A tournament containing no directed cycles is called transitive. A tournament $T = (V, A)$ is called m-partition transitive if there is a partition $V = X_1 \cup X_2 \cup \cdots \cup X_m$ such that the subtournaments induced by each X_i are all transitive, and T is m-partition k-transitive if $\max |X_i| = k$. Two tournaments are equivalent if they have the same out-degree sequence. We show that every tournament T of order n which contains a transitive subtournament of order $k \geq \frac{n}{2}$, there is a 2-partition k-transitive tournament T^* equivalent to T. As a corollary, we obtain similar results for m-partition k-transitive tournaments, extending a theorem originally conjectured by Brualdi and Shen.