Section 2.3: Diffie-Hellman Key Exchange (p65)

(2.3A) Problem: Alice and Bob want to share a secret key for use in a symmetric cipher, but their only means of communication is insecure (ie, Eve can see all information that is exchanged).

- The difficulty of the DLP provides a solution to this problem and is the basis of the Diffie-Hellman Key Exchange.

(2.3B) Diffie-Hellman Key Exchange Protocol

1. **Public Parameter Creation**
 - Alice & Bob: choose large prime \(p \) & a primitive root \(g \) of \(\mathbb{F}_p \) (where \(2 \leq g \leq p-2 \))

2. **Private Computations**
 - Alice: chooses a secret integer \(a \), then computes \(A \equiv g^a \) (mod \(p \))
 - Bob: chooses a secret integer \(b \), then computes \(B \equiv g^b \) (mod \(p \))

3. **Public Exchange of Values (over the insecure communication channel)**
 - Alice: sends \(A \) to Bob
 - Bob: sends \(B \) to Alice

4. **Further Private Computations**
 - Alice: computes \(A' \equiv B^a \) (mod \(p \))
 - Bob: computes \(B' \equiv A^b \) (mod \(p \))

(2.3C) The two values Alice & Bob compute at the end, \(A' \) and \(B' \), are actually the same value:

\[
A' = B^a = (g^b)^a = g^{ab} = (g^a)^b = A^b = B' \pmod{p}
\]

- This value, \(k = A' = B' \), will serve as the secret key for their symmetric cipher.

(2.3D) Ex: Alice and Bob agree to use \(p = 1193 \) and a primitive root \(g = 3 \). Alice chooses the secret key \(a = 69 \) and Bob chooses the secret key \(b = 96 \). Using the DHK exchange, find the shared secret key \(k \).
(2.3E) Why would $g = p - 1$ be a bad choice when performing a D-H Key Exchange?

(2.3F) Even though Eve has access to p, g, A, & B, she would still need to be able to solve either (from the previous example) $3^a \equiv 919 \pmod{1193}$ for a or $3^b \equiv 30 \pmod{1193}$ for b in order to figure out the shared secret key k.

(2.3G) Solving the DLP is one way Eve could obtain k, but the DLP isn’t the precise problem Eve encounters in this scenario. The security of k rests on the difficulty of the following, potentially easier, problem:

- The **Diffie-Hellman Problem (DHP)** is the problem of computing the value of $g^{ab} \pmod{p}$ from the known values of $g^a \pmod{p}$ and $g^b \pmod{p}$, where p is a prime and g is an integer.

(2.3H) The DHP is definitely not harder than the DLP (solving the DLP would also solve the DHP), but it is unknown if the converse is true.

Exercises: 2.6