A bacterium grows with constant relative growth rate. After 2 hours there are 600 bacteria and after 8 hours the count is 75,000.

1. State the general form for the solution.

\[Y = Y_0 e^{kt} \]

2. From the general form, write out the two equations for the two data points you are given.

a.

b.

3. Choose one equation and solve for \(Y_0 \) in terms of \(k \).

Example: \(Y_0 = \frac{600}{e^{2k}} \)
4. Plug the solution for Y_0 back into the other equation and solve for k.

5. Using the first equation and your value for k, solve for Y_0.

After simplifying, you should get $Y_0 = 120$ and $k = \frac{\ln 12.5}{6} \approx 0.80472$

6. Using Y_0 and k find $Y(t)$ for t in hours.