Note

Connectivity keeping stars or double-stars in 2-connected graphs

Yingzhi Tian \(^a,\) *, Jixiang Meng \(^a\), Hong-Jian Lai \(^b\), Liqiong Xu \(^c\)

\(^a\) College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
\(^b\) Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
\(^c\) School of Science, Jimei University, Xiamen, Fujian 361021, PR China

Abstract

In Mader (2010), Mader conjectured that for every positive integer \(k\) and every finite tree \(T\) with order \(m\), every \(k\)-connected, finite graph \(G\) with \(\delta(G) \geq \left\lfloor \frac{3}{2}k \right\rfloor + m - 1\) contains a subtree \(T'\) isomorphic to \(T\) such that \(G - V(T')\) is \(k\)-connected. In the same paper, Mader proved that the conjecture is true when \(T\) is a path. Diwan and Tholiya (2009) verified the conjecture when \(k = 1\). In this paper, we will prove that Mader’s conjecture is true when \(T\) is a star or double-star and \(k = 2\).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graph always means a finite, undirected graph without multiple edges and without loops. For graph-theoretical terminologies and notation not defined here, we follow [1]. For a graph \(G\), the vertex set, the edge set, the minimum degree and the connectivity number of \(G\) are denoted by \(V(G)\), \(E(G)\), \(\delta(G)\) and \(\kappa(G)\), respectively. The order of a graph \(G\) is the cardinality of its vertex set, denoted by \(|G|\). \(k\) and \(m\) always denote positive integers.

In 1972, Chartrand, Kaugars, and Lick proved the following well-known result.

Theorem 1.1 ([2]). Every \(k\)-connected graph \(G\) of minimum degree \(\delta(G) \geq \left\lfloor \frac{3}{2}k \right\rfloor\) has a vertex \(u\) with \(\kappa(G - u) \geq k\).

Fujita and Kawai proved in [4] that every \(k\)-connected graph \(G\) with minimum degree at least \(\left\lfloor \frac{3}{2}k \right\rfloor + 2\) has an edge \(e = uv\) such that \(G - \{u, v\}\) is still \(k\)-connected. They conjectured that there are similar results for the existence of connected subgraphs of prescribed order \(m \geq 3\) keeping the connectivity.

Conjecture 1 ([4]). For all positive integers \(k, \ m\), there is a (least) non-negative integer \(f_k(m)\) such that every \(k\)-connected graph \(G\) with \(\delta(G) \geq \left\lfloor \frac{3}{2}k \right\rfloor - 1 + f_k(m)\) contains a connected subgraph \(W\) of exact order \(m\) such that \(G - V(W)\) is still \(k\)-connected.

They also gave examples in [4] showing that \(f_k(m)\) must be at least \(m\) for all positive integers \(k, \ m\). In [5], Mader proved that \(f_k(m)\) exists and \(f_k(m) = m\) holds for all \(k, \ m\).

Theorem 1.2 ([5]). Every \(k\)-connected graph \(G\) with \(\delta(G) \geq \left\lfloor \frac{3}{2}k \right\rfloor + m - 1\) for positive integers \(k, \ m\) contains a path \(P\) of order \(m\) such that \(G - V(P)\) remains \(k\)-connected.
Let G be a 2-connected graph with minimum degree $\delta(G) \geq \frac{1}{2} m - 1 + t_k(T)$ contains a subgraph T' such that $\kappa(G - V(T')) \geq k$.

Mader showed that $t_k(T)$ exists in [6].

Theorem 1.3 ([6]). Let G be a k-connected graph with $\delta(G) \geq 2(k - 1 + m)^2 + m - 1$ and let T be a tree of order m for positive integers k, m. Then there is a tree $T' \subseteq G$ isomorphic to T such that $G - V(T')$ remains k-connected.

Mader further conjectured that $t_k(T) = |T|$.

Conjecture 3 ([5]). For every positive integer k and every tree T, $t_k(T) = |T|$ holds.

Theorem 1.2 showed that Conjecture 3 is true when T is a path. Diwan and Tholiya [3] proved that the conjecture holds when $k = 1$. In the next section, we will verify that Conjecture 3 is true when T is a star and $k = 2$. It is proved in the last section that Conjecture 3 is true when T is a double-star and $k = 2$.

