Review Sheet: Chapter 1

Content: “Essential Calculus, Early Transcendentals,” James Stewart, 2007
Chapter 1: Functions and Limits

Concepts, Definitions, Laws, Theorems:

(def) A function, f, is a rule that assigns to each element x in a set A exactly one element, called $f(x)$, in a set B.

In this definition,
domain of f = the set A
range of f = the set of all possible values of $f(x)$ as x varies in A

(def) An independent variable is a symbol that represents an arbitrary number in the domain of a function f.

(def) A dependent variable is a symbol that represents a number in the range of f.

(def) A graph of a function is the set of ordered pairs $(x, f(x))$ so long as $x \in domain(f)$.

(con) The vertical line test. A curve in the xy–plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

(def) The absolute value of a number, a, denoted by $|a|$, is the distance from a to 0 on the real number line.

In general, $|a| = \begin{cases} a & a \geq 0 \\ -a & a < 0 \end{cases}$

(thm) $|a| \geq 0$ for every number a.

(def) For f to be an even function, $f(x) = f(-x)$ for every number x in its domain.

(def) For f to be an odd function, $f(x) = -f(-x)$ for every number x in its domain.

(def) A function f is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

(def) A function f is called decreasing on an interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

(def) A function P is called a polynomial if $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$.

In this definition, the letter n is a non-negative integer (in math, we say $n \in \mathbb{Z}^+$ to denote this idea), and the numbers $\{a_0, a_1, a_2, \ldots, a_{n-1}, a_n\}$ are all constants called coefficients. The degree of a polynomial is the highest power of x so long as the coefficient of the associated term is not 0.

(con) The domain of all polynomial functions is the set of all real numbers (in math, we say $x \in \mathbb{R}$ or $x \in (-\infty, \infty)$ to denote this idea). (The range will vary depending on the function.)

(con) Lines ($f(x) = mx + b$), Quadratic functions aka parabolas ($f(x) = ax^2 + bx + c$) and Cubic functions
(f(x) = ax^3 + bx^2 + cx + d) are all simple examples of polynomials.

(def) Functions that look like \(f(x) = x^a \) \((a = \text{constant})\) are called \textbf{power functions}.

(con) Power functions help us build other kinds of functions. For example, if in \(f(x) = x^a \) the exponent happens to be a positive integer, \(a = n \), we get pieces that make up polynomials. If, instead, the exponents are the reciprocals of \(n \), so \(a = \frac{1}{n} \), we get root functions. Other exponents give us different variations on this idea.

(def) \textbf{Rational functions} are the ratio of two polynomials. For example: \(f(x) = \frac{p(x)}{q(x)} \) where \(p(x) \) and \(q(x) \) are polynomials and \(q(x) \neq 0 \) for any \(x \) in the domain of \(f(x) \)

(con) It is often useful to remember that \(-1 \leq \sin x \leq 1\) \(\text{AND}\) \(-1 \leq \cos x \leq 1\).

(def) Functions that look like \(f(x) = a^x \), \((a > 0)\), are called \textbf{exponential functions}.

(con) The domain of all exponential functions is the set of all real numbers, and the range is \(f(x) \in (0, \infty) \).

(def) Functions that look like \(f(x) = \log_a x \), \((a > 0)\), are called \textbf{logarithmic functions}.

(con) The domain of all logarithmic functions is the set of \(x \in (0, \infty) \), and the range is \(f(x) \in \mathbb{R} \).

(con) Graph shifting: Suppose that \(c > 0 \) and some general function \(y = f(x) \)
\[y = f(x) + c \] corresponds to a vertical shift upward of \(c \) units
\[y = f(x) - c \] corresponds to a vertical shift downward of \(c \) units
\[y = f(x - c) \] corresponds to a horizontal shift right of \(c \) units
\[y = f(x + c) \] corresponds to a horizontal shift left of \(c \) units

(con) Graph scaling, stretching, and reflecting: Suppose that \(c > 1 \) and some general function \(y = f(x) \)
\[y = cf(x) \] corresponds to a vertical stretch by a factor of \(c \)
\[y = \frac{1}{c} f(x) \] corresponds to a vertical compression by a factor of \(c \)
\[y = f(cx) \] corresponds to a horizontal compression by a factor of \(c \)
\[y = f\left(\frac{x}{c}\right) \] corresponds to a horizontal stretch by a factor of \(c \)
\[y = -f(x) \] corresponds to a reflection of \(y = f(x) \) about the \(x \)-axis
\[y = f(-x) \] corresponds to a reflection of \(y = f(x) \) about the \(y \)-axis

(def) Given two functions, \(f \) and \(g \), the \textbf{composite function} \(f \circ g \) is defined by: \((f \circ g)(x) = f(g(x))\)

(def) We write \(\lim_{x \to a} f(x) = L \) \textbf{(the limit of} \(f(x) \text{ as} \ x \text{ approaches} \ a \text{ equals} \ L)\) if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) to be sufficiently close to \(a \) but not equal to \(a \).
(def) We write \(\lim_{x \to a} f(x) = L \) (the limit of \(f(x) \) as \(x \) approaches \(a \) from the left equals \(L \)) if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) to be sufficiently close to \(a \) but less than \(a \).

(Def) We write \(\lim_{x \to a} f(x) = L \) (the limit of \(f(x) \) as \(x \) approaches \(a \) from the right equals \(L \)) if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) to be sufficiently close to \(a \) but greater than \(a \).

