Cycle covers of planar graphs

Hong-Jian Lai; Department of Mathematics
West Virginia University, Morgantown, WV 26506
E-MAIL: HJLAI@MATH.WVU.EDU

March 4, 1996

Abstract

Bondy conjectured in [1] that every 2-connected simple graph with n vertices admits a cycle cover with at most $(2n - 1)/3$ cycles. In this paper we shall show that every 2-connected planar graph with $n \geq 6$ vertices admits a cycle cover with at most $(2n - 2)/3$ cycles. This bound is best possible.

1. Introduction

We follow the notation of Bondy and Murty [2], unless otherwise noted. In particular, $\kappa(G)$ and $\kappa'(G)$ denote the connectivity and the edge-connectivity of a graph G, respectively. An edge e of a graph G is called a multiple edge if $G - e$ has an edge f that has the same ends as e in G. We allow multiple edges but forbid loops. When $v, v' \in V(G)$, vv' would denote any one edge in G with ends v and v'. For $X \subseteq E(G)$, the contraction G/X is the graph obtained from G by identifying the ends of each edge of X and then deleting the resulting loops. We shall use G/e for $G/\{e\}$ and when H is a subgraph of G, we write G/H for $G/E(H)$. For $v \in V(G)$, $N(v)$, the neighborhood of v in G, denotes the set of vertices adjacent to v in G. If H is a subgraph of G and $P = v_1v_2 \cdots v_k$ is a path of G, then we shall write $H + v_1v_2 \cdots v_k$ for the subgraph $G[E(H) \cup E(P)]$.

A cycle cover (CC) is a collection \mathcal{C} of cycles in G such that every edge in G lies in at least one cycle in \mathcal{C}. It is clear that G has a cycle cover if and only if $\kappa'(G) \geq 2$. For a 2-edge-connected graph, let

\[cc(G) = \min \{|\mathcal{C}| : \mathcal{C} \text{ is a CC of } G\} \tag{1} \]

In [B], Bondy posed the following conjecture:

Conjecture SCC: (Bondy [1]) If G is a 2-connected simple graph G with n vertices, then

\[cc(G) \leq \frac{2n - 1}{3}. \tag{2} \]

*Partially supported by ONR grant N00014-91-1699 and NSA grant MDA904-94-H-2012
We shall work on a multigraph version of this conjecture. For a graph G, define a relation on $E(G)$ such that e is related to e' if and only if $e = e'$ or e is parallel to e' in G. It is easy to check that this is an equivalence relation. Let $[e]$ denote the equivalence class containing e, and $[G]$ the collection of all equivalence classes. Define

$$
\mu(G) = \sum_{[e] \in [G]} ([e] - 1).
$$

Thus G is simple if and only if $\mu(G) = 0$, and so a multigraph version of Conjecture SCC can be stated as follows: If G is a 2-edge-connected graph with order n, then

$$
cc(G) \leq \frac{2n - 1}{3} + \frac{\mu(G)}{2}.
$$

Call a multigraph G a plane triangulation if G can be embedded in the plane such that every face of the embedding has degree 2 or 3. In [3], we showed the following:

Theorem 1.1 If G is a planar triangulation with $n \geq 6$ vertices, then

$$
cc(G) \leq \frac{2n - 3}{3} + \frac{\mu(G)}{2}.
$$

In this note, we shall show that Conjecture SCC holds for planar graphs:

Theorem 1.2 If G is a planar graph with $n \geq 6$ vertices and with $\kappa(G) \geq 2$, then

$$
cc(G) \leq \frac{2n - 2}{3} + \frac{\mu(G)}{2}.
$$

This result is best possible, in the sense that there exists a collection of planar graphs in which the bound in (6) is attained (see [4]).

2. **Lemmas.** We shall argue with a minimum counterexample, and so we need to take care of graphs with small orders.

Lemma 2.1 Let H be a 2-connected simple planar graph with $4 \leq |V(H)| \leq 5$. If $\delta(H) = 3$, then $H \in \{K_4, J_1, J_2\}$, (see Figure 1 for definition of J_1 and J_2).

Proof: This is trivial if $|V(H)| = 4$ and so we assume that $|V(H)| = 5$. By $\delta(H) = 3$, we have $2|E(H)| \geq 15$ and so $|E(H)| \geq 8$. Since H is a simple plane graph with 5 vertices, we have $|E(H)| \leq 9$, with equality if and only if H is a triangulation. Hence either G is a triangulation ($H \cong J_2$) or H is a triangulation minus an edge with $\delta(H) = 3$ ($H \cong J_1$).

Lemma 2.2 Let H be a 2-edge-connected simple planar graph. Each of the following holds:

(i) If $|V(H)| = 4$ and if $e \in E(H)$ is given, then H has two cycles that covers H such that e can be covered at twice.

(ii) If $|V(H)| = 5$ and if $\delta(H) = 2$, or if $H = J_1$, then $cc(H) \leq 2$.

(iii) Let $H \in \{J_1, J_2\}$. If $e \in E(H)$ is given, then H has 3 cycles covering H such that e is covered at least twice.
(iv) Given \(e \in E(J_2) \), \(J_2 \) has 3 cycles covering \(J_2 \) so that \(e \) is covered 3 times.

(v) Given \(e_1, e_2 \in E(J_2) \), \(J_2 \) has 3 cycles covering \(J_2 \) so that \(e_1 \) and \(e_2 \) are covered at least twice.

Proof: We shall use the notation in Figure 1 in the proof. (i) of Lemma 2.2 is obvious. If \(\delta(H) = 2 \) in (ii), then one can contract an edge incident with a vertex of degree 2 to get (ii) from (i). Note that \(J_1 \) can be covered by \(z_1 z_2 z_3 z_4 z_1 \) and \(z_1 z_4 z_2 z_5 z_3 z_1 \). This shows that \(cc(J_1) = 2 \) and the case \(H = J_1 \) in (iii), since the edge \(e \) can be covered by the third cycle. The case \(H = J_2 \) in (iii) follows from (iv). By symmetry of \(J_2 \), we may assume that edge \(e \in \{ z_1 z_4, z_2 z_3, z_3 z_5 \} \). Table 1 below exhibits 3 desired cycles for (iv).

<table>
<thead>
<tr>
<th>the edge (e)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_1 z_4)</td>
<td>(z_2 z_3 z_5 z_1)</td>
<td>(z_2 z_3 z_5 z_2)</td>
<td>(z_2 z_3 z_5 z_2 z_1)</td>
</tr>
<tr>
<td>(z_2 z_3)</td>
<td>(z_2 z_3 z_5 z_1)</td>
<td>(z_2 z_3 z_5 z_2)</td>
<td>(z_2 z_3 z_5 z_2 z_1)</td>
</tr>
<tr>
<td>(z_3 z_5)</td>
<td>(z_2 z_3 z_5 z_1)</td>
<td>(z_2 z_3 z_5 z_2)</td>
<td>(z_2 z_3 z_5 z_2 z_1)</td>
</tr>
</tbody>
</table>

Table 1

Let \(e_1, e_2 \in E(J_2) \) be given. There is a cycle \(C_1 \) containing both \(e_1 \) and \(e_2 \), together with a third edge \(e_3 \). If \(e_3 \) is either incident with a vertex of degree 3 and a vertex of degree 4 (say \(e_3 = z_4 z_5 \)), or \(e_3 \) is incident with two vertices of degree 4 (say \(e_3 = z_4 z_5 \)), then in any case, \(J_2 \) can be covered by two cycles and so (v) of Lemma 2.2 follows. \(\square \)

Lemma 2.3 If \(H \in \{ L_8, L_9, L_{10}, L_{11} \} \) (see Figure 4 for definitions), then \(cc(H) \leq 4 \).

