Graph whose edges are in small cycles

Hong-Jian Lai*

West Virginia University, Morgantown, WV 26506, USA

Received 15 June 1987
Revised 24 January 1990

Abstract

Paulraj (1987) conjectured the following:

(i) If every edge of a 2-connected graph \(G \) lies in a cycle of length at most 4 in \(G \), then \(G \) has a dominating closed trail.

(ii) If, in addition, \(\delta(G) \geq 3 \), then \(G \) has a closed spanning trail.

Collapsible graphs are defined and studied by Catlin (1988). Catlin showed that if \(H \) is a collapsible subgraph of \(G \), then \(G \) has a spanning closed trail if and only if \(G/H \), the graph obtained from \(G \) by contracting \(H \), has a spanning closed trail. Paulraj (1987) conjectured that a graph satisfying the hypothesis of (ii) is collapsible. In this paper, all three conjectures are proved.

Introduction

We shall use the notation of Bondy and Murty [1] except for contractions. A graph may have multiple edges but not loops. A spanning closed trail of \(G \) is called a spanning eulerian subgraph (SES) of \(G \). The collection of graphs that have an SES is denoted by \(SE \). Note that \(K_1 \in SE \). If a closed trail \(C \) of \(G \) satisfies \(E(G - V(C)) = \emptyset \), then \(C \) is called a dominating eulerian subgraph (DES) of \(G \).

Let \(G \) be a graph. An block of \(G \) that has exactly one cut-vertex of \(G \) is called an end block of \(G \). A block \(B \) is acyclic if \(B \cong K_2 \). For a subset \(X \subseteq E(G) \), the contraction \(G/X \) is the graph obtained from \(G \) by identifying the ends of each edge in \(X \) and then deleting the resulting loops. If \(H \) is a subgraph of \(G \), then we write \(G/H \) for \(G/E(H) \).

Let \(W \) be a subgraph of \(G \). If for some \(t \geq 2 \), \(W \cong K_{2,t} \), then \(W \) is called a \(W_{2,t} \)-subgraph of \(G \). Let \(C = v_1v_2v_3v_4v_5v_6v_1 \) be a 6-cycle. Define \(\Theta \) to be the graph with \(V(\Theta) = V(C) \) and \(E(\Theta) = E(C) \cup \{v_2v_5\} \).

* This is part of the author’s Ph.D. Dissertation, done in Wayne State University under Dr. Paul A. Catlin.

0012-365X/91/$03.50 © 1991 — Elsevier Science Publishers B.V. All rights reserved
Let H be a subgraph of G. Define $H^c = G[E(G) - E(H)]$ and $A_G(H) = V(H) \cap V(H^c)$. The vertices in $A_G(H)$ are called the vertices of attachment of H in G. If $\kappa(H) \geq 2$ and $|A_G(H)| = 2$, then H is called a 2-block of G.

A graph G is an edge-disjoint union of K_{2,n_i}'s if there is a partition E_1, E_2, \ldots, E_k of $E(G)$ such that $G[E_i] \cong K_{2,n_i}$'s ($n_i \geq 2$ and $1 \leq i \leq k$). Note that when $i \neq j$, we may have $n_i \neq n_j$.

We consider the following conditions.

\begin{align*}
\text{(1)} & \quad \text{Any edge of } G \text{ is an } m\text{-cycle of } G, \ m \leq 4; \\
\text{(2)} & \quad G \text{ is an edge-disjoint union of } K_{2,n_i}\text{'s.}
\end{align*}

Let $\mathcal{G} = \{G: G \text{ satisfies (1) with } \kappa(G) \geq 2\}$ and $\mathcal{G}_1 = \{G \in \mathcal{G}: \delta(G) \geq 3\}$. In [6–8], Paulrajaa raised the following two conjectures.

Conjecture 1. If $G \in \mathcal{G}_1$, then $G \in \mathcal{L}$.

Conjecture 2. If $G \in \mathcal{G}$, then G has a DES.

A graph G is collapsible if for every even subset $R \subseteq V(G)$, G has a subgraph Γ_R (called the R-subgraph of G) such that $G - E(\Gamma_R)$ is connected and R is the set of odd-degree vertices of Γ_R. The collection of all collapsible graphs is denoted by \mathcal{CL}. Let H_1, H_2, \ldots, H_c be all the maximal collapsible subgraphs of G. Denote by $(G)_1$ the graph of order c obtained from G by contracting H_1, \ldots, H_c to c distinct vertices. We call $(G)_1$ the reduction of G and H_1, H_2, \ldots, H_c the preimages of the vertices of $(G)_1$. A graph G is reduced if $G = (G)_1$. In [2], Catlin showed that $(G)_1$ is well defined and unique. He also proved the following theorem.

Theorem A (Catlin [2]). Let G be a graph.