A block of a graph G is a maximal connected subgraph of G that has no cut vertex. Note that any block of a connected graph of order at least two is 2-connected or isomorphic to K_2.

For a vertex subset U of a graph $G, G[U]$ denotes the subgraph induced by U and $G - U$ is the subgraph induced by $V(G) - U$. The neighborhood $N_G(U)$ of U is the set of vertices in $V(G) - U$ which are adjacent to some vertex in U. If $U = \{u\}$, we also use $G - u$ and $N_G(u)$ for $G - \{u\}$ and $N_G(\{u\})$, respectively. The degree $d_G(u)$ of u is $|N_G(u)|$. If H is a subgraph of G, we often use H for $V(H)$. For example, $N_G(H), H \cap G$ and $H \cap U$ mean $N_G(V(H))$, $V(H) \cap V(G)$ and $V(H) \cap U$, respectively. If there is no confusion, we always delete the subscript, for example, $d(u)$ for $d_G(u), N(u)$ for $N_G(u), N(U)$ for $N_G(U)$ and so on. A tree is a connected graph without cycles. A star is a tree that has exactly one vertex with degree greater than one. A double-star is a tree that has exactly two vertices with degree greater than one.

2. Connectivity keeping stars in 2-connected graphs

Theorem 2.1. Let G be a 2-connected graph with minimum degree $\delta(G) \geq m + 2$, where m is a positive integer. Then for a star T with order m, G contains a star T' isomorphic to T such that $G - V(T')$ is 2-connected.

Proof. If $m \leq 3$, then T is a path, and the theorem holds by Theorem 1.2. Thus we assume $m \geq 4$ in the following.

Since $\delta(G) \geq m + 2$, there is a star $T' \subseteq G$ with $T' \cong T$. Assume $V(T') = \{u, v_1, \ldots, v_{m-1}\}$ and $E(T') = \{uv_i\} 1 \leq i \leq m - 1$.

We say T' is a star rooted at u or with root u. Let $G' = G - T'$. Let B be a maximum block in G' and let l be the number of components of $G' - B$. If $l = 0$, then $B = G'$ is 2-connected. We may assume that $l \geq 1$. Let H_1, \ldots, H_l be the components of $G - B$ with $|H_1| \geq \cdots \geq |H_l|$. Take such a star T' so that

(P1) $|B|$ is as large as possible,
(P2) $|H_1|, \ldots, |H_l|$ is as large as possible in lexicographic order, subject to (P1).

We will complete the proof by a series of claims.

Claim 1. $|N(H_i) \cap B| \leq 1$ and $|N(H_i) \cap V(T')| \geq 1$ for each $i \in \{1, \ldots, l\}$.

Since B is a block of G', we have $|N(H_i) \cap B| \leq 1$ for each $i \in \{1, \ldots, l\}$. Since G is 2-connected, $|N(H_i) \cap V(T')| \geq 1$ for each $i \in \{1, \ldots, l\}$.

Claim 2. $l = 1$.

Assume $l \geq 2$. By Claim 1, there is an edge th between T' and H_1, where $t \in T'$ and $h \in H_1$. Choose a vertex $x \in H_1$. Since $\delta(G) \geq m + 2$ and $|N(H_i) \cap B| \leq 1$ (by Claim 1), we have $|N(x) \setminus (B \cup \{t\})| \geq m + 2 - 1 - 1 = m$. Thus we can choose a star $T'' \cong T$ with root x such that $V(T'') \cap (B \cup \{t\}) = \emptyset$. But then either there is a larger block than B in $G - T''$, or $G - T'' - B$ contains a larger component than $H_1 (H_1 \cup \{t\})$ is contained in a component of $G - T'' - B$, which contradicts to (P1) or (P2).

Claim 3. $|N(t) \cap B| \leq 1$ and $|N(t) \cap H_1| \geq 2$ for any vertex $t \in V(T')$.

Assume $|N(t) \cap B| \geq 2$. Choose a vertex $x \in H_1$. Since $\delta(G) \geq m + 2$ and $|N(H_1) \cap B| \leq 1$, we have $|N(x) \setminus (B \cup \{t\})| \geq m + 2 - 1 - 1 = m$. Thus we can choose a star $T'' \cong T$ with root x such that $V(T'') \cap (B \cup \{t\}) = \emptyset$. But $G - T''$ has a block containing $B \cup \{t\}$ as a subset, which contradicts to (P1). Thus $|N(t) \cap B| \leq 1$ holds. By $d(t) \geq m + 2$ and $|N(t) \cap B| \leq 1$, we have $|N(t) \cap H_1| = d(t) - |N(t) \cap B| - |N(t) \cap T'| \geq m + 2 - 1 - (m - 1) = 2$.

