Topics to be covered on a PhD entrance exam in topology, Spring 2000

- Examples of topological spaces.
- Separation axioms (T_0, T_1, Hausdorff, regular, and normal spaces).
- Metric space topology (completeness, equivalent forms of compactness).
- Continuity.
- Connected spaces.
- Compactness.

Suggested reference books.

- Dugundji, *Topology*, Allyn & Bacon. (Chapters I-IX and XI.)
- Kelly, *General Topology*, D. van Nostrand. (Chapters: all except II, VI, and Appendix.)
- Gemignani, *Elementary Topology*, Addison-Wesley. (Chapters: all except XI.)
NAME (print): ______________________

Topology Ph.D. Entrance Exam, August 2000

In the exercises that follow \overline{A} stands for the closure of A, and $A \setminus B$ for the set difference: $A \setminus B = \{x \in A: x \notin B\}$.

Ex. 1. (a) Define a T_0 topological space.

(b) Show that a topological space X is a T_0-space if and only if $\{x\} \neq \{y\}$ for every distinct $x, y \in X$.

Ex. 2. A topological space X is said to be completely regular provided that for each $p \in X$ and closed set A in X such that $p \notin A$, there is a continuous function $f: X \to [0, 1]$ such that $f(p) = 0$ and $f[A] = \{1\}$.

Prove that any subspace of a completely regular space is completely regular.

Ex. 3. Let X be a topological space and let A and B be non-empty proper closed subsets of X such that $X = A \cup B$. Show that $X \setminus (A \cap B)$ is not connected.

Ex. 4. (a) Give an example of sets A_i $(i = 1, 2, 3, \ldots)$ in a topological space for which

$$\bigcup_{i=1}^{\infty} A_i \neq \bigcup_{i=1}^{\infty} \overline{A_i}.$$

(b) Show that for any family $\{A_i: i = 1, 2, 3, \ldots\}$ of subsets of a topological space X the following formula holds:

$$\bigcap_{i=1}^{\infty} A_i = \overline{\bigcup_{i=1}^{\infty} A_i} \cup \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} A_i.$$

Ex. 5. Let $S = \langle \mathbb{R}, \tau_S \rangle$ be a Sorgenfrey line, $D(\mathbb{N}) = \langle \mathbb{N}, \tau_D \rangle$ be a discrete topology on $\mathbb{N} = \{1, 2, 3, \ldots\}$ and $D(\mathbb{R}) = \langle \mathbb{R}, \tau_D \rangle$ be a discrete topology on \mathbb{R}.

Show that there is a continuous mapping from S onto $D(\mathbb{N})$ but that there is no continuous mapping from S onto $D(\mathbb{R})$.

Ex. 6. Let X be a normal space and let U_1 and U_2 be open subsets of X such that $X = U_1 \cup U_2$. Show that there are open sets V_1 and V_2 such that $\overline{V_1} \subset U_1$, $\overline{V_2} \subset U_2$, and $X = V_1 \cup V_2$.

1
Ex. 1. Let \(\langle X_0, \tau_0 \rangle \) and \(\langle X_1, \tau_1 \rangle \) be connected topological spaces. Show that \(X_0 \times X_1 \) with the product topology is connected.

Ex. 2. Consider the real line \(\mathbb{R} \) with the topology \(\tau \) generated by the family of intervals:
\[
\mathcal{F} = \{ [a, b): a \in \mathbb{Q} \& b \in \mathbb{R} \& a < b \},
\]
where \(\mathbb{Q} \) stands for the set of rational numbers. Let \(X \) be the product of \(\langle \mathbb{R}, \tau \rangle \) with itself (with the product topology). Prove or disprove that \(X \) is normal.

Ex. 3. Prove or find a counterexample for the statement:

A compact subset of a topological space \(\langle X, \tau \rangle \) is closed in \(X \).

Ex. 4. Let \(\tau \) be the usual topology on the real line \(\mathbb{R} \). Answer one of the following two questions.

(a) Does there exists a topology \(\tau_0 \subset \tau \) such that \(\langle \mathbb{R}, \tau_0 \rangle \) is homeomorphic to figure eight (i.e., two circles tangent at a point)?

(b) Does there exists a topology \(\tau_0 \subset \tau \) such that \(\langle \mathbb{R}, \tau_0 \rangle \) is homeomorphic to the unit circle \(S^1 = \{ (x, y) \in \mathbb{R}^2: x^2 + y^2 = 1 \} \)?

Ex. 5. Let \(\langle X, \tau \rangle \) and \(\langle Y, \tau' \rangle \) be the topological spaces and let \(f: X \to Y \) be a function. Consider the graph \(G(f) = \{ (x, f(x)): x \in X \} \) of \(f \) as a subspace of the cartesian product \(X \times Y \) (with the product topology). Prove or disprove each the following.

(a) If \(f \) is continuous, then \(G(f) \) is homeomorphic to \(X \).

(b) If \(G(f) \) is homeomorphic to \(X \), then \(f \) is continuous.
Ex. 1. Let \mathbb{R}^2 be the euclidean plane (i.e., with natural topology). Let

$$X = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \} \cup \{ (x, 0) \in \mathbb{R}^2 : -1 \leq x \leq 1 \},$$

$$Y = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \} \cup \{ (x, 0) \in \mathbb{R}^2 : -1 \leq x \leq 2 \}.$$

Are X and Y homeomorphic? Give reasons for your answer.

Ex. 2. Prove that every compact metric space has a countable base for its topology.

Ex. 3. Let $\langle X, d \rangle$ be a compact metric space, and let $f : X \to X$ satisfy

$$d(f(x_1), f(x_2)) < d(x_1, x_2) \text{ for all distinct } x_1, x_2 \in X.$$

Show that there is a point $p \in X$ such that $f(p) = p$.

Ex. 4. A topological space X is said to have countable pseudo character provided every singleton in X is a G_δ-set (i.e., it is a countable intersection of open sets). Show that every compact Hausdorff space with countable pseudo character is first countable, that is, it has a countable local base at every point $x \in X$.

Ex. 5. Let \mathcal{F} be the family of all non-zero polynomials of the form

$$w(x, y) = a_0 x^2 + a_1 y^2 + a_2 xy + a_3 x + a_4 y + a_5$$

with rational coefficients and for every $w \in \mathcal{F}$. Let

$$E_w = \{ (x, y) \in \mathbb{R}^2 : w(x, y) = 0 \}.$$

Show that the plane \mathbb{R}^2 is not covered by the sets E_w with $w \in \mathcal{F}$, that is, that $\mathbb{R}^2 \neq \bigcup_{w \in \mathcal{F}} E_w$.

1