Proof: We shall use the notation in Figure 4. The cycles \(x_1 x_2 x_3 x_5 x_6 x_4 x_5 x_7 x_7 x_1, x_2 x_5 x_4 x_7 x_1, x_1 x_7 x_8 x_2 x_4 x_1 \) and \(x_2 x_4 x_3 x_5 x_2 \) cover \(L_8 \); \(x_1 x_2 x_3 x_6 x_4 x_8 x_7 x_1, x_1 x_7 x_2 x_5 x_3 x_4 x_1, x_2 x_4 x_5 x_2 \) and \(x_2 x_5 x_6 x_4 x_7 x_8 x_2 \) cover \(L'_8 \); \(x_1 x_2 x_3 x_6 x_4 x_8 x_7 x_1, x_1 x_7 x_2 x_5 x_4 x_6 x_5, x_2 x_4 x_3 x_5 x_2 \) and \(x_2 x_5 x_6 x_4 x_7 x_8 x_2 \) cover \(L''_8 \); and \(x_1 x_2 x_3 x_6 x_4 x_8 x_7 x_1, x_1 x_7 x_2 x_5 x_4 x_6 x_5, x_2 x_5 x_6 x_4 x_3 x_2 \) and \(x_2 x_5 x_6 x_4 x_7 x_8 x_2 \) cover \(L'''_8 \). \(\square \)

Lemma 2.4 If \(H \in \{ J_3, J_4 \} \) (see Figure 3 for definitions), then \(cc(H) \leq 3 \).

Proof: We shall use the notation in Figure 3. The cycles \(z_1 z_2 z_3 z_1, z_1 z_4 z_5 u_1 z_2 z_3 z_1 \) and \(z_2 z_5 u_1 z_3 z_4 z_2 \) cover \(J_3 \); and the cycles \(z_1 z_4 z_2 z_5 u_1 z_3 z_4 z_1, z_1 z_2 u_1 z_3 z_4 z_1 \) and \(z_3 z_4 z_5 z_3 \) cover \(J_4 \). \(\square \)

3. **Proof of Theorem 1.2** From now on we assume that

\[G \text{ is a counterexample to Theorem 1.2} \]

such that

\[|V(G)| \text{ is minimized,} \]

and subject to (8),

\[\mu(G) \text{ is minimized.} \]
(iv) Given $e \in E(J_2)$, J_2 has 3 cycles covering J_2 so that e is covered 3 times.

(v) Given $e_1, e_2 \in E(J_2)$, J_2 has 3 cycles covering J_2 so that e_1 and e_2 are covered at least twice.

Proof: We shall use the notation in Figure 1 in the proof. (i) of Lemma 2.2 is obvious. If $\delta(H) = 2$ in (ii), then one can contract an edge incident with a vertex of degree 2 to get (ii) from (i). Note that J_1 can be covered by $z_1z_2z_3z_5z_4z_1$ and $z_1z_4z_2z_5z_3z_1$. This shows that $cc(J_1) = 2$ and the case $H = J_1$ in (iii), since the edge e can be covered by the third cycle. The case $H = J_2$ in (iii) follows from (iv). By symmetry of J_2, we may assume that edge $e \in \{z_1z_4, z_2z_3, z_3z_5\}$. Table 1 below exhibits 3 desired cycles for (iv).

<table>
<thead>
<tr>
<th>the edge e</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_1z_4</td>
<td>$z_1z_4z_5z_3z_1$</td>
<td>$z_1z_4z_2z_3z_1$</td>
<td>$z_1z_4z_3z_5z_2z_1$</td>
</tr>
<tr>
<td>z_2z_3</td>
<td>$z_1z_2z_3z_4z_1$</td>
<td>$z_1z_2z_5z_2z_3z_1$</td>
<td>$z_2z_3z_2z_4$</td>
</tr>
<tr>
<td>z_3z_5</td>
<td>$z_1z_4z_5z_3z_1$</td>
<td>$z_1z_4z_3z_5z_2z_1$</td>
<td>$z_2z_3z_2z_4$</td>
</tr>
</tbody>
</table>

Table 1

Let $e_1, e_2 \in E(J_2)$ be given. There is a cycle C_1 containing both e_1 and e_2, together with a third edge e_3. If e_3 is either incident with a vertex of degree 3 and a vertex of degree 4 (say $e_3 = z_4z_5$), or e_3 is incident with two vertices of degree 4 (say $e_3 = z_2z_4$), then in any case, $J_2 - e_3$ can be covered by two cycles and so (v) of Lemma 2.2 follows. □

Lemma 2.3 If $H \in \{L_6, L_6', L_6'', L_6'''\}$ (see Figure 4 for definitions), then $cc(H) \leq 4$.

Proof: We shall use the notation in Figure 4. The cycles $x_1x_2x_3x_6x_6x_4x_7x_1$, $x_2x_5x_4x_7x_2$, $x_1z_7x_8x_2x_4x_1$ and $x_2x_4x_3x_5x_6x_2$ cover L_6; $x_1x_2x_3x_6x_4x_7x_8x_1$, $x_1x_7x_2x_5x_3x_4x_1$, $x_2x_4x_7x_2$ and $x_2x_5x_6x_4x_7x_8x_2$ cover L_6'; $x_1x_2x_3x_6x_7x_8x_2$, $x_1x_7x_2x_5x_4x_1$, $x_2x_4x_3x_5x_2$ and $x_2x_5x_7x_4x_6x_5x_2$ cover L_6''; and $x_1z_6x_7x_2x_5x_6x_3x_4x_1$, $x_1x_2x_3x_5x_6x_4x_7x_1$, $x_2x_5x_4x_7x_2$ and $x_2x_5x_4x_2$ cover L_6'''. □

Lemma 2.4 If $H \in \{J_3, J_4\}$ (see Figure 3 for definitions), then $cc(H) \leq 3$.

Proof: We shall use the notation in Figure 3. The cycles $z_1z_2z_5u_1z_3z_1$, $z_1z_4z_5u_1z_2z_3z_1$ and $z_2z_5u_1z_3z_4z_2$ cover J_3; and the cycles $z_1z_4z_2z_5u_1z_3z_1$, $z_1z_2u_1z_3z_4z_1$ and $z_2z_4z_5z_3$ cover J_4. □

3. Proof of Theorem 1.2 From now on we assume that

\[G \text{ is a counterexample to Theorem 1.2} \] \hspace{1cm} (7)

such that

\[|V(G)| \text{ is minimized,} \] \hspace{1cm} (8)

and subject to (8),

\[\mu(G) \text{ is minimized.} \] \hspace{1cm} (9)
Lemma 3.1 \(\mu(G) \leq 1 \).

Proof: Suppose that \(\mu(G) \geq 2 \). Then either there is an edge \(e \) with \(|e| \geq 3 \) or there are two edges \(e_1, e_2 \) with \(|e_1| \geq 2, |e_2| \geq 2 \) and with \(e_1 \neq e_2 \). In either case we can pick two edges \(e, e' \) (say), in such a way that \(\mu(G - \{e, e'\}) = \mu(G) - 2 \). By \(\kappa(G) \geq 2 \), there is a cycle \(C \) containing \(e \) and \(e' \). By (9) and by the fact that any CC \(C \) of \(G - \{e, e'\} \) together with the cycle \(C \) containing \(e \) and \(e' \) will form a CC of \(G \), we have

\[
cc(G) \leq cc(G - \{e, e'\}) + 1 \leq \frac{2n - 2}{3} + \frac{(G) - 2}{2} + 1,
\]

contrary to (7). \(\square \)

Lemma 3.2 \(G \) does not have any vertex \(v \) of degree 3 that is incident with some multiple edges.