Claim 4. For any edge $e = (t_1, t_2) \in E(T')$, $|N(t_1, t_2) \cap B| \leq 1$ holds.
By contradiction, assume \(|N(t_1, t_2)| \cap B| \geq 2\). Because \(|N(t_1)| \cap B| \leq 1\) and \(|N(t_2)| \cap B| \leq 1\), we can assume that there are two distinct vertices \(b_1, b_2 \in B\) such that \(t_1, b_1, t_2, b_2 \in E(G)\). Choose a vertex \(x \in H_1\). Since \(\delta(G) \geq m + 2\) and \(|N(H_1)| \cap B| \leq 1\), we have \(|N(x) \setminus (B \cup \{t_1, t_2\})| \geq m + 2 - 1 = m - 1\). Thus we can choose a star \(T'' \cong T\) with root \(x\) such that \(V(T'') \cap (B \cup \{t_1, t_2\}) = \emptyset\). But then \(G - T''\) has a block containing \(B \cup \{t_1, t_2\}\) as a subset, which contradicts to (P1).

Because \(|N(H_1)| \cap B| \leq 1\) and \(G\) is 2-connected, we have \(|N(T') \cap B| \geq 1\). The following claim further shows that \(|N(T') \cap B| = 1\).

Claim 5. \(|N(T') \cap B| = 1\).

By contradiction, assume \(|N(T') \cap B| \geq 2\). If \(N(u) \cap B \neq \emptyset\), say \(N(u) \cap B = \{u', \ldots, u_{m-1}\}\), then we have \(|N(v_1, \ldots, v_{m-1})| \cap B \subseteq \{u'\}\) by Claim 4. That is, \(|N(T') \cap B| = \{u'\}\), a contradiction. Thus \(N(u) \cap B = \emptyset\). Assume, without loss of generality, that there are two distinct vertices \(w\) and \(w'\) in \(B\) such that \(v_1 w, v_2 w' \in E(G)\). If \(N(v_3) \cap B = \emptyset\) or \(|N(v_3) \cap \{v_1, v_2\}| \leq 1\), then we can choose a star \(T''\) with order \(m\) and root \(v_3\) such that \(V(T'') \cap (B \cup \{u, v_1, v_2\}) = \emptyset\). But then \(B \cup \{u, v_1, v_2\}\) is contained in a block of \(G - T''\), contradicting to (P1). Thus we assume \(v_3\) is adjacent to a vertex \(y\) in \(B\) and is adjacent to both \(v_1\) and \(v_2\). Without loss of generality, assume \(y\) is distinct from \(w\). Then we can choose a star \(T''\) with order \(m\) and root \(u\) such that \(V(T'') \cap (B \cup \{v_1, v_2\}) = \emptyset\). But \(B \cup \{v_1, v_2\}\) is contained in a block of \(G - T''\), contradicting to (P1). Thus \(|N(T') \cap B| = 1\).

