Foundation of China grants CNNSF 11771039 and CNNSF 11771443.

Appendix

Lemma 2.15. Let G be a simple graph with $\kappa'(G) \geq 2$ and $|V_3(G)| = 1$. Let $G(e, e')$ be the reduction of $G(e, e')$. If $7 \leq |V(G(e, e'))| \leq 9$, $|V_3(G(e, e'))| = 3$ and $F(G(e, e')) = 3$, then $G(e, e') \in J'(1, 2), J'(1, 1), K_{1,3}(1, 1, 1))$.

Proof. Suppose that G is a graph satisfying the conditions of Lemma 2.15 and $G(e, e')$ be the reduction of G. Since $7 \leq |V(G(e, e'))| \leq 9$ and $F(G(e, e')) = 3$, by Lemmas 2.14 and 2.7, $G(e, e') \in \{K''_{2, t}, K'''_{2, t} : 1 \leq t \leq 7\} \cup K_{1,3}(s_1, s_2, s_3) : s_1 + s_2 + s_3 \leq 5 \cup S(m, l), J(m, l), J'(m, l) : m, l \geq 0$ and $m + l \leq 5$. Since $\kappa'(G) \geq 2$, we have $\kappa'(G(e, e')) \geq 2$, and then $G(e, e') \in \{K_{1,3}(s_1, s_2, s_3) : s_1 + s_2 + s_3 \leq 5 \cup S(m, l), J(m, l), J'(m, l) : m, l \geq 0$ and $m + l \leq 5\}$. Now we distinguish four cases.

Case 1 $G(e, e') \cong K_{1,3}(s_1, s_2, s_3)$.

Without loss of generality, we suppose that $s_1 \geq s_2 \geq s_3$. Since $\kappa'(G) \geq 2$, we have $\kappa'(G(e, e')) \geq 2$, which implies $s_1 \geq s_2 \geq 1$. If $(s_1, s_2, s_3) \in \{(1, 1, 0), (2, 1, 0)\}$, then $|V_3(K_{1,3}(s_1, s_2, s_3))| = 4$; otherwise, $|V_3(K_{1,3}(s_1, s_2, s_3))| = s_1 + s_2 + s_3$. By $|V_3(G(e, e'))| = 3$, we have $s_1 = s_2 = s_3 = 1$, and then $G(e, e') \cong K_{1,3}(1, 1, 1)$.

Case 2 $G(e, e') \cong S(m, l)$.

Without loss of generality, we suppose that $m \geq l$. If $m \geq l \geq 2$, then $|V(S(m, l))| = m + l \geq 4$; if $l = 1$ and $m \geq 2$, then $|V_3(S(m, l))| = m + l + 1 \geq 4$; if $m = l = 1$, then $|V_3(S(m, l))| = 5$. By $|V_3(G(e, e'))| = 3$, $G(e, e') \cong S(m, l)$.

Case 3 $G(e, e') \cong J(m, l)$.

Suppose that $m \geq l$. If $m \geq l \geq 2$, then $|V(J(m, l))| = m + l \geq 4$; if $l = 1$ and $m \geq 2$, then $|V_3(J(m, l))| = m + l + 1 \geq 4$; if $m = l = 1$, then $|V_3(J(m, l))| = 4$. By $|V_3(G(e, e'))| = 3$, $G(e, e') \cong J(m, l)$.

Case 4 $G(e, e') \cong J'(m, l)$.

If $l = 1$, then $|V(J'(m, l))| = m + 2$; if $l \geq 2$, then $|V(J'(m, l))| = m + l$. By $|V_3(G(e, e'))| = 3$, $G(e, e') \cong J'(1, 2)$ or $J'(1, 1)$. This completes the proof of Lemma 3.7.

Proof of Theorem 2.6. Suppose that G is a simple graph satisfying the hypotheses of Theorem 2.6, and that G is not strongly spanning trialberable. We will show that G can be contracted to W_6. Let

$$W = W_{(k, t)} = \{v \in V(G) : d_G(v) < \frac{16}{16} n\},$$

$w = |W|$ and define $\Gamma = \Gamma_{(k, t)}^*, \Gamma^* = \Gamma_{(k, t)}^*$ as those in (4.1)–(4.3). As $G[W] \subset G$ is a complete graph, and G is a triangle-free graph, it follows that $0 \leq w \leq 2$. Since G is triangle-free, by Lemma 4.1,

$$|V(\Gamma^*)| \leq 3.$$ Furthermore, if $1 \leq w \leq 2$, $\Gamma^* \in \{K_1, K_2, K_{1,2}\}.$ (A.1)
Moreover,

\[I^* \] has at most 2 trivial vertices \(v \notin \{ v_e, v_{e'} \} \) with \(2 \leq d_{G(e,e')}(v) < \frac{1}{16} n. \]
(A.2)

We make the following claims.