- (i) If $G \in \mathcal{CL}$, then $G \in \mathcal{L}$.
- (ii) $G \in \mathcal{L}$ if and only if $(G)_1 \in \mathcal{L}$.
- (iii) If $H \in \mathcal{CL}$ is a subgraph of G, then $G \in \mathcal{CL}$ if and only if $G/H \in \mathcal{CL}$.
- (iv) G is reduced if and only if G has no nontrivial subgraphs in \mathcal{CL}. In particular, G has no 3-cycles.
- (v) If $H_1, H_2 \in \mathcal{CL}$ are two subgraphs of G and if $V(H_1) \cap V(H_2) \neq \emptyset$, then $H_1 \cup H_2 \in \mathcal{CL}$.
- (vi) For any graph G, $(G)_1$ is reduced.

Catlin [3] made the following conjecture.

Conjecture 3. If $G \in \mathcal{G}_1$, then $G \in \mathcal{CL}$.

By (i) of Theorem A, we have the following proposition.
Proposition 1. Conjecture 3 implies Conjecture 1.

For each \(i = 1, 2, \ldots \), define

\[
D_i(G) = \{ v \in V(G) : \deg_G(v) = i \},
\]

and

\[
D^*_i(G) = \{ v \in V(G) : \deg_G(v) \geq i \}.
\]

Proposition 2. Conjecture 1 implies Conjecture 2.

Proof. Assume that Conjecture 1 holds. Let \(G \in \mathcal{G} \). Since an SES is always a DES, we may assume that \(G \not\in \mathcal{F} \mathcal{L} \) and \(G \in \mathcal{G} - \mathcal{G}_1 \). Thus \(\delta(G) = 2 \). Let

\[
D_2(G) = \{ x_1, x_2, \ldots, x_m \}.
\]

Since \(\kappa(G) \geq 2 \),

\[
\text{no vertex in } D_2(G) \text{ is the common end of multiple edges} ; \tag{3}
\]

and by (1) and \(\kappa(G) \geq 2 \),

\[
\text{no paths in } G \text{ contain three consecutive vertices in } D_2(G) . \tag{4}
\]

Choose \(y_1, y_2, \ldots, y_m \) such that \(e_i = x_i y_i \in E(G) \), \(1 \leq i \leq m \), and such that if for some \(i, j \) with \(x_i x_j \in E(G) \) then \(y_i = x_j \) and \(x_i = y_j \). Note that the latter can happen only when \(x_i \) and \(x_j \) are the internal vertices of a path of \(G \) of length 3. By (3) and (4), the multiplicity of each \(e_i \) is one in \(G \). Let \(e'_i \) be an edge with the same ends as \(e_i \) but \(e'_i \not\in E(G) \), \(1 \leq i \leq m \). Obtain a new graph \(G' \) by adding \(\{ e'_i, e'_2, \ldots, e'_m \} \) to \(G \). It follows that \(G' \in \mathcal{G} \) and so \(G' \in \mathcal{F} \mathcal{L} \), by Conjecture 1. Let \(C' \) be an SES of \(G' \). Since \(G \not\in \mathcal{F} \mathcal{L} \), we may assume that for some \(k \leq m \),

\[
\{ e'_1, e'_2, \ldots, e'_k \} \cup \{ e_1, e_2, \ldots, e_k \} \subseteq E(C') ; \tag{5}
\]

and that \(e'_j \not\in E(C') \), \(j > k \). Choose \(C' \) so that (5) is satisfied and that \(k \) is as small as possible. Let \(C = C' - \{ e_1, \ldots, e_k, e'_1, \ldots, e'_k \} \). Then every vertex of \(C \) has even degree in \(C \). If \(e'_s = x_s x_t \in E(C') \), for some \(1 \leq s, t \leq m \), then since \(x_s \) and \(x_t \) are in \(D_2(G) \), \(x_s \) and \(x_t \) are in \(D_2(C') \) also. It follows that \(e_s \not\in E(C') \), contrary to the choice of \(C' \). So if \(x_s x_t \in E(C') \), then \(e_s \in E(C') \) and \(e'_s \not\in (C') \). This implies that \(C \) is connected, and that \(x_1, x_2, \ldots, x_k \) form an independent set in \(G \) and are the only vertices not in \(V(C) \). Thus \(C \) is a DES of \(G \). \(\Box \)

Reductions

Notation 1 (see Fig. 1). Let \(W \) be a \(K_{2,r} \)-subgraph of \(G \) and let \(H \) be a subgraph of \(G \) containing \(W \). Denote

\[
D_2(W) = \{ y_1, y_2, \ldots, y_t \}.
\]
Let V_1 be a subset of $D_2(W)$ such that $|V_1| = 2$, let $V_2 = V(W) - V_1$ and let
$\pi = \langle V_1, V_2 \rangle$ denote this partition of $V(W)$. Denote by H/π the graph obtained
from H by identifying all vertices of V_1 to form a single vertex v_1, by identifying
all vertices of V_2 to form a single vertex v_2, and by joining v_1, v_2 with a new edge
$e_\pi = v_1v_2$, so that
$$E(H) - E(W) = E(H/\pi) - \{e_\pi\}.$$
And finally let $H' = (H/\pi) - e_\pi$.

