Solve the following exercises. Show your work.

Ex. 1. Write the parametric equations of the line that passes through the point \(P(11, 13, -7) \) and is perpendicular to the plane with the equation: \(x - 2z = 17 \).

Ex. 2. Find the volume of the pyramid with the vertices: \(P(3, 2, -1), Q(-2, 5, 1), R(2, 1, 5), \) and the origin \(O(0, 0, 0) \).

Ex. 3. Describe in geometric terms the graph of the following equation. Be specific.
\[
2x^2 + 2y^2 + 2z^2 = 7x + 9y + 11z.
\]

Ex. 4. Find the curvature \(\kappa \) of the curve with position vector \(r(t) = i \cos t + j \sin t + 2t k \).

Ex. 5. Let \(a = \langle 0, 1, 2 \rangle, \ b = \langle -1, 0, 7 \rangle, \) and \(c = \langle 2, 3, -1 \rangle \). Evaluate: \(2a - b + c, \ |c|, \) and \((a \cdot b) \cdot (b \times c) \).

Ex. 6. Let \(v(t) = i(t + 1)^{-1} + kt^3 \) be a velocity of a particle. Find the acceleration vector \(a(t) \) of the particle and its position vector \(r(t) \), where its initial position was \(r_0 = 3i \).

Ex. 7. Find the the arc length, \(s \), of the curve with position vector \(r(t) = 2e^t \ i + 2t \ j + e^{-t} \ k \) from \(t = 0 \) to \(t = 1 \).

Ex. 8. State and graph the largest possible domain of the function \(h(x, y) = \sqrt{y - x^2} \).

Ex. 9. Describe and sketch the graph of the equation: \(4z^2 = x^2 + y^2 \).

Ex. 10. Convert the equation: \(x^2 + y^2 + 2z^2 = 1 \) to the cylindrical and spherical coordinates.