Algebras with inner MB-representation

Abstract

We investigate algebras of sets, and pairs \(\langle A, I \rangle \) consisting of an algebra \(A \) and an ideal \(I \subset A \), that possess an inner MB-representation. We compare inner MB-representability of \(\langle A, I \rangle \) with several properties of \(\langle A, I \rangle \) considered by Baldwin. We show that \(A \) is inner MB-representable if and only if \(A = S(A \setminus \mathcal{H}(A)) \), where \(S(\cdot) \) is a Marczewski operation defined below and \(\mathcal{H} \) consists of sets that are hereditarily in \(A \). We study the question of uniqueness of the ideal in that representation.

1 The implications

Let \(X \) be a nonempty set and let \(F \) be a nonempty family of nonempty subsets of \(X \). Following the idea of Burstin and Marczewski we define:

\[
S(F) = \{ A \subset X : (\forall P \in F)(\exists Q \in F)(Q \subset A \cap P \text{ or } Q \subset P \setminus A) \}
\]

and

\[
S_0(F) = \{ A \subset X : (\forall P \in F)(\exists Q \in F)(Q \subset P \setminus A) \}.
\]
Then \(S(\mathcal{F})\) is an algebra of subsets of \(X\) and \(S_0(\mathcal{F})\) is an ideal on \(X\). (See [BBRW].) For an ideal \(\mathcal{I}\) on \(X\) an algebra \(\mathcal{A}\) of subsets of \(X\) such that \(\mathcal{I} \subset \mathcal{A}\) we say that

- the pair \(\langle \mathcal{A}, \mathcal{I} \rangle\) (respectively, the algebra \(\mathcal{A}\)) has inner MB-representation provided there exists an \(\mathcal{F} \subset \mathcal{A}\) such that \(\mathcal{A} = S(\mathcal{F})\) and \(\mathcal{I} = S_0(\mathcal{F})\) (respectively, \(\mathcal{A} = S(\mathcal{F})\));

- the pair \(\langle \mathcal{A}, \mathcal{I} \rangle\) has density property provided \(\mathcal{I} = S_0(\mathcal{A} \setminus \mathcal{I})\);

- the pair \(\langle \mathcal{A}, \mathcal{I} \rangle\) (respectively, the algebra \(\mathcal{A}\)) is topological provided there exists a topology \(\tau\) on \(X\) such that \(\langle \mathcal{A}, \mathcal{I} \rangle = \langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle\) (respectively, \(\mathcal{A} = S(\mathcal{F})\)), where \(\mathcal{F} = \tau \setminus \{\emptyset\}\);

- the pair \(\langle \mathcal{A}, \mathcal{I} \rangle\) has the hull property provided for every \(U \subset X\) there is a \(V \in \mathcal{A}\) such that \(U \subset V\) and for every \(W \in \mathcal{A}\) if \(U \subset W\) then \(V \setminus W \in \mathcal{I}\);

- the pair \(\langle \mathcal{A}, \mathcal{I} \rangle\) is complete provided the quotient algebra \(\mathcal{A}/\mathcal{I}\) is complete;

- the pair \(\langle \mathcal{A}, \mathcal{I} \rangle\) has the splitting property provided for every \(C \subset D \subset \mathcal{A}\), if \(D\) is an antichain (i.e., \(A \cap B \in \mathcal{I}\) for every distinct \(A, B \in D\)) then there exists a mapping \(D \ni D \mapsto I_D \in \mathcal{I}\) such that \(C \setminus I_C\) and \(D \setminus I_D\) are disjoint for every \(C \in \mathcal{C}\) and \(D \in \mathcal{D} \setminus \mathcal{C}\).

In the graph from Theorem 2 each of these properties is denoted, respectively, as: inner, dense, top, hull, comp, and split.

We start here with the following simple characterization of pairs with inner MB-representation. (Compare also [Wr, lemma 1].)

Proposition 1 A pair \(\langle \mathcal{A}, \mathcal{I} \rangle\) has an inner MB-representation if and only if \(\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})\).

Proof. If \(\mathcal{A} = S(\mathcal{A} \setminus \mathcal{I})\) then \(\mathcal{A} \setminus \mathcal{I} \subset \mathcal{A} \setminus S_0(\mathcal{A} \setminus \mathcal{I})\), since we always have \(\mathcal{F} \cap S_0(\mathcal{F}) = \emptyset\). So, \(S_0(\mathcal{A} \setminus \mathcal{I}) \subset \mathcal{I}\). The other inclusion is obvious. Thus, \(\langle \mathcal{A}, \mathcal{I} \rangle\) has an inner MB-representation.