Theorem B (Catlin [3]). Let W, π and G/π be defined in Notation 1. If
$G/\pi \in \mathcal{CL}$, then $G \in \mathcal{CL}$.

Lemma 1. If $G' = (G/\pi) - e_\pi \in \mathcal{CL}$, then $G \in \mathcal{CL}$.

Proof. It follows from Theorem B and (iii) of Theorem A. \qed

It is easy to see the following.

Lemma 2 ([5]). If $G \in \mathcal{G}$, then $(G)_1$ has girth 4 and $(G)_1$ satisfies (1).

Lemma 3 ([5]). Let B be a block of $(G)_1$.

(i) If $G \in \mathcal{G}_1$, then $B \in \mathcal{G}_1$;

(ii) If $G \in \mathcal{G}$, then $B \in \mathcal{G}$.

Lemma 4. If G is a counterexample to Conjecture 3 with $|V(G)|$ minimized then G
 is reduced.

Proof. Let G satisfy the hypothesis of Lemma 4. If G is not reduced, then $(G)_1$, the reduction
of G, has smaller order than G. By Lemmas 2 and 3, each block of $(G)_1$ is in \mathcal{G}_1 and so by the
minimality of G, each block of $(G)_1$ is in \mathcal{CL}. Thus by (v) and (iii) of Theorem A, $G \in \mathcal{CL}$, a contradiction. \qed
Notation 2. Let $C = x_1x_2x_3x_4x_1$ be a 4-cycle of G. Define:

$$G^* = (G - \{x_1x_2, x_3x_4\})/\{x_1x_4, x_2x_3\},$$

and denote by v_1 and v_2 the vertices of G^* to which x_1x_4 and x_2x_3 are contracted, respectively. For convenience, we regard

$$V(G^*) = [V(G) - V(C)] \cup \{v_1, v_2\}, \quad E(G^*) \cup E(C) = E(G).$$

Lemma 5 [4–5]. If $G^* \in \mathcal{CL}$, then $G \in \mathcal{CL}$.

Lemma 6. Let G be a counterexample to Conjecture 3 with $|V(G)|$ minimized. Then G does not have a subgraph isomorphic to Θ.

Proof. By contradiction, suppose that G has Θ as a subgraph. Let $C = x_1x_2x_3x_4x_5x_6x_1$ denote the 6-cycle of Θ and let $C_1 = x_1x_2x_5x_6x_1$ and $C_2 = x_2x_3x_4x_5x_2$ be the two 4-cycles contained in Θ. Define

$$\pi(1) = \langle \{x_1, x_3\}, \{x_2, x_6\} \rangle \quad \text{and} \quad \pi(2) = \langle \{x_2, x_4\}, \{x_3, x_5\} \rangle.$$

Define $G^1 = G/\pi(1)$ and $G^2 = G/\pi(2)$. Let v_1^1 and v_2^1 denote the vertices of G^1 to which $\{x_1, x_3\}$ and $\{x_2, x_6\}$ are mapped, respectively; and let v_1^2, v_2^2 be the vertices of G^2 to which $\{x_3, x_5\}$ and $\{x_2, x_4\}$ are mapped, respectively. Let $e_1 = v_1^1v_2^1$ and $e_2 = v_1^2v_2^2$. We shall regard $C_1 = x_1v_2^2v_1^1x_6x_1$ in G^2 and $C_2 = x_3v_2^2v_1^1x_4x_3$ in G^1 throughout the proof of this lemma.

Since $G \in \mathcal{G}_1$, we have $\delta(G^1) \geq 3$ and $\delta(G^2) \geq 3$, and both G^1 and G^2 satisfy (1).

Claim 1. $\kappa(G^1) = \kappa(G^2) = 1$, and all cut vertices of G^1 are in $\{v_1^1, v_2^1\}$ and all cut-vertices of G^2 are in $\{v_1^2, v_2^2\}$.

Proof. Clearly G^1 is connected. If $\kappa(G^1) \geq 2$, then $G^1 \in \mathcal{CL}$ follows by the minimality of G. Hence $G \in \mathcal{CL}$ by Theorem B, a contradiction. Thus $\kappa(G^1) = 1$. Since $\kappa(G) = 2$, the cut-vertices of G^1 must be in $\{v_1^1, v_2^1\}$. The proof for G^2 is similar. □

Claim 2 (see Fig. 2). For $i \in \{1, 2\}$, if v_i^1 is a cut-vertex of G^i and if L_i is an end-block of G^i containing v_i^1 but not v_i^2, then $L_i \in \mathcal{CL}$. A similar result holds when we replace v_i^1 by v_i^2.