By Claim 5, \(|N(T') \cap B| = 1\). Assume \(|N(T') \cap B| = \{w\}\). Since \(G\) is 2-connected, we have \(|N(H_1) \cap B| \geq 1\). By Claim 1, \(|N(H_1) \cap B| = 1\). Assume \(|N(H_1) \cap B| = \{z\}\). Let \(P\) be a shortest path from \(z\) to \(w\) going through \(H_1\) and \(T\). Assume \(P := p_1 p_2 \cdots p_{q-1} p_q\), where \(p_1 = z, p_q = w\) and \(p_i \in H_1 \cup T\) for each \(i \in \{2, \ldots, q - 1\}\). Since \(P\) is a shortest path, \(|N(p_i) \cap P| = 2\) for each \(2 \leq i \leq q - 1\). By \(N(T') \cap B = \{w\}\) and \(N(H_1) \cap B = \{z\}\), \(|N(p_i) \cap B| \subseteq \{w, z\} \subseteq V(P)\) for each \(2 \leq i \leq q - 1\). Thus \(|N(p_i) \cap (B \cup P)| = 2\) and \(|N(p_i) \cap (V(G) \setminus (B \cup P))| \geq m\) for each \(2 \leq i \leq q - 1\). This implies \(G - (B \cup P)\) is not 2-connected. For any vertex \(x\) in \(G - (B \cup P)\), we have \(|N(x) \cap P| \leq 3\). For otherwise, we can find a path \(P'\) containing \(x\) from \(z\) to \(w\) going through \(H_1\) and \(T\) shorter than \(P\), a contradiction. By \(\delta(G) \geq m + 2\), \(|N(x) \cap (G - (B \cup P))| \geq m + 2 - 3 = m - 1\). Then we can find a star \(T'' \cong T\) with root \(x\) such that \(T'' \cap (B \cup P) = \emptyset\). But then \(B \cup P\) is contained in a block of \(G - T''\), a contradiction. The proof is thus complete. □

3. Connectivity keeping double-stars in 2-connected graphs

Lemma 3.1. Let \(G\) be a graph and \(T\) be a double-star with order \(m\). If there is an edge \(e = uw \in E(G)\) such that \(|N(u) \setminus v| \geq \left\lceil \frac{m}{2} \right\rceil - 1\), \(|N(v) \setminus u| \geq m - 3\) and \(|(N(u) \cup N(v)) \setminus \{u, v\}| \geq m - 2\), then there is a double-star \(T' \subseteq G\) isomorphic to \(T\).

Proof. Since \(T\) is a double-star, we have \(m \geq 4\). Assume the double-star \(T\) is constructed from an edge \(e' = u'v'\) by adding \(r\) leaves to \(u'\) and \(s\) leaves to \(v'\), where \(1 \leq r \leq s\) and \(r + s = m - 2\). Then \(1 \leq r \leq \left\lceil \frac{m}{2} \right\rceil - 1\) and \(\left\lceil \frac{m}{2} \right\rceil - 1 \leq s \leq m - 3\). Since \(|N(u) \setminus v| \geq \left\lceil \frac{m}{2} \right\rceil - 1\), \(|N(v) \setminus u| \geq m - 3\) and \(|(N(u) \cup N(v)) \setminus \{u, v\}| \geq m - 2\), we can find a double-star \(T' \cong T\) in \(G\) with center-edge \(e = uw\), where \(u\) is adjacent to \(r\) leaves and \(v\) is adjacent to \(s\) leaves. □

The main idea of the proof of Theorem 3.2 is similar to that of Theorem 2.1, with much more complicated and different details.

Theorem 3.2. Let \(T\) be a double-star with order \(m\) and \(G\) be a 2-connected graph with minimum degree \(\delta(G) \geq m + 2\). Then \(G\) contains a double-star \(T' \cong T\) such that \(G - V(T')\) is 2-connected.

Proof. Since \(T\) is a double-star, we have \(m \geq 4\). If \(m = 4\), then \(T\) is a path, and the theorem holds by Theorem 1.2. Thus we assume \(m \geq 5\) in the following.

Since \(\delta(G) \geq m + 2\), there is a double-star \(T' \subseteq G\) with \(T' \cong T\). Assume \(V(T') = \{u, v, u_1, \ldots, u_r, v_1, \ldots, v_s\}\) and \(E(T') = \{uw \cup \{uv_i| 1 \leq i \leq r\} \cup \{v_{i'}| 1 \leq j \leq s\}\), where \(1 \leq r \leq s\) and \(r + s = m - 2\). We say \(T'\) is a double-star with center-edge \(uw\). Let \(G' = G - T'.\) Let \(B\) be a maximum block in \(G'\) and let \(l\) be the number of components of \(G' - B\). If \(l = 0\), then \(B = G'\) is 2-connected. So we may assume that \(l \geq 1\). Let \(H_1, \ldots, H_l\) be the components of \(G' - B\) with \(|H_1| \geq \cdots \geq |H_l|\).

Take such a double-star \(T'\) so that

(P1) |\(B|\) is as large as possible,

(P2) |\(|H_1, \ldots, H_l|\) is as large as possible in lexicographic order, subject to (P1).

We will complete the proof by a series of claims.