Proof: We argue by contradiction. Suppose that \(G \) has a vertex of degree 3 that is incident with some multiple edges. Let \(e_1, e_2, e_3 \) be the edges incident with \(v \). By \(\kappa(G) \geq 2 \) and by Lemma 3.1, we may assume that \([e_1] = \{e_1, e_2\} \) and \([e_3] = \{e_3\} \). Let the two vertices adjacent to \(v \) be \(u, u' \) such that \(u \) is incident with \(e_3 \) and \(u' \) with \(e_1 \) and \(e_2 \). Define

\[
G' = \begin{cases}
G - v + uu' & \text{if } uu' \not\in E(G) \\
G - v & \text{if } uu' \in E(G)
\end{cases}
\]

(10)

It is then easy to see that

\[
cc(G) \leq cc(G') + 1.
\]

(11)

In fact, let \(C' \) be a CC of \(G' \) and let \(C' \in C \) be a cycle that contains the edge \(uu' \). Since every cycle in \(C' - \{C'\} \) can be extended to a cycle in \(G \) by possibly replacing \(uu' \) by \(e_3 \), we shall use \(C \) to denote the collection of cycles in \(G \) corresponding to the cycles in \(C' - \{C'\} \). Let \(C_1 = C' - uu' + \{e_1, e_3\} \). If \(uu' \not\in E(G) \), then let \(C_2 = G[\{e_1, e_2\}] \), and if \(uu' \in E(G) \), then let \(C_2 = G[\{uu', e_2, e_3\}] \). Thus \(C \cup \{C_1, C_2\} \) would form a CC for \(G \) in either case and so (11) holds.

Since \(\kappa(G) \geq 2 \) and by (10), \(\kappa(G') \geq 2 \) also. Note that \(\mu(G') = \mu(G) - 1 \). If \(|V(G')| \geq 6 \), then by the minimality of \(G \), we have

\[
cc(G) \leq cc(G') + 1 \leq \frac{2|V(G')| - 2}{3} + \frac{(G')}{2} + 1 \leq \frac{2|V(G)| - 2}{3} + \frac{(G)}{2},
\]

contrary to (7). Thus we assume that \(|V(G')| = 5 \) and so \(|V(G)| = 6 \).

Since the edges in \([e_1] \) are deleted, by Lemma 3.1, \(G' \) is simple with \(\delta(G') \geq 2 \). If \(\delta(G') = 2 \), or if \(G' = K_4 \), then by (i) or (ii) of Lemma 2.2, \(cc(G') = 2 \) and so by (11), \(cc(G) \leq 3 \), contrary to (7).

Hence by Lemma 2.1 we assume that \(G' \in \{J_1, J_2\} \). If \(uu' \not\in E(G) \), then by (iii) of Lemma 2.2, \(G' \) can have a CC \(C \) with 3 cycles such that the edge \(uu' \) can be covered by 2 cycles, whence \(cc(G) = 3 \), contrary to (7). If \(G' \cong J_1 \) and \(uu' \in E(G) \), then since \(cc(J_1) = 2 \), it follows by (11) that \(cc(G) \leq 3 \) also, contrary to (7). Thus we must have \(G' \cong J_2 \) and \(uu' \in E(G) \). By the symmetry of \(J_2 \), either both \(u, u' \) are of degree 4 in \(J_2 \)
(say \(\{u, u'\} = \{z_2, z_3\} \)), or one of \(\{u, u'\} \) has degree 4 and the other has degree 3 in \(J_2 \) (say \(\{u, u'\} = \{z_1, z_2\} \)). Table 2 below uses the notation in Figure 1 and shows that \(cc(G) \leq 3 \) in any case.

\[
\begin{array}{ccc}
\text{u} & \text{u'} & \text{C}_1 & \text{C}_2 & \text{C}_3 \\
z_1 & z_2 & z_1z_2z_3z_5z_4z_1 & z_1z_2z_4z_3z_1 & z_1z_2z_5z_4z_1 \\
z_2 & z_1 & z_1z_2z_3z_5z_4z_1 & z_1z_2z_4z_3z_1 & z_1z_2z_5z_4z_1 \\
z_2 & z_3 & z_1z_2z_3z_5z_4z_1 & z_1z_3z_2z_4z_1 & z_4z_5z_2z_3z_4 \\
\end{array}
\]

Table 2

Thus \(G \) satisfies (6) in any case, contrary to (7). \(\square \)

Lemma 3.3 If \(w \in V(G) \) with \(N(w) = \{w_1, w_2, w_3\} \) and if \(w_1w_3 \notin E(G) \), then \(G[N(w)] \) is disconnected.

Proof: By contradiction, we may assume that \(w_1w_2, w_2w_3 \in E(G) \). By Lemma 3.1 and without loss of generality, we may assume that \(|w_1w_2| = |w_2w_3| = 1 \). Let \(G' = G/ww_3 \) and let \(\mathcal{C} \) be a CC of \(G' \). Denote \(e_1 = w_2w_3, e_2 = ww_2 \) and \(e_3 = w_1w_2 \), and let \(C_i \in \mathcal{C} \) be cycles containing \(e_i \), \(1 \leq i \leq 3 \). Note that \(e_1 \) and \(e_2 \) become edges with the same ends in \(G' \), and so we may assume that \(C_1 \neq C_3 \).

If \(C_1 = C_2 \) is a 2-cycle, then let \(C'_3 = C_3 - e_3 + w_1ww_2 \) and \(F'' = w_1ww_3w_2, w_1, \) and extend any cycle \(L \in \mathcal{L} - \{C_1, C_3\} \) to a cycle \(L' \) in \(G \) by adding \(ww_3 \), if necessary. Thus \(\{L' | L \in \mathcal{L} - \{C_1\}\} \cup \{F''\} \) is a CC of \(G \). Thus we may assume that neither \(C_1 \) nor \(C_2 \) is a 2-cycle. In Table 3, \(C'_1 \) and \(C'_2 \) are defined according to the different situations of \(C_1 - e_1 \) and \(C_2 - e_2 \) in \(G \).

\[
\begin{array}{ccc}
C_1 - e_1 \text{ in } G & C_2 - e_2 \text{ in } G & \text{The new cycle } C'_1 \\
(w_2, w_3)-\text{path} & (w_2, w_3)-\text{path} & C_1 - e_1 + w_2ww_3 \\
(w_2, w_3)-\text{path} & (w_2, w)-\text{path} & C_1 - e_1 + w_2ww_3 \\
(w_2, w)-\text{path} & (w_2, w_3)-\text{path} & C_1 - e_1 + w_3w_2 \\
(w_2, w)-\text{path} & (w_2, w)-\text{path} & C_1 - e_1 + w_3w_2 \\
\end{array}
\]

The new cycle \(C'_2 \)

\[
\begin{array}{ccc}
C_2 & C_2 - e_2 + w_2ww_3 & C_2 - e_2 + w_2ww_3 \\
C_2 & C_2 - e_2 + w_2ww_3 & C_2 - e_2 + w_2ww_3 \\
C_2 & C_2 - e_2 + w_2ww_3 & C_2 \\
\end{array}
\]

Table 3

Extend any cycle \(C \in \mathcal{C} - \{C_1, C_2\} \) to a cycle \(C' \) in \(G \). Thus \(\{C' | C \in \mathcal{C}\} \) gives

\[cc(G) \leq cc(G'). \] (12)

Since \(N(w) = \{w_1, w_2, w_3\} \) and by \(\kappa(G) \geq 2 \), \(\{w, w_3\} \) is not a vertex cut of \(G \) and so \(\kappa(G') \geq 2 \). By (8) and (12), if \(|V(G')| \geq 6 \), then \(G \) satisfies (6), contrary to (7). Since \(|V(G)| \geq 6 \), we must have \(|V(G')| = 5 \) and so \(G' \) is spanned by \(J_1 \) or \(J_2 \). By (iii) of Lemma 2.2 and by (12), \(G \) satisfies (6) also, contrary to (7). \(\square \)
If S is a vertex cut of a connected graph H and if the components of $H - S$ have vertex sets V_1, V_2, \ldots, V_p, then $H[V_i \cup S]$ ($1 \leq i \leq p$) is called an S-component of H.