Fig. 2. Claim 2 of Lemma 6.
Proof. Without loss of generality, we assume \(i = 1 \) and \(v^i_1 \) is cut-vertex of \(G^i \) with \(L^i \) an end-block of \(G^i \) containing \(v^i_1 \) but not \(v^i_2 \). Let \(H = G[E(L^i)] \). Then by \(\kappa(G) \geq 2 \), we have \(A(C)(H) = \{ x_1, x_5 \} \). Since \(G \) satisfies (1), either \(H \) satisfies (1) or there is a vertex \(y \in V(H) \) with \(xy_1, xy_5 \in E(H) \).

If \(H \) satisfies (1), then \(L^i \in \mathcal{C}_1 \) and so \(L^i \in \mathcal{C}_2 \), by the minimality of \(G \).

Hence we assume that there is a vertex \(y \in V(H) \) such that \(xy_1, xy_5 \in E(H) \). By \(\kappa(G) \geq 2 \), \(y \) is not a cut-vertex of \(G \). Hence either \(x_1 \) or \(x_5 \) is adjacent to some vertex of \(V(H) - \{ y \} \). It follows that \(\delta(L^i) \geq 3 \). Since (1) holds for \(G \), (1) holds for \(L^i \) also. Thus \(L^i \in \mathcal{C}_2 \) by the minimality of \(G \). □

For \(i \in \{1, 2\} \), let \(B^i \) be the block of \(G' \) containing both \(v^i_1 \) and \(v^i_2 \).

Claim 3. Either \(v^i_1 \) or \(v^i_2 \) has degree less than 3 in \(B^i \).

Proof. By Claim 2, all blocks of \(G' \) other than \(B^i \) are in \(\mathcal{C}_2 \). Clearly \(B^i \) satisfies (1) and \(\kappa(B^i) \geq 2 \). If \(\delta(B^i) \geq 3 \), then \(B^i \in \mathcal{C}_2 \) follows from the minimality of \(G \) and so by (v) of Theorem A and by Theorem B, \(G \in \mathcal{C}_2 \), a contradiction. Hence \(\delta(B^i) < 3 \). Since \(\delta(G) \geq 3 \), every vertex in \(V(B^i) - \{ v^i_1, v^i_2 \} \) has degree at least 3 in \(B^i \). Hence either \(v^i_1 \) or \(v^i_2 \) has degree less than 3 in \(B^i \). □

Claim 4. For \(i, j \in \{1, 2\} \), if \(v^j_1 \) is not a cut-vertex of \(G^i \), then \(v^j_1 \) has degree at least 3 in \(B^i \).

Proof. Without loss of generality, we assume that \(i = j = 1 \). Since the degree of \(x_1 \) is at least 3 in \(G \), \(x_1 \) is incident with an edge \(e' \in E(G) - E(\Theta) \). Since \(v^i_1 \) is not a cut-vertex of \(G^i \), all the edges incident with \(v^i_1 \) in \(G^i \) are in \(B^1 \). Since we map \(x_1 \) and \(x_5 \) to \(v^1_1 \), and since \(e' \in E(G) - E(\Theta) \), \(v^i_1 \) has degree at least 3 in \(B^1 \). □

The proof of Lemma 6 will now be divided into the following cases.

Case 1: For some \(i \in \{1, 2\} \), \(v^i_1, v^i_2 \) are cut vertices of \(G^i \).

Without loss of generality, we assume \(i = 1 \) and that there are end blocks \(L^1_1 \) and \(L^1_2 \) in \(G^1 \), where \(B^1 \notin \{ L^1_1, L^1_2 \} \), with \(A(G)(L^1_j) = \{ v^j_1 \} \) (\(1 \leq j \leq 2 \)). Let \(H_j = G[E(L^1_j)] \), (\(1 \leq j \leq 2 \)). Then \(H_1 \) and \(H_2 \) are connected, and \(A(G)(H_1) = \{ x_1, x_5 \} \) and \(A(G)(H_2) = \{ x_2, x_6 \} \). Note that \(H_1 \) and \(H_2 \) also induce subgraphs in \(G^2 \) (which we also call \(H_1 \) and \(H_2 \)), with \(A(G)(H_1) = \{ x_1, v^2_1 \} \) and \(A(G)(H_2) = \{ x_6, v^2_2 \} \).

Therefore, the block \(B^2 \) of \(G^2 \) containing \(v^2_1 \) and \(v^2_2 \) also contains \(C_1 \), \(H_1 \) and \(H_2 \), and so \(v^2_1 \) and \(v^2_2 \) have degree at least 3 in \(B^2 \), contrary to Claim 3.