Claim 1. \(|N(H_i) \cap B| \leq 1\) and \(|N(H_i) \cap T'| \geq 1\) for each \(i \in \{1, \ldots, l\}\).

Since \(B\) is a block of \(G'\), we have \(|N(H_i) \cap B| \leq 1\) for each \(i \in \{1, \ldots, l\}\). Since \(G\) is 2-connected, \(|N(H_i) \cap T'| \geq 1\) for each \(i \in \{1, \ldots, l\}\).

Claim 2. \(|H_i| \geq 2\) for each \(i \in \{1, \ldots, l\}\).

This claim holds because \(|N(h_i) \cap H_i| = d(h_i) - |N(h_i) \cap T'| - |N(H_i) \cap B| \geq m + 2 - m - 1 = 1\) for any vertex \(h_i \in H_i\), where \(1 \leq i \leq l\).
Claim 3. $l = 1$.

Assume $l \geq 2$. By Claim 1, there is an edge th between T' and H_1, where $t \in T'$ and $h \in H_1$. By Claim 2, we can choose an edge $xy \in E(H_1)$. Since $\delta(G) \geq m + 2$ and $|N(H_1) \cap B| \leq 1$ by Claim 1, we have $|N(x) \setminus (B \cup \{y, t\})| \geq m + 2 - 1 - 2 = m - 1$ and $|N(y) \setminus (B \cup \{x, t\})| \geq m + 2 - 1 - 2 = m - 1$. Thus, by Lemma 3.1, we can choose a double-star $T'' \cong T$ with center-edge xy such that $V(T'') \cap (B \cup \{t, v\}) = \emptyset$. But then either there is a larger block than B in $G - T''$, or $G - T'' - B$ contains a larger component than $H_1 (H_1 \cup \{t\})$ is contained in a component of $G - T'' - B$), which contradicts to (P1) or (P2).

Claim 4. $|N(t) \cap B| \leq 1$ and $|N(t) \cap H_1| \geq 2$ for any vertex $t \in V(T')$.

Assume $|N(t) \cap B| \geq 2$. Choose an edge $xy \in E(H_1)$. Since $\delta(G) \geq m + 2$ and $|N(H_1) \cap B| \leq 1$, we have $|N(x) \setminus (B \cup \{y, t\})| \geq m + 2 - 1 - 2 = m - 1$ and $|N(y) \setminus (B \cup \{x, t\})| \geq m + 2 - 1 - 2 = m - 1$. Thus, by Lemma 3.1, we can choose a double-star $T'' \cong T$ with center-edge xy such that $V(T'') \cap (B \cup \{t\}) = \emptyset$. But then $B \cup \{t\}$ is contained in a block of $G - T''$, which contradicts to (P1). Thus $|N(t) \cap B| \leq 1$ holds for any vertex $t \in V(T')$. By $d(t) \geq m + 2$ and $|N(t) \cap B| \leq 1$, we have $|N(t) \cap H_1| = d(t) - |N(t) \cap B| - |N(t) \cap T'| \geq m + 2 - 1 - (m - 1) = 2$.

Claim 5. For any edge $t_1t_2 \in E(T)$, $|N(t_1, t_2) \cap B| \leq 1$ holds.

By contradiction, assume $|N(t_1, t_2) \cap B| \geq 2$. Because $|N(t_1) \cap B| \leq 1$ and $|N(t_2) \cap B| \leq 1$, we can assume that there are two distinct vertices $b_1, b_2 \in B$ such that $t_1b_1, t_2b_2 \in E(G)$. Choose an edge $xy \in E(H_1)$. Since $\delta(G) \geq m + 2$ and $|N(H_1) \cap B| \leq 1$, we have $|N(x) \setminus (B \cup \{y, t_1, t_2\})| \geq m + 2 - 1 - 4 = m - 3$ if $N(t_1) \cap B \leq 1$ (by $m \geq 5$) and $|N(y) \setminus (B \cup \{x, t_1, t_2\})| \geq m + 2 - 1 - 4 = m - 3$.