Claim D. Each of the following holds.

(i) For any \(1 \leq i \leq \tilde{t}, \ h(v_i) \geq 7. \)

(ii) If there exists a trivial vertex \(u \in V(G(e, e')) - \{ v_e, v_{e'} \}, \) then

\[h(v_i) \geq \frac{3n}{16} - 12. \]

(iii) \(h(v_i) \geq \frac{n}{8} - 6. \)

If there exists some \(v_i \) with \(h(v_i) \leq 6, \) then as \(P_{G(e,e')}(v_i) \) is a simple collapsible graph, by Lemma 2.7(i), we have \(3 \leq h(v_i) \leq 6. \) As \(d_{G(e,e')}(v_i) \leq 6, \) \(d_G(v) \leq 11 \) for any \(v \in H(v_i). \) By \(n \geq 577, \) we have \(11 < \frac{n}{16}. \) It follows that \(H(v_i) \subseteq W, \) contrary to \(w \leq 2. \) Hence **Claim D(i)** holds.

Let \(v_i \in \tilde{T}. \) Then \(h(v_i) \geq 7. \) Since \(w \leq 2, \) there exists a vertex \(x \in H(v_i) \) such that \(d_G(x) \geq \frac{n}{16}. \) Since \(d_G(x) \geq \frac{n}{10} \geq 10 \) and \(d_{G(e,e')}(v_i) \leq 6, \) by the argument similar to that of **Claim 1** in Theorem 2.4, there is a vertex \(z \in H(v_i) \) such that \(x \in N_G(z) \subseteq H(v_i). \) If \(u \notin \{ v_e, v_{e'} \} \) is a trivial vertex of \(G(e, e'), \) then \(d_{G(e,e')}(u) = d_G(u) = d_G(u) \) and \(u \notin E(G). \) By (1.3), it follows that \(d_G(z) + d_{G(e,e')}(u) = d_G(z) + d_G(u) \geq \frac{n}{8}. \) Thus \(d_G(z) \geq \frac{n}{8} - 6. \) Since \(G \) is triangle-free, we have \(N_G(z) \cap N_G(x) = \emptyset, \) which implies

\[h(v) \geq d_G(x) + d_G(z) - d_{G(e,e')}(v_i) \geq \frac{n}{16} + \left(\frac{n}{8} - 6 \right) = \frac{3n}{16} - 12. \]

Hence **Claim D(ii)** holds as well.

For any \(v_i \in \tilde{T}, \ G_i = G[V(P_{G(e,e')}(v_i)) - \{ v_e, v_{e'} \}] \) is a triangle-free graph. Since \(w \leq 2 \) and \(h(v_i) \geq 7, \) there exist two vertices \(u_1, u_2 \in V(G_i) \) with \(d_G(u_1) \geq \frac{n}{16}, \) \(d_G(u_2) \geq \frac{n}{16} \) and \(N_G(u_1) \cap N_G(u_2) = \emptyset. \) Since \(d_{G(e,e')}(v_i) \leq 6, \) it follows that \(h(v_i) \geq 2 \cdot \frac{n}{16} - 6 = \frac{n}{8} - 6, \) justifying **Claim D(iii).**

Claim E. Each of the following holds.

(i) \(\tilde{T} \subseteq V(I^*) \) and \(t \leq 2. \)

(ii) If \(t \neq 0, \) then \(\tilde{t} \leq 5; \) otherwise, \(\tilde{t} \leq 8. \)

Let \(v \in \tilde{T}. \) Since \(n \geq 577, \) we have \(d_G(v) = d_{G(e,e')}(v) \leq 6 < \frac{n}{16} - 1. \) Hence \(v \in I^*, \) and so \(\tilde{T} \subseteq V(I^*). \) By (A.2), \(t \leq 2, \) and so **Claim E(i)** holds.