Lemma 3.4 G does not have a vertex cut $\{u_1, u_2\}$ with $u_1u_2 \in E(G)$ such that G has a $\{u_1, u_2\}$-component of at most 3 vertices.

Proof: Suppose such an edge u_1u_2 exists. Let L' be a $\{u_1, u_2\}$-components of G with $V(L) = \{u_1, u_2, \ldots, u_k\}$ and with $k \leq 5$. Let $L = L'$ if $|u_1u_2| = 1$ and L be the underlying simple graph of L' if $|u_1u_2| = 2$. Throughout the proof, let $e \notin E(G)$ be an edge parallel to u_1u_2.

Suppose first that $k = 3$. By Lemma 3.2, $d(u_3) = 2$. Let $G_1 = (G - u_3) + e$. Then $cc(G) \leq cc(G_1)$ since the edge e can be replaced by the path $u_1u_3u_2$ in any cycle containing e. By the minimality of G, we may assume that $|V(G_1)| = 5$. But then $|V(G)| = 6$, and so by (ii) or (iii) of Lemma 2.2, $cc(G) \leq cc(G_1) \leq 3$, contrary to (7). Thus $k \neq 3$.

Since we did not use the fact that $u_1u_2 \in E(G)$, we have in fact shown:

Corollary 3.5 $\delta(G) \geq 3$. □

We continue the proof of Lemma 3.4 and assume that $k = 4$. Let $G_2 = \begin{cases} G - \{u_3, u_4\} & \text{if $\mu(L) = 0$} \\ G - \{u_3, u_4\} + e & \text{if $\mu(L) = 1$.} \end{cases}$

Since $u_1u_2 \in E(G)$, $\kappa(G_2) \geq 2$. By $\delta(G) \geq 3$ and by Lemma 3.2, L must be spanned by a K_4. We claim that $cc(G) \leq cc(G_2) + 1$. When $\mu(L) = 0$, let C be a CC of G_2 and let $C \in \mathcal{C}$ be a cycle in G_2 containing u_1u_2. Since $C - u_1u_2 + u_1u_3u_4u_2$ and $u_1u_2u_3u_4u_1$ are two cycles in G, it follows that $cc(G) \leq cc(G_2) + 1$. The case when $\mu(L) = 1$ is similar. By (8), if $|V(G_2)| \geq 6$, then

$$cc(G) \leq cc(G_2) + 1 \leq \frac{2(n - 2) - 2}{3} + \frac{\mu(G)}{2} + 1 < \frac{2n - 2}{3} + \frac{\mu(G)}{2},$$

contrary to (7). Thus $|V(G_2)| \leq 5$. If $|V(G_2)| = 4$, then $|V(G)| = 6$ and by (i) of Lemma 2.2, $cc(G) \leq cc(G_2) + 1 \leq 3$, contrary to (7). If $|V(G_2)| = 5$, then $|V(G)| = 7$ and by (ii) or (iii) of Lemma 2.2, $cc(G) \leq cc(G_2) + 1 \leq 4$, contrary to (7) also. This excludes $k = 4$.

Assume that $k = 5$. Let $G_3 = G - \{u_3, u_4, u_5\}$. Let C be a CC of G_3 and let $\{C_1, C_2, C_3\}$ be a CC of L so that u_1u_2 is covered by C_1 and C_2. Let $C \in \mathcal{C}$ be a cycle containing u_1u_2. Then $(C - \{C\}) \cup \{C_2, C_3, G[E(C) \cup E(C_1) - \{e\}]\}$ is a CC of G and so $cc(G) \leq cc(G_3) + cc(L) - 1$. By the minimality of G, we may assume $|V(G_3)| \leq 5$. But if $|V(G_3)| < 5$, then we are back to the cases of $3 \leq k \leq 4$. Therefore we assume that $|V(G_3)| = |V(L)| = 5$ and so $|V(G)| = 8$. If $cc(G_3) = 2$ or $cc(L) = 2$, then by (ii) or (iii) of Lemma 2.2 and by $cc(G) \leq cc(L) + cc(G_3) - 1$, we have $cc(G) \leq 4$, contrary to (7). If $\mu(G) = 1$, then by the same reasons, $cc(G) \leq 5$, contrary to (7) again. Thus we have $\mu(G) = 0$ and $G_3 \cong L \cong J_2$. By the symmetry of $J_2, G \in \{L_8, L_6, L_6', L_8''\}$, and so by Lemma 2.3, G satisfies (6), contrary to (7). □
Fix a planar embedding of G. For a cycle C in G, $IntC$, called the interior of C, denotes the vertices of G lying inside C, excluding $V(C)$. The exterior of C is defined similarly. A cycle C of a plane graph G is trivial if $IntC = \emptyset$. A vertex $v \in V(G)$ is cyclic if $G[N(v)]$ is spanned by an m-cycle C_m with $m = \text{deg}(v)$. This cycle C_m is called the rim cycle of v. It is clear that if every vertex of G is cyclic, then G has a triangulation planar embedding.

For any vertex v in a simple plane graph G, the vertices in $N(v)$ can be viewed as an ordered string $<v_1, v_2, \ldots, v_m>$ such that vv_i and vv_{i+1} are incident with the same face of G, $i = 1, 2, \ldots, m, (mod\ m)$. We call this string an ordered neighborhood of v in G. (The definition for multigraphs is similar.) Note that for each $v \in V(G)$, one can have two different ordered neighborhoods: the clockwise one and the anticlockwise one.

If $v \in V(G)$ is not a cyclic vertex, then for any plane embedding of G, there are two vertices $u, u' \in N(v)$ such that vu and vu' are incident with the same face but $uu' \not\in E(G)$. We called u, u' a bad pair in $N(v)$.

Lemma 3.6 Let G be a connected planar graph satisfying (7), (8) and (9). Then G has no cyclic vertices.

Proof: We shall show by contradiction that if $v \in V(G)$ is a cyclic vertex, then every vertex in $N(v)$ is also a cyclic vertex. Then by the connectedness of G, every vertex of G is cyclic and so G is a triangulation. A contradiction follows from Theorem 1.1.

Fix an embedding of G such that the interior of the rim cycle of v consists of v only. Let $N(v) = <v_1, v_2, \ldots, v_m>$ be an ordered neighborhood of v in G. By contradiction, we assume that v_1 is not cyclic. Let $N(v_1) = \{v'_1, v''_1, \ldots\}$ be the neighborhood of v_1 in G. Since v_1 is not cyclic, we may assume that $v'_1, v''_1 \in N(v_1)$ such that

$$v'_1 \text{ and } v''_1 \text{ are a bad pair in } N(v_1).$$

(13)

Claim 1: $\{v'_1, v''_1\} \neq \{v_2, v_m\}$.

In fact, if $\{v'_1, v''_1\} = \{v_2, v_m\}$, then since $v'_1v''_1 \not\in E(G)$ and since the interior of the rim cycle of v consists of v only, we have $|N(v_1)| = 3$, contrary to Lemma 3.3.