Case 2: The only cut-vertex of \(G' \) is \(v^1_1 \), (\(1 \leq i \leq 2 \)).

Let \(L^i \) be an end block of \(G^i \) that does not contain \(v^i_1 \) and has \(v^i_1 \) as its only vertex of attachment in \(G^i \), and let \(H^i = G[E(L^i)] \). Then \(H^i \) is connected with \(A(G)(H^i) = \{ x_1, x_5 \} \). Thus \(x_1 \) is incident with an edge \(e'' \in E(H^i) \). Since \(H^i \) can be regarded as a subgraph of \(B^2 \), \(e'' \) is an edge incident with \(v^2_1 \) in \(B^2 \). Hence \(v^2_1 \) is incident with \(e'' \) and two edges in \(C_1 \) and so \(v^2_1 \) has degree at least 3 in \(B^2 \). Since
\(v_2^2\) is not a cut-vertex of \(G^2\), it follows by Claim 4 that \(v_2^2\) has degree at least 3 in \(B^2\), contrary to Claim 3.

Case 3 (see Fig. 3): The only cut-vertex of \(G^1\) is \(v_1^1\) and the only cut-vertex of \(G^2\) is \(v_2^2\).

Let \(L^i\) be an end block of \(G^i\) that contains \(v_i^i\) but not \(v_{3-i}^i\) and let \(H^i = G[E(L^i)]\), \((1 \leq i \leq 2)\). Since \(L^i\) is an end block of \(G^i\), \((1 \leq i \leq 2)\), and since \(\kappa(G) \geq 2\),

\[A_G(H^1) = \{x_1, x_3\} \quad \text{and} \quad A_G(H^2) = \{x_2, x_4\}.\]

Now we show that \(G - E(\Theta)\) has a component \(H\) (say) with \(A_G(H) = \{x_3, x_6\} \).

Since \(\delta(G) \geq 3\), \(x_3\) is incident with an edge that is not in \(E(\Theta)\). By \(\kappa(G) \geq 2\), there is an \((x_3, x_j)\)-path \(P\) in \(G - E(\Theta)\) for some \(j \in \{1, 2, 4, 5, 6\}\). If \(j = 1\) or \(j = 5\), then in \(G^1\), \(v_1^1\) has degree at least 3 in \(B^1\). By Claim 4, \(v_2^1\) has degree at least 3 in \(B^1\), contrary to Claim 3. If \(j = 2\) or \(j = 4\), then in \(G^2\), \(v_2^2\) has degree 3 in \(B^2\), and a similar contradiction arises. Hence \(j = 6\) and so \(A_G(H) = \{x_3, x_6\}\).

Claim 5. There is no \(y' \in V(G) - \{x_2, x_3\}\) such that either \(y'x_6, y'x_e \in E(G)\) or \(y'x_1, y'x_3 \in E(G)\).

Proof. If \(y'x_4, y'x_6 \in E(G)\) and \(y' \neq x_5\), then since \(G\) has a connected subgraph \(H\) with \(A_G(H) = \{x_3, x_6\}\), in \(G^1\), both \(v_1^1\) and \(v_2^1\) have degree at \(\geq 3\) in \(B^1\), violating Claim 3. The proof when \(y'x_1, y'x_3 \in E(G)\) is similar. \(\Box\)

Subcase 3.1: There is a vertex \(y \in V(H^1)\) with \(yx_1, yx_3 \in E(G)\).

Then \(x_1yx_5x_2x_1\) is a 4-cycle in \(G\). Let \(\pi(3) = \langle \{y, x_2\}, \{x_1, x_3\} \rangle\) and let \(G^3 = G/\pi(3)\) Denote by \(v_1^3\) and \(v_2^3\) the vertices of \(G^3\) to which \(\{x_1, x_3\}\) and \(\{y, x_2\}\) are mapped, respectively. Since \(x_3v_2^3v_1^3x_4x_3\) is a 4-cycle in \(G^3\), and since \(\Theta_1 = G[\{x_1, x_2, x_3, x_4, x_5, y\}] \cong \Theta\), we can apply the previous proofs to \(G^3\) to make the following.
Claim 3'. Let B^3 be the block in G^3 that contains v_1^3 and v_2^3. Then either v_1^3 or v_2^3 has degree less than 3 in B^3.

Proof. Note that the path $P' = x_6v_1^3v_2^3x_3$ and the (x_3, x_6)-path P in $G - E(\Theta)$ form a cycle in G^3 containing v_1^3 and v_2^3. The block B^3 in G^3 containing v_1^3 and v_2^3 contains P, P', H^2 and the edge $v_3^3x_4$. Hence v_1^3 and v_2^3 have degree ≥ 3 in B^3, contrary to Claim 3'. □

Subcase 3.2: There is no $y \in V(H^1)$ with yx_1, $yx_5 \in E(H^1)$.

