Directions: Show all work. No credit for answers without work. Unless specifically asked for a numerical answer, you may leave your answers in terms of factorials, permutation numbers, and binomial coefficients.

1. [4 points] Determine the number of non-negative integral solutions to the following.

 (a) \(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 80, \) with \(x_3 \geq 8. \)

 \[\begin{align*}
 \text{# solns to} & \quad x_1 + \ldots + x_6 = 72; \quad x_1, x_2, \ldots, x_6 \geq 0 \\
 \Rightarrow & \quad 72 \text{ stars, 5 bars} \Rightarrow \quad \binom{77}{5} = 19,757,815
 \end{align*} \]

 (b) \(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 80, \) with \(x_3 \geq 8 \) and \(x_5 \leq 50. \)

 Take (a) and subtract #solns with \(x_3 \geq 8 \) and \(x_5 \geq 51. \)

 \[\begin{align*}
 \text{# solns to} & \quad x_1 + \ldots + x_6 = 21; \quad x_1, \ldots, x_6 \geq 0 \\
 \Rightarrow & \quad 21 \text{ stars, 5 bars} \Rightarrow \quad \binom{26}{5} = 19,692,035
 \end{align*} \]

 Answer: \(\binom{77}{5} - \binom{26}{5} = 19,757,815. \)

2. [3 points] A company wishes to order \(s \) sandwiches for their annual party from a menu that lists \(k \) types of sandwich. How many ways are there for the company to complete its order?

 \[\begin{align*}
 & \quad \text{# stars: } s \quad \text{# bars: } k - 1 \\
 & \quad \binom{s + k - 1}{k - 1} \quad \text{or} \quad \binom{s + k - 1}{s}
 \end{align*} \]

3. [3 points] Find \(\mathcal{P}\{1, 2, 3\}. \)

 \[\mathcal{P}\{1, 2, 3\} = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \} \]

 Note: this question asks for the set \(\mathcal{P}\{1, 2, 3\}, \) not its size \(|\mathcal{P}\{1, 2, 3\}|. \)