Therefore, we assume from now on that one can choose v, v_1 and v'_1 such that $v'_1 \not\in \{v_2, v_m\}$.

Claim 2: One can choose v, v_1 and v'_1 so that $v'_1 \not\in N(v)$.

Suppose that $v'_1v \in E(G)$. Since $v'_1 \not\in \{v_2, v_m\}$, we may assume that v_2 is in the interior of $C_v = vv_1v'_1v$ and v''_1 is in the exterior of C_v. For each cyclic vertex v with a noncyclic neighbor v_1, we choose v_1 so that

$$|IntC_v| \text{ is minimized},$$

(14)

subject to the condition that C_v separates v_2 and v''_1.

If v_2 is a cyclic vertex, then since v''_1 lies in $ExtC_v$, $v''_1 \not\in N(v_2)$. Thus one can replace v, v_1, v'_1 by v_2, v_1, v''_1, respectively, and so Claim 2 holds.
If \(v_2 \) is not a cyclic vertex, then there are two vertices \(v'_2, v''_2 \) that are a bad pair in \(N(v_2) \). If \(v'_2 \notin N(v) \), then \(v, v_1, v'_1 \) can be replaced by \(v, v_2, v'_2 \). Suppose that \(v'_2 \in N(v) \). Let \(C'_v = v_2v'_2v \). Then we may assume that \(IntC'_v = \emptyset \). For otherwise \(C'_v \) separates a vertex in \(N(v_2) \) and \(v''_2 \), violating (14).

If \(v''_2 = v_1 \), then \(d_G(v_2) = 3 \) and \(v_1, v'_2 \notin E(G) \), violating Lemma 3.3. Thus \(v''_2 \) must be a vertex in the interior of the cycle \(vv'_2v_2v_1v'_1v \) and so \(v''_2 \notin N(v) \). Hence we can replace \(v, v_1, v'_1 \) by \(v, v_2, v'_2 \) and so Claim 2 holds.

Claim 3: One can choose \(v, v_1 \) and \(v'_1 \) so that \(v'_1 \notin N(v) \) and \(v'_1v_m \notin E(G) \) or \(v'_1v_2 \notin E(G) \).

By Claim 2, we can have \(v, v_1 \) and \(v'_1 \) so that \(v'_1 \notin N(v) \). If \(v'_1v_2, v'_1v_m \in E(G) \), then by (13), \(v'_1 \notin \{ v_2, v_m \} \) and without loss of generality, we may assume that \(v'_1 \) is in the interior of \(vv_1v'_1v_2v \). Thus \(v'_1 \notin N(v) \) and \(v'_1v_m \notin E(G) \), and so one can replace \(v, v_1, v'_1 \) by \(v, v_1, v''_2 \) to establish Claim 3.

By Claim 3, we can choose a cyclic vertex \(v \), and a noncyclic vertex \(v_1 \in N(v) \) with ordered neighborhoods

\[
N(v) = \langle v_1, \ldots, v_m \rangle \quad \text{and} \quad N(v_1) = \langle u_1, \ldots, u_s \rangle,
\]

such that \(u_1 = v \), \(u_2 = v_2 \) and

\[
u_ju_{j+1} \in E(G), \quad (1 \leq j \leq i - 1), \quad u_i \notin N(v), u_iu_{i+1}, u_iv_m \notin E(G).
\] \hspace{1cm} (15)

In other words, \(u_i, u_{i+1} \) are a bad pair. Let \(P \) denote the \((u_2, u_{i-1})\)-path \(u_2u_3 \cdots u_{i-1} \). (Note that \(P \) may consist of a single vertex \(u_2 = v_2 \) if \(u_{i-1} = v_2 \).

Claim 4 \(\{v_1, u_i\} \) is not a vertex cut of \(G \).

Proof of Claim 4: Suppose that \(\{v_1, u_i\} \) is a vertex cut of \(G \). Let \(L_1 \) be the \(\{v_1, u_i\} \)-component of \(G \) containing \(v \). Note that \(v_2, v_m, u_{i-1} \) are also in \(V(L_1) \). Let \(L_2 \) be the union of other \(\{v_1, u_i\} \)-components of \(G \). For convenience, we assume that \(L_1 \) always contains only one edge in \([v_1u_i]\), even when \(|[v_1u_i]| = 2 \). Thus

\[
\mu(L_1) + \mu(L_2) = \mu(G),
\] \hspace{1cm} (16)

Let \(L'_1 = (L_1 - u_iu_{i-1})/\{v_1u_i\} \) and denote by \(v' \) the vertex in \(L'_1 \) to which \(v_1u_{i-1} \) is contracted. Since \(v', v, u_{i-1}, u_{i-2} \in V(L'_1) \) and since \(u_i, v_1 \in E(L_2) \), both \(\kappa(L'_1) \geq 2 \) and \(\kappa(L_2) \geq 2 \). We claim that

\[
cc(G) \leq cc(L'_1) + cc(L_2).
\] \hspace{1cm} (17)

Let \(C_1 \) and \(C_2 \) be two CC's of \(L'_1 \) and \(L_2 \), respectively. Let \(C_1 \in C_1 \) be a cycle containing \(v'u_{i-1} \) and let \(C_2 \in C_2 \) be a cycle containing \(v_1u_i \). Let \(C'_1 = C_1 - v'u_{i-1} + v_1u_i \) (if \(C_1 - v'u_{i-1} \) is a \((v_1, u_i)\)-path) or \(C'_1 = C_1 - v'u_{i-1} + u_{i-1}v_1u_i \) (if \(C_1 - v'u_{i-1} \) is a \((u_i, u_{i-1})\)-path), and let \(C'_2 = C_2 - v_1u_i + v_1u_{i-1}u_i \). Then \((C_1 - \{C_1\}) \cup (C_2 - \{C_2\}) \cup \{C'_1, C'_2\} \) is a CC of \(G \), and so (17) holds.

37
By Lemma 3.4, $|V(L_1)| \geq 6$ and $|V(L_2)| \geq 6$. If $|V(L'_1)| \geq 6$, or if $|V(L'_1)| = 5$ and $cc(L'_1) = 2$, then by (17) and by (8), G satisfies (6), contrary to (7). Hence we may assume that L'_1 is spanned by J_2. If $\mu(L_1) = 1$, then by (16), $\mu(L_2)$ is simple, and so by (17) and by Lemma 2.2,

$$cc(G) \leq cc(L_2) + cc(L'_1) \leq \frac{2(n-4) - 2}{3} + 3 < \frac{2n-2}{3} + \frac{1}{2},$$

contrary to (7). Thus $\mu(L_1) = 0$. Then by (v) of Lemma 2.2, L'_1 can be covered by 3 cycles so that $v'u_{i-1}$ is covered 3 times. It follows that L_1 can have 3 cycles C'_1, C''_1 and C''''_1 (say) so that v_1u_i is covered by C'_1 and C''_1. Let C_2 be a CC of L_2 with $C_2 \in C_2$ so that $v_1u_i \in E(C_2)$. Then $(C_2 - \{C_2\}) \cup \{C'_1, C''_1, C''''_1, E(C''''_1) \cup E(C_2) - \{v_1u_i\}\}$ is a CC of G with at most $(2(n-4) - 2)/3 + \mu(G)/2 + 2 < (2n-2)/3 + \mu(G)/2$ cycles, contrary to (7). This proves Claim 4.

Case 1 Both $|\{v_1\}| = |\{v_1u_i\}| = 1$.