Conversely, assume that \(\langle \mathcal{A}, \mathcal{I} \rangle = \langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle\) for some \(\mathcal{F} \subset \mathcal{A}\). By [BBRW, prop. 1.2] to prove that \(S(\mathcal{A} \setminus \mathcal{I}) = S(\mathcal{F})\) it is enough to show that the families \(\mathcal{A} \setminus \mathcal{I}\) and \(\mathcal{F}\) are mutually coinitial, that is, every element of each of these families contains an element from the other.

Clearly, \(\mathcal{F} \subset \mathcal{A} \setminus S_0(\mathcal{F}) = \mathcal{A} \setminus \mathcal{I}\), so every element of \(\mathcal{F}\) contains an element from \(\mathcal{A} \setminus \mathcal{I}\). Conversely, if \(\mathcal{A} \in \mathcal{A} \setminus \mathcal{I}\) then there exists an \(F \in \mathcal{F}\) with \(F \subset \mathcal{A}\), since \(A \notin \mathcal{I} = S_0(\mathcal{F})\).
Theorem 2 We have the following implications between the properties of a pair \(\langle A, I \rangle \).

\[
\text{hull} \quad \rightarrow \quad \text{inner} \quad \rightarrow \quad \text{dense}
\]

\[
\text{top} \quad \rightarrow \quad \text{hull & comp} \quad \leftrightarrow \quad \text{dense & comp} \quad \leftrightarrow \quad \text{split & inner} \quad \rightarrow \quad \text{dense & split}
\]

\[
\text{comp} \quad \rightarrow \quad \text{split}
\]

Diagram

Moreover, none of the implications can be reversed, with possible exception of "top \(\Rightarrow \) hull & comp."

Proof. The facts that every topological pair is complete and has the hull property are well known and easy to see. Indeed, if \(\langle A, I \rangle \) is a topological pair generated by a topology \(\tau \) on \(X \) then \(I \) consists of all nowhere dense sets (with respect to \(\tau \)) and \(A \) consists of open sets (with respect to \(\tau \)) modulo \(I \). (See [BR].) Then, for each \(E \subset X \), the closure \(\text{cl}(E) \) plays a role of its hull. Since an open set \(U \) can be expressed as \(U = V \setminus E \) where \(V \) is regular open and \(E \) is nowhere dense (see e.g. [O, thm. 4.5]), the quotient algebra \(A/I \) is isomorphic to the Boolean algebra of regular open sets, which is complete (see e.g. [K]). Hence \(A/I \) is complete.

The implication "inner \(\Rightarrow \) dense" results immediately from Proposition 1 and the definitions. All other implications follow from the following implications proved in Baldwin’s paper [Ba]: "hull \(\Rightarrow \) inner," "comp \(\Rightarrow \) split," "split & inner \(\Rightarrow \) comp,” and “dense & comp \(\Rightarrow \) hull.”

The fact that the implications “top \(\Rightarrow \) hull” and “top \(\Rightarrow \) comp” cannot be reversed follows from Baldwin’s examples from [Ba], where he shows that the properties hull and complete are independent of each other.

An example showing that “dense & split” does not imply “inner” is described in Example 3. This takes care of nonreversability of the implications “split & inner \(\Rightarrow \) dense & split,” “inner \(\Rightarrow \) dense,” and “comp \(\Rightarrow \) split.”

Example 4 shows that the implications “hull \(\Rightarrow \) inner” cannot be reversed.

The following example answers a question of Baldwin [Ba, question 2] whether every pair with density and splitting properties must be inner. Also,
Baldwin had the example of a family with a splitting property which is not complete only under the assumption of the continuum hypothesis, while the example below is in ZFC.

Example 3 If X is an infinite set, A is an algebra of subsets of X which are either finite or cofinite, and $\mathcal{I}=\{\emptyset\}$ then the pair $\langle A,\mathcal{I} \rangle$ has density and splitting properties but is neither inner nor complete.

Proof. The pair $\langle A,\mathcal{I} \rangle$ has density property since $S_0(A\setminus\{\emptyset\})=\{\emptyset\}=\mathcal{I}$. It does not have inner MB-representation by Proposition 1 and the fact that $S(A\setminus\{\emptyset\})=\mathcal{P}(X)$. The splitting property is satisfied trivially, since $\mathcal{I}=\{\emptyset\}$.