Suppose that \(t \neq 0 \) and \(\tilde{t} \geq 6. \) By **Claim D(ii) and n \geq 577, n \geq \frac{21}{16}, h(v_i) \geq 6\left(\frac{3n}{16} - 12 \right) > n, \) a contradiction. It follows that \(\tilde{t} \leq 5. \) If \(t = 0 \) and \(\tilde{t} \geq 9, \) by **Claim D(iii) and n \geq 577, we have n \geq \sum_{i=1}^{\tilde{t}} h(v_i) \geq 9(\frac{n}{8} - 6) > n, \) a contradiction. Therefore \(\tilde{t} \leq 8. \) Thus **Claim E(ii)** must hold.

By **Claim E,** we have

\[t_3 \leq 2; \quad \text{if } t_3 \neq 0, \text{ then } \tilde{t}_3 = d_3 - t_3 \leq 5; \text{ if } t_3 = 0, \text{ then } \tilde{t}_3 = d_3 \leq 8. \]
(A.3)

Since \(\kappa'(G) \geq 2, \ ess'(G) \geq 3, \ |V_2(G)| \leq 1 \) and \(G(e, e') \) is the reduction of \(G(e, e'), \) we have \(d_1 = 0, d_2 \in \{ 0, 1, 2, 3 \} \) and \(n' = |V(G(e, e'))| = \sum_{i=2}^{d_1} d_i. \) By Lemma 2.1(ii),

\[2d_2 + d_3 \geq \sum_{i=3}^{T} (i - 4)d_i + 10. \]
(A.5)

In the following analysis, we will show that \(G \) is contractible to \(W_6 \) in the desirable way in Case 3 below, and a contradiction is obtained in all other cases.

Case 1 \(d_2 = 0. \)

By (A.5), \(d_3 \geq 10. \) By (A.3), if \(t_3 \neq 0, \) then \(\tilde{t}_3 = d_3 - t_3 \geq 8; \) if \(t_3 = 0, \) then \(\tilde{t}_3 = d_3 \geq 10, \) contrary to (A.4).
Lemma 3.3. Let G be a graph with $\kappa'(G) \geq 2$ and $\ess'(G) \geq 3$, and let G_1, G_2, \ldots, G_k be the blocks of G. Then the following are equivalent.

(i) G is strongly spanning trailable.

(ii) For every $i \in \{1, 2, \ldots, k\}$, G_i is strongly spanning trailable.
Proving. Since each block of \(G \) is also 2-edge-connected and essentially 3-edge-connected, (i) implies (ii). To prove (ii) implies (i), we argue by induction on \(k \), the number of blocks of \(G \). As (ii) trivially implies (i) when \(k = 1 \), we assume that \(k > 1 \) and for any graph with fewer than \(k \) blocks, (ii) implies (i).

Since \(k \geq 2 \), \(G \) has two connected subgraphs \(H \) and \(L \) and a vertex \(z_0 \) such that \(E(G) = E(H) \cup E(L) \) and \(V(H) \cap V(L) = \{z_0\} \). Let \(e, e' \in E(G) \). If \(\{e, e'\} \cap E(H) = \emptyset \), then by induction, \(H(e, e') \) has a spanning \((v_e, v_{e'})\)-trail \(Q \). By induction, for any edge \(e'' \in E(L) \), \(L(e'') \) has a spanning \((v_{e''}, v_{e''})\)-trail, and so \(L \) has a spanning closed trail \(Q_2 \). It follows that \(Q = G[E(Q_1) \cup E(Q_2)] \) is a spanning \((v_e, v_{e'})\)-trail of \(G \). The proof for the case when \(e, e' \subseteq E(L) \) is similar, and will be omitted. Hence we may assume that \(e \in E(H) \) and \(e' \in E(L) \).

Since \(G \) is essentially 3-edge-connected, we have \(d_H(z_0) \geq 3 \), and so \(H \) has an edge \(e'' \in E_H(z_0) - \{e\} \). By induction, \(H \) has a spanning \((v_e, v_{e''})\)-trail \(T'_1 \). Assume that \(e'' = z_0w \). Define

\[
T_1 = \begin{cases}
T'_1 - z_0v_{e''} & \text{if } z_0v_{e''} \text{ is the last edge in } T'_1, \\
H[E(T'_1 - v_{e''}) \cup \{e''\}] & \text{if } wv_{e''} \text{ is the last edge in } T'_1.
\end{cases}
\]

Thus \(T_1 \) is a spanning \((v_e, z_0)\)-trail of \(H \). Similarly, \(L \) has a spanning \((z_0, v_{e''})\)-trail \(T_2 \). It follows that \(T = T_1 \cup T_2 \) is a spanning \((v_e, v_{e''})\)-trail.

References