Define $G_1 = (G - \{v_1v_2, u_{i-1}u_i, v_1v_m\})/\{v_1v_2, v_1u_i\}$ (see Figure 2). We shall show

$$cc(G) \leq cc(G_1) + 1. \quad (18)$$

Let v' to denote the vertex in G_1 to which v_1v and v_1u_i are contracted. By Claim 4, v' is not a cut vertex of G and so $\kappa(G_1) \geq 2$. Let C be a CC of G_1 and let $C_1, C_2, C_3 \in C$ such that $v'v_m \in C_1, v'v_2 \in C_2$ and $v'u_{i-1} \in C_3$, and such that $C_1 = C_2$ whenever C_1 contains 2 edges in $\{v'v_m, v'v_2, v'u_{i-1}\}$ that are assumed to be in C_1 and C_2, respectively. Denote

$$C'_1 = G[E(C_1) - \{v'v_m\}], C''_2 = G[E(C_2) - \{v'v_2\}], C''''_3 = G[E(C_3) - \{v'u_{i-1}\}]. \quad (19)$$

Note that any cycle L in $G - \{C_1, C_2, C_3\}$ can be extended to a cycle L' in G by adding edges in $\{v_1v_2, u_{i-1}u_i, v_1v_m, v_1v, v_1u_i\}$, if necessary. In each of the subcases below, we shall exhibit a CC $\{L': L \in C\} \cup \{F\}$ of G and so (18) follows.

Case 1A $|E(C'_j) \cap \{v'v_m, v'v_2, v'u_{i-1}\}| = 1, (1 \leq j \leq 3)$.

Then C'_1 is a (v_m, w_1)-path, C''_2 is a (v_2, w_2)-path and C''''_3 is a (u_{i-1}, w_3)-path, for some $w_j \in \{v_1, v_2, u_i\}, (1 \leq j \leq 3)$.

If $w_1 = v$ in G, then set $C'_1 = C''''_3 + v_mv_1v$ and extend C''_2, C''''_3 to cycles C'_1 and C'''_3 in G, respectively, so that $v_1v_2 \in E(C_2)$ and $v_1u_i \in E(C_3)$. Note that since C''''_3 is a (u_{i-1}, w_3)-path, either v_1u_{i-1} or $u_{i-1}u_i$ is in $E(C''''_3)$. Let F be a cycle in G that contains P, v_mv, v_2v, and either v_1u_{i-1} or $u_{i-1}u_i$, depending on whether $u_{i-1}u_i \in E(C''''_3)$ or $v_1u_{i-1} \in E(C''''_3)$, respectively.

If $w_1 = v_1$ or $w_1 = u_i$, then let $C'_1 = C''''_3 + v_mv_1v$ or $C'_1 = C''''_3 + v_mv_1u_i$, respectively. Extend C''_2, C''''_3 to cycles C'_1 and C''''_3 in G, respectively, so that $v_1v_2 \in E(C_2)$ and $v_1u_i \in E(C_3)$. Note again that either v_1u_{i-1} or $u_{i-1}u_i$ is in $E(C''''_3)$. Let F be a cycle in $G[\{v\} \cup N(v)]$ that contains P, v_mv, v_2v and either v_1u_{i-1} or $u_{i-1}u_i$, depending on whether $u_{i-1}u_i \in E(C''''_3)$ or $v_1u_{i-1} \in E(C''''_3)$, respectively. (See Table 5 at the end for details.)
Case 1B: $C_1 = C_2$. Then $C_1 \neq C_3$ and C''_1 is a (v_m, u_2)-path in G. Let $C''_1 = C''_1 + v_m u_1 v_2$ and extend C''_1 to a cycle C'_3 in G so that $v_1 u_i \in E(C'_3)$. Note that either $v_1 u_{i-1}$ or $u_{i-1} u_i$ is in $E(C'_3)$. Let

$$F = \begin{cases} P + v_2 v_m v_1 u_{i-1} & \text{if } u_{i-1} v_i \in E(C'_3) \\ P + v_2 v_m v_1 u_i u_{i-1} & \text{if } u_{i-1} v_i \not\in E(C'_3). \end{cases}$$

Case 1C: $C_1 = C_3$. Then $C_1 \neq C_2$ and C''_1 is a (v_m, u_{i-1})-path in G. Let $C''_1 = C''_1 + v_m v_1 u_i u_{i-1}$ and extend C''_1 to a cycle C'_2 in G so that $v_1 v_2 \in E(C'_2)$. Let $F = P + v_2 v_m v_1 u_{i-1}$.

Case 1D: $C_2 = C_3$. Then $C_2 \neq C_1$ and C''_1 is a (v_2, u_{i-1})-path in G. Let $C''_1 = C''_1 + v_2 v_1 u_i u_{i-1}$ and extend C''_1 to a cycle C'_1 in G so that $v_1 v \in E(C'_1)$. Let $F = P + v_2 v_m v_1 u_{i-1}$.

By (18) and by (8), we may assume that $|V(G_1)| \leq 5$. Since $|V(G)| \geq 6$, we have $|V(G_1)| \geq 4$. By Corollary 3.5, $\delta(G_1) \geq 3$. If $cc(G_1) \leq 2$, then by (18), $cc(G) \leq 3$, contrary to (7). Hence we may assume that G_1 is spanned by J_2. By (iii) of Lemma 2.2, $cc(G_1) \leq 3$ and so by (18), $cc(G) \leq 4$. Since $n = |V(G_1)| + 2 = 7$, G satisfies (6), contrary to (7).

Case 2 $|\{v_1 v_2\}| = 2$.

Let $G_2 = (G - \{v_1 v_m, v_1 v_2\})/\{v_1 v_2\}$. Let v' denote the vertex in G_2 to which v and v_1 are contracted, and let C be a CC of G_2. We shall show that

$$cc(G) \leq cc(G_2) + 1. \quad (20)$$

Let $C_1, C_2 \in C$ be two cycles such that $v' v_m \in E(C_1)$ and $v' v_2 \in E(C_2)$. If $C_1 = C_2$, then let $C' = C_1 - \{v' v_m, v' v_2\} + v_m v_1 v_2$ and $F = vv_2 v_3 \cdots v_m v_1 v$. Note that both edges in $[v_1 v_2]$ are covered by C' and F. Thus $(C - \{C_1\}) \cup \{C', F\}$ is a CC of G, and so (20) holds.

If $C_1 \neq C_2$, then $C''_i = C_i - \{v' v_n, v' v_2\}$ is a (v_n, u_{i-1})-path in G for some $w_i \in \{v, v_1\}$, $(1 \leq i \leq 2)$. Table 4 defines C'_i and C''_i and F so that $(C - \{C''_i, C'_{i+1}\}) \cup \{C'_i, C'_i\}$ is a CC of G.