If $|N(x) \setminus (B \cup \{y, t_1, t_2\})| > m - 3$ or $|N(y) \setminus (B \cup \{x, t_1, t_2\})| > m - 3$, then by Lemma 3.1, we can choose a double-star $T'' \cong T$ with center-edge xy such that $V(T'') \cap (B \cup \{t_1, t_2\}) = \emptyset$. But then $G - T''$ has a block containing $B \cup \{t_1, t_2\}$ as a subset, which contradicts to (P1). Thus we assume $|N(x) \setminus (B \cup \{y, t_1, t_2\})| = m - 3$ and $|N(y) \setminus (B \cup \{x, t_1, t_2\})| = m - 3$, which imply $|N(x) \cap B| = 1$ and $|N(y) \cap B| = 1$. Since $|N(H_1) \cap B| \leq 1$, we can assume $N(x) \cap B = N(y) \cap B = \{x\}$. Without loss of generality, assume $z \notin B_1$.

If $N(x'y \neq N(y') \setminus z$, then $|N(x) \setminus (B \cup \{y, t_1, t_2\})| = m - 2$. So we can choose a double-star $T'' \cong T$ with center-edge xy disjoint from $B \cup \{t_1, t_2, z\}$. But then $G - T''$ contains a larger block than B, a contradiction. Thus $N(x') = N(y') = \{x\}$. Because we choose the edge xy in H_1 arbitrarily, we conclude that H_1 is a complete graph and each vertex not in H_1 is adjacent to all vertices in H_1 if it is adjacent to one vertex in H_1. In particular, every vertex t in T' is adjacent to all vertices in H_1 by Claim 4 and the vertex z in B is adjacent to all vertices in H_1.

Let t_4h_4 be an edge of graph G, where $t_4 \in V(T') \setminus \{t_1, t_2, t_3\}$ and $h_4 \in V(H_1)$. Let h_1 be a vertex in H_1 distinct from h_4, then $t_4h_1, h_1z \in E(G)$. Thus we can choose a double-star $T'' \cong T$ with center-edge t_4h_4 disjoint from $B \cup \{t_1, h_1\}$. But then $B \cup \{t_1, h_1\}$ is contained in a block of $G - T''$, contradicting to (P1).

Because $|N(H_1) \cap B| \leq 1$ and G is 2-connected, we have $|N'(T') \cap B| \geq 1$. The following claim further shows that $|N'(T') \cap B| = 1$.

By contradiction, assume $|N'(T') \cap B| \geq 2$. If $u \in B \neq 0$, say $N(u) \cap B = \{u\}$, then we have $N((u_1, \ldots, u_r, v)) \cap B \subset \{u\}$ by Claim 5 and $N((v_1, \ldots, v_s)) \cap B \subset \{u\}$ by Claim 6. Thus, $N'(T') \cap B = \{u\}$, a contradiction. Thus $N(u) \cap B = \emptyset$. Similarly, we have $N(v) \cap B \neq 0$. Since $N((u_1, \ldots, u_r)) \cap B \leq 1$ and $N((v_1, \ldots, v_s)) \cap B \leq 1$ (by Claim 6), we have $|N'(T') \cap B| = 2$. Assume, without loss of generality, that there are two distinct vertices w and w' in B such that $u_1w, v_1w' \in E(G)$.