The pair $\langle A,\mathcal{I} \rangle$ is not complete by the implications from Theorem 2. ■

The following example answers a question of Baldwin [Ba, question 1] whether every pair with inner MB-representation must have a hull property.

In what follows we use the standard set theoretic notation as in [Ci]. Let X be an infinite set of cardinality κ. We say that a family $\mathcal{F}_0 \subseteq [X]^\kappa$ is almost disjoint provided $|F_1 \cap F_2| < \kappa$ for every distinct $F_1,F_2 \in \mathcal{F}_0$.

Example 4 There exists a maximal almost disjoint family $\mathcal{F}_0 \subseteq [X]^\kappa$ such that for $\mathcal{F}=\{F \triangle A: F \in \mathcal{F}_0 \& A \in [X]^{<\kappa}\}$ the pair $\langle S(\mathcal{F}),S_0(\mathcal{F}) \rangle$ has inner MB-representation but neither is complete nor it has the hull property.

Proof. In [BC, fact 4] it was proved that for every \mathcal{F} as in the theorem the algebra $S(\mathcal{F})$ contains \mathcal{F} (so it has inner MB-representation) and $S_0(\mathcal{F})=[X]^{<\kappa}$.

Let $\langle A,B \rangle$ be a partition of X into the sets of cardinality κ and let $\mathcal{G} \subseteq [X]^\kappa$ be a partition of X into κ many sets such that $|G \cap A|=|G \cap B|=\kappa$ for every $G \in \mathcal{G}$. Let $\mathcal{F}_0 \subseteq [X]^\kappa$ be a maximal almost disjoint family extending \mathcal{G} such that for every $F \in \mathcal{F}_0$ either $F \subseteq A$ or $F \subseteq B$. Such an \mathcal{F}_0 exists by the Zorn lemma. It is easy to see that \mathcal{F}_0 is a maximal almost disjoint family in $[X]^\kappa$.

To see that $\langle S(\mathcal{F}),S_0(\mathcal{F}) \rangle$ does not have the hull property notice that $A \subseteq X$ does not have a hull. Indeed, take a $V \in S(\mathcal{F})$ containing A. Then for every $G \in \mathcal{G} \subseteq \mathcal{F}$ there is an $F_G \in \mathcal{F}$ contained in G such that F_G is either disjoint or contained in V. Thus, $F_G = G \setminus A_G$ for some $A_G \in [X]^{<\kappa}$, since elements of \mathcal{F}_0 are almost disjoint. This implies also that $F_G = G \setminus A_G$ must be a subset of V, since it cannot be disjoint with $V \supseteq A$. In other words, for every $G \in \mathcal{G}$ there exists an $x_G \in G \setminus (V \setminus A)$. So, $Y = \{x_G: G \in \mathcal{G}\} \subseteq [B]^{<\kappa}$, and by the maximality, there exists an $F \in \mathcal{F}_0$ such that $|F \cap Y|=\kappa$. Then, for $W = V \setminus F \in S(\mathcal{F})$ we have $A \subseteq W \subseteq V$, while $V \setminus W = F \cap Y \notin [X]^{<\kappa} = S_0(\mathcal{F})$. Thus, there is no hull for A with respect to $\langle S(\mathcal{F}),S_0(\mathcal{F}) \rangle$. ■

Problem 5 Is every complete pair $\langle A,\mathcal{I} \rangle$ with the hull property topological?
2 Notes on algebras with inner MB-representations

According to Proposition 1 if a pair \(\langle A, \mathcal{I} \rangle \) has inner MB-representation then it has a canonical one — by a family \(\mathcal{F} = A \setminus \mathcal{I} \). But what if we only consider inner MB-representability of an algebra \(A \)? If \(A \) has an inner MB-representation, say \(A = S(\mathcal{F}) \), then by Proposition 1 for \(\mathcal{I} = S_0(\mathcal{F}) \) we have \(A = S(A \setminus \mathcal{I}) \). Is there a canonical ideal \(\mathcal{I} \) with this property? Is such an ideal unique?