<table>
<thead>
<tr>
<th>v_1</th>
<th>v_2</th>
<th>C'_1</th>
<th>C''_1</th>
<th>C'_2</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>v</td>
<td>$C'_1 + v_m v_1 v$</td>
<td>$C''_1 + v_2 v$</td>
<td>$v_1 v_2 \cdots v_m v$</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>v_1</td>
<td>$C'_1 + v_m v_1 v$</td>
<td>$C''_1 + v_2 v_1$</td>
<td>$v_1 v_2 \cdots v_m v$</td>
<td></td>
</tr>
<tr>
<td>v_1</td>
<td>v</td>
<td>$C'_1 + v_m v_1 v$</td>
<td>$C''_1 + v_2 v_1 v$</td>
<td>$v_2 \cdots v_m v_1 v$</td>
<td></td>
</tr>
<tr>
<td>v_1</td>
<td>v_1</td>
<td>$C'_1 + v_m v_1 v$</td>
<td>$C''_1 + v_2 v_1 v$</td>
<td>$v_2 \cdots v_m v_1 v$</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

Note that both edges in $[v_1 v_2]$ are covered by two of C'_1, C'_2 and F, and so (20) holds.
Since the rim cycle of \(v \) consists of \(v \) only, we have \(\kappa(G_2) \geq 2 \). By \(||[v_1u_i]|| = 2 \) and by Lemma 3.1, \(G_2 \) is simple. If \(n \geq 7 \), then by (8) and (20),
\[
cc(G) \leq cc(G_2) + 1 \leq \frac{2(n-1) - 2}{3} + 1 < \frac{2n - 2}{3} + \frac{\mu(G)}{2},
\]
contrary to (7). Hence we assume that \(n = 6 \) and so \(|V(G')| = 5 \). By (15), \(G_2 \) is not a triangulation and so \(G_2 \neq J_2 \), which implies by Lemma 2.2 that \(cc(G_2) = 2 \). Thus by (20), \(cc(G) \leq 3 \), contrary to (7).

Case 3 \(||[v_1u_i]|| = 2 \).

Let \(G_3 = (G - u_iu_{i-1})/\{v_1u_i\} \) and let \(v' \) denote the vertex in \(G_3 \) to which \(v_1u_i \) is contracted. We shall show that
\[
cc(G) \leq cc(G_3) + 1 \tag{21}
\]

Let \(C \) be a CC of \(G_3 \) and let \(C \in C \) be a cycle with \(v'u_{i-1} \in E(C) \). Note that \(C'' = C - v'u_{i-1} \) is a \((u_{i-1}, w)\)-path in \(G \) for \(w \in \{v_1, u_i\} \). Let \(F = v_1u_{i-1}v_1 \). If \(w = v_1 \), then set \(C' = C'' + u_{i-1}u_{i+1}v_1 \), and if \(w = u_i \), then set \(C' = C'' + u_{i-1}u_{i+1}u_i \). Thus \((C - \{C\}) \cup \{C', F\} \) is a CC of \(G \) and so (21) must hold.

By Claim 4, \(\kappa(G_3) \geq 2 \). By (21) and by (7), we may again assume that \(G_3 \cong J_2 \). By \(||[v_1u_i]|| = 2 \) and by Lemma 3.2, \(d_{G}(u_i) \geq 4 \) and so \(d_{G_3}(v') \geq 4 \) also. It follows that \(v_2 = u_{i-1} \) in \(G \) and so \(v' \in \{z_3, z_2, z_4\} \) in \(J_2 \) (using the notation of Figure 1). By the symmetry of \(J_2 \), we may assume \(v' = z_2 \). It follows that either \(G \cong J_3 \) with \(||[u_iz_2]|| = 2 \) (\(v = z_1, v_1 = z_3, v_2 = z_2, v_m = z_4 \), or \(G \cong J_4 \) with \(||[u_iz_3]|| = 2 \) (\(v = z_4, v_1 = z_3, v_2 = z_3, v_m = z_1 \)). By Lemma 2.4, \(G \) satisfies (6), contrary to (7). \(\square \)

Lemma 3.7 \(G \) does not have a nontrivial 4-cycle \(C \) with \(IntC = \{v\} \).

Proof: By contradiction, assume that \(C = v_1v_2v_3v_4v_1 \) is a 4-cycle in \(G \) with \(IntC = \{v\} \). Thus \(N(v) \subseteq V(C) \). By Lemma 3.6, \(N(v) \neq V(C) \). If \(|N(v)| = 2 \), then by Corollary 3.5, \(v \) must have degree 3, contrary to Lemma 3.2. If \(|N(v)| = 3 \), then by Lemma 3.6, \(v \) is not a cyclic vertex and so Lemma 3.3 must be violated. \(\square \)

Lemma 3.8 If \(\Gamma_3 \) is a nontrivial 3-cycle of \(G \) such that
\[
|Int\Gamma_3| \text{ is minimized.} \tag{22}
\]

then each holds:

(i) \(|Int\Gamma_3| > 1 \);

(ii) for any \(v \in Int\Gamma_3 \) and for any consecutive bad pair \(vv_1, vv_2 \in N(v) \) \((vv_1 \text{ and } vv_2 \text{ are incident with the same face})\), neither \(vv_1 \) nor \(vv_2 \) lies in a 3-cycle of \(G \).

Proof: If \(|Int\Gamma_3| = 1 \), then either Lemma 3.6 or Lemma 3.3 would be violated, and so (i) of Lemma 3.8 follows.

We shall show (ii) by contradiction. Suppose that \(vv_1v_3v \) is a 3-cycle. Let \(e \notin E(G) \) be an edge parallel to \(vv_3 \). Since \(v \in Int\Gamma_3 \) and by (22), \(vv_1v_3v_1 \) must be a trivial 3-cycle. By
Lemma 3.1, \([|qq|] = 2\) in \(G\). Let

\[
G_4 = \begin{cases}
G/qq & \text{if } |qq| = 1 \\
(G + e)/qq & \text{if } |qq| = 2
\end{cases}
\]

We shall show \(cc(G) \leq cc(G_4)\). Let \(v'\) denote the vertex in \(G_4\) to which \(qq\) is contracted and let \(C'\) be a CC of \(G_4\). We consider two cases.

Case 1: \(|qq| = 2\) in \(G\). Then \(|v'v_3| = 3\) in \(G_4\) and we may assume that \([v'v_3] = \{e_1, e_2, e_3\}\). Let \(C' \in C'\) be a cycle containing \(e_i\), \((1 \leq i \leq 3)\). One can adjust the cycles in \(C' - \{C'_1, C'_2, C'_3\}\) to cycles in \(G\) and denote this family of cycles in \(G\) by \(C\).

Suppose that \(C_1 = C'_2 = G_4[\{e_1, e_2\}] \in C'\). Note that \(C'_2 - e_3\) is a \((v_3, w_1)\)-path, with \(w \in \{v, v_1\}\). If \(w = v\), then set \(C_3 = C'_3 = e_3 + v_3v_1v\), and if \(w = v_1\), then set \(C_3 = C'_3 - e_3 + v_3v_1v_1\). In any case, \(C \cup \{C_3\}\) is a CC of \(G\) and so \(cc(G) \leq cc(G_4)\).

Hence we may assume that the \(C_i\)'s are distinct. Note that \(C'_i - e_i\) is a \((v_3, w_1)\)-path with \(w_i \in \{v, v_1\}\), \((1 \leq i \leq 3)\). If \(w_i \neq w_j\) for some \(i\) and \(j\), say \(w_i = v\) and \(w_2 = v_1\), then set \(C_1 = C'_1 - e_1 + v_3v_1v, C_2 = C'_2 - e_2 + v_3v_1v\), and \(C_3\) be a cycle in \(G\) obtained by extending \(C'_2 - e_3\). If \(w_i = v, (1 \leq i \leq 3)\), then set \(C_1 = C'_1 - e_1 + v_3v, C_2 = C'_2 - e_2 + v_3v_1v\) and \(C_3 = C'_3 + e_3 + v_3v_1v\). If \(w_i = v_1, (1 \leq i \leq 3)\), then set \(C_1 = C'_1 - e_1 + v_3v_1, C_2 = C'_2 - e_2 + v_3v_1v\) and \(C_3 = C'_3 - e_3 + v_3v_1v\). In any case, \(C \cup \{C_1, C_2, C_3\}\) is a CC of \(G\) and so \(cc(G) \leq cc(G_4)\).