We first show that any vertex x in $\{u_1, \ldots, u_r, v_1, \ldots, v_s\} \setminus \{u_1, v_1\}$ has no neighbors in B. By contradiction, assume there is a vertex in $\{u_1, \ldots, u_r, v_1, \ldots, v_s\} \setminus \{u_1, v_1\}$, say v_i for some $i \in \{2, \ldots, s\}$ (the case u_i for some $i \in \{2, \ldots, r\}$ can be proved similarly), such that $N(v_i) \cap B = \{w\}$. If v_i is adjacent to u (or u_i), then for any edge $v'u'$ (a neighbor of v in H_1), we have $|N(v) \setminus (B \cup \{u_1, v_1, v'_1\})| \geq m + 2 - 4 = m - 2$ (or $|N(v) \setminus (B \cup \{u_1, u_1, v'_1\})| \geq m + 2 - 3 = m - 1$ and $|N(v') \setminus (B \cup \{u, v, u_1, v'_1\})| \geq m + 2 - 1 - 3 = m - 2$). But then $G - T''$ contains a larger block than B, a contradiction. Thus neither u_1 nor u_i is adjacent to v_i. Choose a neighbor v'_i of v_i in H_1, since $|N(v'_i) \setminus (B \cup \{u, v, u_1, v'_1\})| \geq m + 2 - 1 - 3 = m - 2$ and $|N(v'_i) \setminus (B \cup \{u, v, u_1, v'_1\})| \geq m + 2 - 1 - 3 = m - 2$, we can find a double-star $T'' \cong T$ with center-edge $v_i'v_i$ such that T' is disjoint from $B \cup \{u, v_1, v'_1\}$ or $B \cup \{u, u_1\}$. But then $G - T''$ contains a larger block than B, a contradiction. Thus we have $N((u_1, \ldots, u_r, v_1, \ldots, v_s) \setminus \{u_1, v_1\}) \cap B = \emptyset$.\"
Let $v_2v_i' \in E(G)$, where v_i' is a neighbor of v_2 in H_1. Since $\delta(G) \geq m + 2$ and $N(v_2) \cap B = \emptyset$, we have $|N(v_2) \setminus (B \cup \{u, v, u_1, v_1, v_2\})| \geq m + 2 - 5 = m - 3$ and $|N(v_i') \setminus (B \cup \{u, v, u_1, v_1, v_2\})| \geq m + 2 - 1 - 5 = m - 4 \geq \lceil \frac{m}{2} \rceil - 1$ (by $m \geq 5$). If $|N(v_2) \setminus (B \cup \{u, v, u_1, v_1, v_2\})| \geq m - 2$, then, by Lemma 3.1, we can find a double-star $T'' \cong T$ with center-edge v_2v_i' such that T'' avoids $B \cup \{u, v, u_1, v_1\}$. But then $G - T''$ contains a larger block than B, a contradiction. Thus assume $|N(v_2) \setminus (B \cup \{u, v, u_1, v_1, v_2\})| = m - 3$, which implies v_2 is adjacent to both u_1 and v_1. For the edge uv, we can verify that $|N(u) \setminus (B \cup \{v, u_1, v_1, v_2\})| \geq m + 2 - 4 = m - 2$ and $|N(v) \setminus (B \cup \{u, u_1, v_1, v_2\})| \geq m + 2 - 4 = m - 2$. By Lemma 3.1, we can find a double-star $T'' \cong T$ with center-edge uv such that T'' avoids $B \cup \{u_1, v_1, v_2\}$. But then $B \cup \{u_1, v_1, v_2\}$ is contained in a block of $G - T''$, contradicting to (P1). Thus Claim 7 holds.

By Claim 7, $|N(T') \cap B| = 1$. Assume $N(T') \cap B = \{w\}$. Since G is 2-connected, we have $|N(H_1) \cap B| = 1$ by Claim 1. Let $N(H_1) \cap B = \{z\}$. Let P be a shortest path from z to w going through H_1 and T''. Assume $P := p_1p_2 \cdots p_q$, where $p_1 = z, p_q = w$ and $p_i \in H_1 \cup T'$ for each $i \in \{2, \ldots, q - 1\}$. Since P is a shortest path, $N(p_i) \cap P = \{p_{i-1}, p_{i+1}\}$ for $2 \leq i \leq q - 1$. Because $\delta(G) \geq m + 2$ and $N(p_i) \cap B \subseteq \{w, z\} \subseteq P$ for each $2 \leq i \leq q - 1$, we know p_i has at least m neighbors not in $B \cup P$, that is, $G - (B \cup P)$ is not empty. For any vertex x in $G - (B \cup P)$, we have $|N(x) \cap P| \leq 3$. For otherwise, we can find a path P' containing x from z to w going through H_1 and T'' shorter than P, a contradiction. By $\delta(G) \geq m + 2$, $|N(x) \cap (G - (B \cup P))| \geq m + 2 - 3 = m - 1$. Choose an edge xy in $G - (B \cup P)$. Since $|N(x) \setminus (B \cup P \cup \{y\})| \geq m + 2 - 4 = m - 2$ and $|N(y) \setminus (B \cup P \cup \{x\})| \geq m + 2 - 4 = m - 2$, we can find a double-star $T'' \cong T$ with center-edge xy such that $T'' \cap (B \cup P) = \emptyset$. But then $B \cup P$ is contained in a block of $G - T''$, a contradiction. The proof is thus complete. \hfill \□

Acknowledgments

We would like to thank the anonymous referees for their valuable suggestions which helped us a lot in improving the presentation of this paper.

References