To give a positive answer to the first of these questions we need the following fact. Note that, in general, \(\mathcal{F}_2 \subset \mathcal{F}_1 \) does not imply \(S(\mathcal{F}_2) \subset S(\mathcal{F}_1) \). For instance, if \(X = \{0, 1, 2\} \), \(\mathcal{F}_2 = \{\{0\}\} \), and \(\mathcal{F}_1 = \{\{0\}, \{1, 2\}\} \) then \(\{2\} \in S(\mathcal{F}_2) \setminus S(\mathcal{F}_1) \).

Lemma 6 If \(\mathcal{I}_1 \subset \mathcal{I}_2 \) are ideals contained in an algebra \(A \) then we have \(S(A \setminus \mathcal{I}_2) \subset S(A \setminus \mathcal{I}_1) \).

Proof. Let \(A \in S(A \setminus \mathcal{I}_2) \). To show that \(A \in S(A \setminus \mathcal{I}_1) \) take a \(P \in A \setminus \mathcal{I}_1 \). We need to find a \(Q \in A \setminus \mathcal{I}_1 \) for which

\[
\text{either } Q \subset P \cap A \text{ or } Q \subset P \setminus A. \tag{1}
\]

If \(P \in A \setminus \mathcal{I}_2 \) then clearly there is a \(Q \in A \setminus \mathcal{I}_2 \subset A \setminus \mathcal{I}_1 \) satisfying (1). So assume that \(P \notin A \setminus \mathcal{I}_2 \). Then \(P \in \mathcal{I}_2 \setminus \mathcal{I}_1 \). So, \(P \cap A \) and \(P \setminus A \) belong to \(\mathcal{I}_2 \) and at least one of them does not belong to \(\mathcal{I}_1 \). This set can be taken as \(Q \), since \(\mathcal{I}_2 \setminus \mathcal{I}_1 \subset A \setminus \mathcal{I}_1 \).

For an algebra \(A \) of subsets of \(X \), the ideal of hereditary sets in \(A \) is defined as \(\mathcal{H}(A) = \{ A \in A : \mathcal{P}(A) \subset A \} \).

Proposition 7 Let \(\mathcal{I} \) be an ideal on a set \(X \), let \(A \) be an algebra on \(X \) and assume that \(\mathcal{I} \subset A = S(\mathcal{A} \setminus \mathcal{I}) \neq \mathcal{P}(X) \). Then for every ideal \(\mathcal{J} \) such that \(\mathcal{I} \subset \mathcal{J} \subset \mathcal{H}(A) \) we have \(A = S(A \setminus \mathcal{J}) \).

Proof. Notice that any ideal \(\mathcal{J} \subset A \) is a proper subset of \(A \) since \(A \neq \mathcal{P}(X) \). It is easy to see that for any such ideal we have \(A \subset S(A \setminus \mathcal{J}) \). Indeed, if \(A \in A \) and \(P \in A \setminus \mathcal{J} \) then either \(Q = P \setminus A \) belongs to \(A \setminus \mathcal{J} \) or \(Q = P \cap A \) belongs to \(A \setminus \mathcal{J} \). Now, by Lemma 6, we have

\[
A \subset S(A \setminus \mathcal{H}(A)) \subset S(A \setminus \mathcal{J}) \subset S(A \setminus \mathcal{I}) = A.
\]

This finishes the proof.

The proposition implies immediately the following corollary, which shows, in particular, that the ideal \(\mathcal{I} = \mathcal{H}(A) \) is canonical ideal in representation \(A = S(A \setminus \mathcal{I}) \).
Corollary 8 An algebra $A \not= \mathcal{P}(X)$ has an inner MB-representation if and only if $A = S(A \setminus H(A))$.

Notice that Corollary 8 immediately implies [BBC, thm. 13], since conditions (I) and (II) from that theorem say that $H(A) = A \cap [X]^{<\kappa}$ while (III) says that $S(A \setminus H(A)) \setminus A \not= \emptyset$. In particular, Corollary 8 implies easily that the following algebras do not have inner MB-representation:

- The algebra \mathcal{B} of Borel subset of \mathbb{R}, since $S(\mathcal{B} \setminus H(\mathcal{B})) = S(\mathcal{B} \setminus [\mathbb{R}]^{\leq \omega})$ is a classical Marczewski’s algebra. (Compare [BBC, cor. 14].)
- The interval algebra A (i.e., generated by all intervals $[a, b)$, where $a, b \in \mathbb{R}$), since $H(A) = \{\emptyset\}$ and so $S(A \setminus H(A))$ is an algebra of subsets of \mathbb{R} with nowhere dense boundary. (Compare [BBC, prop. 12].)
- The algebra A generated by all open intervals (a, b) $(a, b \in \mathbb{R})$, since $H(A) = [\mathbb{R}]^{<\omega}$ and so $S(A \setminus H(A))$ is an algebra of subsets of \mathbb{R} with nowhere dense boundary.