Let $G^* = (G - \{x_1x_2, x_5x_6\})/\{x_1x_6, x_2x_5\}$, and let v_1^*, v_2^* denote the vertices of G^* to which x_1x_6 and x_2x_5 are contracted, respectively. The component H of $G - E(\Theta)$ containing x_6 does not contain x_2. Hence, by the assumption of this subcase and by Claim 5, no 4-cycle of G contains exactly 2 edges of $E(C_1)$. Since G is reduced (and hence is simple), no 4-cycle of G has exactly 3 edges in $E(C_1)$. By Claim 3, no 4-cycle of G contains x_5x_6 and no other edges in $E(C_1)$; and no 4-cycle of G contains x_1x_2 and no other edges of $E(C_1)$. Hence G^* satisfies (1). Since $\kappa(G) \geq 2$, every cut-vertex of G^* other than v_1^* and v_2^* must separate v_1^* and v_2^*. Since H^1 is connected, there is a (x_1, x_5)-path Q in H^1 that is disjoint from the (x_3, x_6)-path P. These paths Q and P, together with $v_2^*x_3$, form a cycle in G^* containing v_1^* and v_2^*. Hence only v_1^* or v_2^* can be a cut-vertex of G^*.

If v_1^* and v_2^* are not cut-vertex of G^*, then $\kappa(G^*) \geq 2$. By the assumption of this subcase and by $A_{G}(H^1) = \{x_1, x_5\}$, (1) holds for H^1. Hence x_1 has degree ≥ 2 in H^1 and so v_1^* has degree ≥ 3 in G^*. Similarly, x_5 has degree ≥ 2 in H^1 and so v_2^* has degree ≥ 3 in G^*. It follows by the minimality of G that $G^* \in \mathcal{CL}$ and so by Lemma 5, $G \in \mathcal{CL}$, a contradiction.

If v_1^* is a cut-vertex of G^*, then G^* has an end block B_1^* containing v_1^* but not v_2^*. Let $B_1 = G[E(B_1^*)]$. Since $\kappa(G) \geq 2$, $A_{G}(B_1) = \{x_1, x_6\}$. Hence x_1 is incident with an edge $e_1 \in E(B_1)$ and x_6 is incident with an edge $e_6 \in E(B_1)$. Since $e_1, e_6 \notin E(\Theta)$, so in G^1, the vertices v_1^1, v_2^1 have degree ≥ 3 in B^1, contrary to Claim 3.

If v_2^* is a cut-vertex of G^*, then G^* has an end block B_2^* that contains v_2^* but not v_1^*. Let $B_2 = G[E(B_2^*)]$. Since $\kappa(G) \geq 2$, $A_{G}(B_2) = \{x_2, x_5\}$ and so in G^1, v_1^1 and v_2^1 have degree ≥ 3 in B^1 contrary to Claim 3.

This proves Lemma 6. □

Main result

Theorem 1. If $G \in \mathcal{C}_1$, then $G \in \mathcal{CL}$.

By contradiction, let G be a counterexample to Theorem 1 with $|V(G)|$ minimized. Immediately from Lemmas 4 and 6 and from definitions, we have the following observations.
Lemma 7 ([5]). Each of the following holds.

(i) G is reduced and satisfies (2).
(ii) If W is a maximal $K_{2,t}$-subgraph of G, $(t \geq 2)$, then
\[D_2(W) \subseteq D^*_4(G). \tag{6} \]
(iii) If L and J are two subgraphs of G with $|V(J) \cap V(L)| \leq 1$ and $J \cup L = G$, then both J and L satisfy (2).
(iv) If W is a maximal $K_{2,t}$-subgraph of G and if L is a connected subgraph of $G - E(W)$ with $A_G(L) \subseteq V(W)$, then (2) hold for L.
(v) If $C = x_1x_2x_3x_4x_1$ is a maximal $K_{2,2}$-subgraph of G and if $G - E(C)$ has an (x_1, x_4)-path P_1 and an (x_2, x_3)-path P_2, then $V(P_1) \cap V(P_2) \neq \emptyset$.

Lemma 8. G cannot have a maximal $K_{2,2}$-subgraph.

Proof. By contradiction, let $C = x_1x_2x_3x_4x_1$ be a maximal $K_{2,2}$-subgraph of G. Define G^*, v_1, v_2 as in Notation 2. Then G^* satisfies (2) and by (6), $\delta(G^*) \geq 3$. By Lemma 5 and by the minimality of G, $\kappa(G^*) \leq 1$. By (v) of Lemma 7, G^* is connected. Hence $\kappa(G^*) = 1$.

Case 1: There is a cut-vertex $z \not\in \{v_1, v_2\}$ in G^*.