(thm) \(\lim_{x \to a} f(x) = L \) if and only if \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} f(x) = L \) (LEFT = RIGHT)

(def) Analysis Version: We write \(\lim_{x \to a} f(x) = L \) (the limit of \(f(x) \) as \(x \) approaches \(a \) equals \(L \)) if for every \(\varepsilon > 0 \), there is a corresponding \(\delta > 0 \) so that
if \(0 < |x - a| < \delta \) (if we bound a small circle of radius \(\delta \) around the point \(a \)) then
\[|f(x) - L| < \varepsilon \] (the value \(L \) is within \(\varepsilon \) units of \(f(x) \)).

(law) Suppose that \(c \) is a constant and \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) exist, then the following are true:

Sum Law: \[\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \]

Difference Law: \[\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \]

Constant Multiple Law: \[\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x) \]

Product Law: \[\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \]

Quotient Law: \[\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{provided} \quad \lim_{x \to a} g(x) \neq 0 \]

Power Law: \[\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n \quad \text{where} \quad n \in \mathbb{Z}^+ \]

Root Law: \[\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \quad \text{where} \quad n \in \mathbb{Z}^+ \]

(con) The limit of a constant is a constant. \[\lim_{x \to a} c = c \]

Substitution works on power functions. \[\lim_{x \to a} x^n = a^n \quad \text{where} \quad n \in \mathbb{Z}^+ \]

Substitution works on root functions. \[\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a} \quad \text{where} \quad n \in \mathbb{Z}^+ \quad \text{(don’t break domain rules)} \]

Substitution works on polynomials. \[\lim_{x \to a} p(x) = p(a) \]

Substitution works on rational functions. \[\lim_{x \to a} \left[\frac{p(x)}{q(x)} \right] = \frac{p(a)}{q(a)} \quad \text{provided} \quad q(a) \neq 0 \]

Substitution works on sine and cosine. \[\lim_{x \to a} \sin x = \sin a \quad \text{and} \quad \lim_{x \to a} \cos x = \cos a \]

(thm) If \(f(x) \leq g(x) \) when \(x \) is near \(a \) (except possibly at \(a \)) and \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) exist, then
\[\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \]
THE SQUEEZE THEOREM: If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and
\[\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \] then
\[\lim_{x \to a} g(x) = L. \]

\[\sin x \quad x \to 0 \quad \frac{\sin x}{x} = 1 \]

\[\cos x - 1 \quad x \to 0 \quad \frac{\cos x - 1}{x} = 0 \]

A function f is **continuous at a number** a if
\[\lim_{x \to a} f(x) = f(a). \]

Continuity requires 3 things: 1. $f(a)$ must be defined. 2. $\lim_{x \to a} f(x)$ must exist. 3. $\lim_{x \to a} f(x) = f(a)$ The limit of $f(x)$ as x approaches a must equal the function value at $x = a$.

A function f is **continuous from the right** at a number a if
\[\lim_{x \to a^+} f(x) = f(a). \]

A function f is **continuous from the left** at a number a if
\[\lim_{x \to a^-} f(x) = f(a). \]

A function f is **continuous on an interval** if it is continuous at every number in the interval.

If $f(x)$ and $g(x)$ are continuous at a point $x = a$ and c is a constant, then the following functions are also continuous at $x = a$:
\[(f + g)(x), \quad (f - g)(x), \quad cf(x), \quad (fg)(x), \quad \left(\frac{f}{g}(x) \right) \quad \text{provided} \quad g(a) \neq 0. \]

Any polynomial is continuous everywhere. i.e. Polynomials are continuous on $x \in \mathbb{R}$ (their domain). Any rational function is continuous everywhere it is defined (i.e. on its domain).

More generally: The following types of functions are continuous at every number in their domains: polynomials, rational functions, root functions, trigonometric functions.

If f is continuous at b and $\lim_{x \to a} g(x) = b$, then
\[\lim_{x \to a} f(g(x)) = f(b). \] You can also think about this in the following way:
\[\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x) \right) \]

If g is continuous at a and f is continuous at $g(a)$, then the composite function $(f \circ g)(x)$ is continuous at a.

THE INTERMEDIATE VALUE THEOREM: Suppose that f is continuous on the closed interval $[a,b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then, there exists a Number c in (a,b) such that $f(c) = N$.

4
The notation \(\lim_{x \to a} f(x) = \infty \) means that the values of \(f(x) \) can be made arbitrarily large (as large as we can imagine) by taking \(x \) sufficiently close to \(a \) (on either side of \(a \)) but not equal to \(a \). This indicates the presence of a **vertical asymptote** at \(x = a \).

The line \(x = a \) is called a **vertical asymptote** of the curve \(y = f(x) \) if at least one of the following statements is true:

\[
\begin{align*}
\lim_{x \to a^+} f(x) &= \infty \\
\lim_{x \to a^-} f(x) &= \infty \\
\lim_{x \to a^+} f(x) &= -\infty \\
\lim_{x \to a^-} f(x) &= -\infty \\
\lim_{x \to a^+} f(x) &= \pm \infty \\
\lim_{x \to a^-} f(x) &= \pm \infty
\end{align*}
\]

Let \(f \) be a function defined on some interval \((a, \infty)\). Then \(\lim_{x \to \infty} f(x) = L \) means that the values of \(f(x) \) can be made as close to \(L \) as we like by taking \(x \) sufficiently large. This indicates the presence of a **horizontal asymptote** of the curve \(y = f(x) \) at \(y = L \). This is likewise true if \(\lim_{x \to -\infty} f(x) = L \).

\[
\begin{align*}
\lim_{x \to \infty} \frac{1}{x^n} &= 0 \\
\lim_{x \to -\infty} \frac{1}{x^n} &= 0
\end{align*}
\]

provided \(n \) is a really big positive integer.