Since \(G\) is plane, \(v_1\) is incident with two faces, one being the 3-cycle \(v_1v_2v_3v\) and the other being \(v_1v_2 \cdots v_1\), which is a cycle of length at least 4. Therefore \(\mu(G_4) = \mu(G) + 1\), and so if \(n \geq 7\), then by (8),

\[
cc(G) \leq cc(G_4) \leq \frac{2(n - 1) - 2}{3} + \frac{\mu(G) + 1}{2},
\]

contrary to (7). Thus we may assume that \(n = 6\) and \(|V(G_4)| = 5\). Then by (ii) or (iii) of Lemma 2.2, \(cc(G) \leq cc(G_4) \leq 3\), contrary to (7).

Case 2: \(|qq| = 1\). The proof is similar to and simpler than that of Case 1, and so it is omitted.

Since the minimality of \(\Gamma_3\) is used in the proof of Lemma 3.8 only to guarantee that \(v_1v_2v\) is a trivial 3-cycle (and so \(\mu(G_4) = \mu(G) + 1\)), we have also proved:

Corollary 3.9: If \(G\) has no nontrivial 3-cycles, then for any \(v \in V(G)\) and for any consecutive bad pair \(v_1, v_2 \in N(v)\), neither \(v_1v\) nor \(v_2v\) lies in a 3-cycle of \(G\).

Lemma 3.10 If \(\Gamma_3\) is a nontrivial 3-cycle of \(G\) such that (22) holds, then \(G[V(\Gamma_3) \cup Int \Gamma_3]\) does not contain a nontrivial 4-cycle.

Proof: By contradiction, we choose a nontrivial 4-cycle \(C\) with \(|Int C|\) is minimized.

\[
|Int C| \text{ is minimized.} \tag{23}
\]

41
Let $C = u_1u_2u_3u_4u_1$ and let $v \in IntC$. Let $N(v) = < v_1, v_2, \ldots, v_m >$ be an ordered neighborhood of v. By Lemma 3.6, we may assume that $v_1v_2 \not\in E(G)$, and so at most one of v_1 and v_2 is in $V(\Gamma_3)$. Note that

$$|\{v_1, v_2\} \cap V(C)| \leq 1.$$ \hfill (24)

For if $v_1, v_2 \in V(C)$, then since $v_1v_2 \not\in E(G)$, we may assume that $v_1 = u_1$ and $v_2 = u_3$. By Lemma 3.7, $|IntC| > 1$ and so one of the 4-cycles $vu_1u_2u_3v$ and $vu_1u_4u_3v$ is nontrivial, contrary to (23). Similarly, by (23) and by Lemma 3.7, we have,

$$|N(v_1) \cap N(v_2) - \{v\}| \leq 1.$$ \hfill (25)

Define

$$G_5 = \begin{cases}
G/\{v_1v, v_2v\} & \text{if } v_1v_2 \text{ does not lie in a 4-cycle of } G \\
(G - v_1v)/\{v_1v, v_2v\} & \text{if for some } w \in V(G), wv_1v_2w \text{ is a 4-cycle}
\end{cases}$$

and we shall show that

$$cc(G) \leq cc(G_5) + 1.$$ \hfill (26)

By Lemma 3.8, neither vu_1 nor vu_2 lies in a 3-cycle. This, together with (25), implies that no new multiple edges will be created in getting G_5, and so $\mu(G_5) \leq \mu(G)$.

Case 1: v does not lie in a 4-cycle of G, and so $G_5 = G/\{v_1v, v_2v\}$.

Let C' be a CC of G_5. Note that every cycle $L' \in C'$ can be extended to a cycle L in G, by using edges in $\{vu_1, vu_2\}$, if necessary. By $\kappa(G) \geq 2$, there is a cycle F in G containing vu_1vu_2. Hence $\{L | L' \in C' \} \cup \{F\}$ is a CC of G, and so (26) holds.

Case 2: $F = vu_1vu_2v$ is a 4-cycle of G, and so $G_5 = (G - v_1v)/v_1v, v_2v$.

Note that $N(v_1) \cap N(v_2) = \{v, w\}$. Using the notation in Case 1, we conclude that $\{L | L' \in C' \} \cup \{F'\}$ is also a CC of G, and so (26) holds.

By (8) and (26), we may assume that $|V(G_5)| = 5$. By Lemma 2.2, $cc(G_5) \leq 3$, and so by (26), $cc(G) \leq 4$. Since $n = |V(G_5)| + 2 = 7$, G' satisfies (6), contrary to (7). \hfill \square

Using Corollary 3.9 in place of (ii) of Lemma 3.8 in the proof of Lemma 3.10, we have, Corollary 3.11 If G has no nontrivial 3-cycles, then G has no nontrivial 4-cycles. \hfill \square

The argument in the proof for Lemma 3.10 also proves the following:

Corollary 3.12 Let C be a nontrivial cycle in G such that $IntC$ has no nontrivial 4-cycles. Let $v \in IntC$ and define G_5 as in Lemma 3.10. Then $cc(G) \leq cc(G_5) + 1$.

Proof of Theorem 1.2, continued If G has a nontrivial 3-cycle, then G has a nontrivial 3-cycle Γ_3 such that (22) holds. Let $v \in Int\Gamma_3$. By Lemma 3.6, there are $v_1, v_2 \in N(v)$ forming a consecutive bad pair in $N(v)$. By Lemma 3.10, (25) must hold. Define G_5 as in
Lemma 3.10. By Lemma 3.10 and Corollary 3.12, \(cc(G) \leq cc(G_5) + 1 \), and so by (8) and (26), \(|V(G_5)| = 5 \), which implies that \(G \) is not a counterexample, contrary to (7).

If \(G \) does not have a nontrivial 3-cycle, then by Corollaries 3.11 and 3.12, one can define \(G_5 \) and argue as above to obtain a contradiction to (7).

Since contradiction arises in any case, the proof of Theorem 1.2 is now completed. \(\square \)

REFERENCES

[2] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", American El-

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>C'_1</th>
<th>C'_2</th>
<th>C'_3</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>v</td>
<td>v</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + vv_{1}v_{2}$</td>
<td>$C'^{m} + v_{m}v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>v_{1}</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + vv_{1}v_{2}$</td>
<td>$C'^{m} + v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>u_{i}</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + vv_{1}v_{2}$</td>
<td>$C'^{m} + u_{i}v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
<tr>
<td>v</td>
<td>v_{1}</td>
<td>v</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + v_{1}v_{2}$</td>
<td>$C'^{m} + v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
<tr>
<td>v</td>
<td>v_{1}</td>
<td>u_{i}</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + v_{1}v_{2}$</td>
<td>$C'^{m} + u_{i}v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
<tr>
<td>v</td>
<td>u_{i}</td>
<td>v</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + v_{1}v_{2}$</td>
<td>$C'^{m} + v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
<tr>
<td>v</td>
<td>v_{1}</td>
<td>u_{i}</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + u_{i}v_{1}v_{2}$</td>
<td>$C'^{m} + v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
<tr>
<td>v</td>
<td>v_{1}</td>
<td>u_{i}</td>
<td>$C'^{m} + v_{m}v_{1}v$</td>
<td>$C'^{m} + u_{i}v_{1}v_{2}$</td>
<td>$C'^{m} + v_{1}u_{i-1}$</td>
<td>$P + v_{2}v_{m}v_{1}u_{i-1}$</td>
</tr>
</tbody>
</table>
Figure 1: J_1 and J_2

Figure 2: G and G_1 in Lemma 6

Figure 3: J_3 and J_4
Figure 4: Graphs L_8, L'_8, L''_8 and L'''_8