Then by $\kappa(G) \geq 2$, z must separate v_1 and v_2 in G^*. By (v) of Lemma 7, we may assume that z is in every (x_1, x_4)-path and in every (x_2, x_3)-path of $G - E(C)$. Hence there are connected subgraphs H_1, H_2, H_3, H_4 of $G - E(C)$ such that $A_G(H_i) = \{z, x_i\}$ and
\[G - E(C) = H_1 \cup H_2 \cup H_3 \cup H_4. \]

Let L^* be the graph obtained from $H_1 \cup H_4$ by identifying x_1 and x_4, J^* be the graph obtained from $H_2 \cup H_3$ by identifying x_2 and x_3. Note that $G^* = J^* \cup L^*$.
By (iv) of Lemma 7, $G - E(C)$ satisfying (2), and so by (iii) of Lemma 7, both $H_1 \cup H_4$ and $H_2 \cup H_3$ satisfy (2). Thus L^* and J^* satisfy (2). By (2) and by the fact that z is a cut-vertex of $H_1 \cup H_4$, the degree of z in L^* is at least 4 and so by (6), $\delta(L^*) \geq 3$. Similarly, $\delta(J^*) \geq 3$. It follows that $J^*, L^* \in \mathcal{G}_1$ and so by the minimality of G, $J^*, L^* \in \mathcal{E} \mathcal{L}$. By (v) of Theorem A, $G^* \in \mathcal{E} \mathcal{L}$ and so by Lemma 5, $G \in \mathcal{E} \mathcal{L}$, a contradiction.

Case 2: There is no cut-vertex in G^* not in $\{v_1, v_2\}$.

Without loss of generality, let v_1 be a cut-vertex of G^*. Then G^* has a nontrivial connected subgraph B^* with $A_G(B^*) = \{v_1\}$ and $v_2 \not\in V(B^*)$. Let $B = G[E(B^*)]$. Then $A_G(B) = \{x_1, x_4\}$. By $\kappa(G) \geq 2$, B is connected. By (v) of Lemma 7,
\[\text{every } (x_2, x_3) \text{-path in } G - E(C) \text{ uses } x_1 \text{ or } x_4. \tag{7} \]
Since G^* has no cut-vertex not in $\{v_1, v_2\}$, $G^* - E(B^*)$ has a cycle containing v_1 and v_2. Let H^* be the block of G^* that contains both v_1 and v_2 and let $H = G[E(H^*)]$. Then $A_G(H) \subseteq V(C)$ and so by (iv) of Lemma 7, H satisfies (2). Without loss of generality we assume that $x_2 \in V(H)$.
Claim. \(x_3 \in V(H) \).

Proof. Suppose not, we assume that \(x_3 \notin V(H) \). By \(\delta(G) \geq 3 \), \(x_3 \) is incident with an edge in \(G - E(C) \). Note that this edge is an edge on \(G^* \). Let \(K^* \) be a block of \(G^* \) containing \(v_2 \) but not \(v_1 \), and let \(K = G[E(K^*)] \). By \(\kappa(G) \geq 2 \), \(x_2, x_3 \in V(K) \). Hence there is an \((x_2, x_3)\)-path in \(K \), contrary to (7). This proves the Claim. \(\square \)

Since \(H^* \) contains \(v_1 \), either \(x_1 \) or \(x_4 \) is in \(V(H) \). If \(x_4 \notin V(H) \), then by (7), \(x_1 \) is a cut-vertex of \(H \) and so \(x_1 \in D^*_2(H) \); if \(x_4 \in V(H) \), then \(V(C) \subseteq D^*_2(H) \). Hence in either case, \(v_1 \) and \(v_2 \) have degree \(\geq 3 \) in \(H^* \) and so by the minimality of \(G, H^* \notin \mathcal{L} \). Note that \((G[E(H) \cup E(C)])^* = H^* \). By Lemma 5, \(G \) is not reduced, contrary to Lemma 4. \(\square \)

Lemma 9 ([5]). If \(G \) has a \(K_{2,t} \)-subgraph \(W \) with \(t \geq 3 \), then \(t = 3 \) and \(D_3(W) \subseteq D_3(G) \).

Proof. The proof uses essentially the same technique as in the proof of Lemma 8 and is routine. \(\square \)

Notation 3 (see Fig. 4). Define \(D \) to be the union of two copies of \(K_{2,3} \)'s \(W_1 \) and \(W_2 \) such that

\[
V(W_1) \cap V(W_2) = D_2(W_1) \cap D_2(W_2) = \{y\} \subseteq D_4(G).
\]

\(G/\pi(1) \quad G'' + y \)

Fig. 4. Notation 3.
Denote

\[D_1(W_i) = \{y_1, y_2, y\} \quad \text{and} \quad D_2(W_2) = \{y_3, y_4, y\}. \]

Suppose that \(H \) is a subgraph of \(G \) containing \(D \). Let

\[V_{11} = \{y_1, y_2\}, \quad V_{12} = V(W_i) - V_{11} \quad \text{and} \quad \pi(1) = \langle V_{11}, V_{12} \rangle. \]

For convenience, we let \(u_1, y \) denote the vertices of \(G/\pi(1) \) to which \(V_{11} \) and \(V_{12} \) are mapped, respectively. Denote \(e_{\pi(1)} = u_1y \) and \(H' = (H/\pi(1)) - e_{\pi(1)} \). We regard \(W_2 \) as a subgraph of \(H' \). Let

\[V_{21} = \{y_3, y_4\}, \quad V_{22} = V(W_2) - V_{21} \quad \text{and} \quad \pi(2) = \langle V_{21}, V_{22} \rangle. \]

Let \(u_2, y \) denote the vertices of \(H'/\pi(2) \) to which \(V_{21} \) and \(V_{22} \) are mapped, respectively and let \(e_{\pi(2)} = u_2y \). Define \(H'' \) to be the nontrivial component of \(H'/\pi(2) - e_{\pi(2)} \). Note that

\[G'' = (G/\pi(1))/\pi(2) - \{y\}. \]

By (iii) of Theorem A, by Theorem B, and by \(\kappa(G) \geq 2 \), we have the following.

Lemma 10 ([5]). Let \(D, G'', u_1, u_2 \) be defined in Notation 3. Then:

(i) If \(G'' \in \mathcal{CL} \), then \(G \in \mathcal{CL} \).

(ii) Neither \(u_1 \) nor \(u_2 \) is a cut-vertex of \(G'' \).

Since \(G \in \mathcal{G}_1 \), \(G'' \) satisfies (1). By (6), \(\delta(G'') \geq 3 \). Since \(G \) is a minimum counterexample to Theorem 1, by (i) of Lemma 11, \(\kappa(G'') \leq 1 \). This, together with \(\kappa(G) > 2 \), implies

\[\kappa(G'') = 1. \tag{8} \]

Lemma 11 ([5]). If \(H \) is a subgraph of \(G \) with \(|A(G)(H)| = 2 \), then either \(H \cong K_2 \) or \(H \) contains a 2-block of \(G \).

Proof. This follows from the fact that \(G \in \mathcal{G}_1 \). \(\Box \)

Lemma 12 ([5]). If \(H \) is a minimal 2-block of \(G \), then:

(i) \(H \) cannot have \(D \) as a subgraph.

(ii) \(H \) cannot have a \(K_{2,3} \)-subgraph \(W \) with

\[D_2(W) \subseteq D_2^*(G). \tag{9} \]

Proof. The proof is routine with the help of Lemmas 10 and 11, and the minimality of \(H \). \(\Box \)

Lemma 13. \(G \) has a 2-block.
Proof. By (i) of Lemma 7, and by Lemmas 8 and 9, G is an edge-disjoint union of $K_{2,3}$'s such that if W is a $K_{2,3}$-subgraph of G, then $D_3(W) \subseteq D_3(G)$. Hence G either has D as a subgraph or has a subgraph $W \cong K_{2,3}$ satisfying (9).

Case 1: G has D as a subgraph.

We shall use the notations in Notation 3 and let G'', u_1, u_2 be defined as in Notation 3. By (8), by (ii) of Lemma 10, and by $\kappa(G) \geq 2$, G'' has a cut-vertex $z \notin \{u_1, u_2\}$ separating u_1 and u_2. Let B'' be an end block of G'' that contains u_1 but not u_2, and let $B = G[E(B'')]$. Then $A_G(B \cup W_1) = \{z, y\}$ and so by Lemma 11 with $H = B \cup W_1$, G has a 2-block. □

Case 2: G has a subgraph $W \cong K_{2,3}$ satisfying (9).

Define G', v_1, v_2 as in Notation 1 with $i = 3$. By (9), $\delta(G') \geq 3$. It is easy to see that $\kappa(G') = 1$ and G' has a cut-vertex $z \notin \{v_1, v_2\}$ that separates v_1 and v_2 in G'. Let B' be an end block of G' that contains v_1 but not v_2 and let $B = G[E(B')]$. Then $A_G(B) = \{z, y\}$ and so by Lemma 11, G has a 2-block. □

Proof of Theorem 1. By Lemma 13, G has a minimal 2-block H. By Lemma 7, 8 and 9, H must be an edge-disjoint union of $K_{2,3}$'s. Since H is a 2-block, and since $\delta(G) \geq 3$, $H \not\cong K_{2,3}$. Hence either H has D as a subgraph or H has a subgraph $W \cong K_{2,3}$ that satisfies (9), contrary to Lemma 12. □

References