Next, we will address the question of uniqueness of the ideal in the representation $A = S(A \setminus H(A))$. We will start with the following proposition.

Proposition 9 Let A be an algebra, let $I \subset J \subset A$ be ideals, and $Y \in A$.

(a) If every $P \subset Y$ from $A \setminus J$ contains a subset in $I \setminus J$ then $\mathcal{P}(Y) \subset S(A \setminus J)$.

(b) If $I \cap \mathcal{P}(Y) = J \cap \mathcal{P}(Y)$ then $S(A \setminus I) \cap \mathcal{P}(Y) = S(A \setminus J) \cap \mathcal{P}(Y)$.

Proof. (a): Let $A \in \mathcal{P}(Y)$ and take $P \in A \setminus J$. We need to find a $Q \in A \setminus J$ for which

either $Q \subset P \cap A$ or $Q \subset P \setminus A$.

If $P \in I \setminus J$ then either $P \cap A$ or $P \setminus A$ belongs to $I \setminus J$, so we may take this set as a Q. So, assume that $P \in A \setminus I$ then there is a $P_0 \in I \setminus J$ contained in P. Thus, as before, either $P_0 \cap A$ or $P_0 \setminus A$ belongs to $I \setminus J$ and we may take this set as a Q.

Part (b) is obvious.

For an algebra $A \subset \mathcal{P}(X)$ and the ideals I and J such that $J \subset I \subset A$ a set $Y \in A$ will be called (I, J)-special if $I \cap \mathcal{P}(X \setminus Y) = J \cap \mathcal{P}(X \setminus Y)$ and each set $P \subset Y$ such that $P \in A \setminus J$ has a subset in $I \setminus J$.

From Proposition 9 we easily derive the following corollary.
Corollary 10 Let A be an algebra on X and let $J \subset I \subset A$ be ideals. If $Y \in A$ is an $\langle I, J \rangle$-special set then

$$S(A \setminus J) = \{C \cup D: C \in \mathcal{P}(Y) \& D \in \mathcal{P}(X \setminus Y) \cap S(A \setminus J)\}.$$

From Proposition 9(a) applied to $Y = \mathbb{R}$ we obtain immediately the following facts.

- If \mathcal{L} is the algebra of Lebesgue measurable subsets of \mathbb{R}, \mathcal{N} is the ideal of measure zero sets, and \mathcal{N}_0 is the ideal generated by F_σ sets from \mathcal{N} then $S(\mathcal{L} \setminus J) = \mathcal{P}(\mathbb{R})$ for every ideal J contained either in \mathcal{N}_0 or in $\mathcal{N} \cap [\mathbb{R}]^{<2^\omega}$.
- If \mathcal{B} is the algebra of subsets of \mathbb{R} with the Baire property and \mathcal{M} is the ideal of meager sets, then $S(\mathcal{B} \setminus J) = \mathcal{P}(\mathbb{R})$ for every ideal J contained either in \mathcal{N}_0 or in $\mathcal{M} \cap [\mathbb{R}]^{<2^\omega}$.

From Corollary 10 we immediately see that, most of the time, $\mathcal{H}(A)$ is not the only ideal I for which $A = S(A \setminus I)$. The easiest way to see it is to notice the following conclusion from Corollary 10.

Corollary 11 If A is an algebra on $X, J \subset I \subset A$ are ideals, $A = S(A \setminus I)$ and there exists a $Y \in I$ such that $I \cap \mathcal{P}(X \setminus Y) = J \cap \mathcal{P}(X \setminus Y)$, then $S(A \setminus I) = S(A \setminus J)$.

Finally we note that the existence of an $\langle I, J \rangle$-special set is by no means necessary for the conclusion of Corollary 11.

Example 12 There exists an algebra A and an ideal $J \subset \mathcal{H}(A)$ for which $A = S(A \setminus J)$ while there is no $\langle \mathcal{H}(A), J \rangle$-special set $Y \in \mathcal{H}(A)$.

Proof. In the papers [R] and [NR] the authors investigated the family \mathcal{D} of perfect subsets of $[\omega]^{<\omega}$, where $[\omega]^{<\omega}$ is endowed with the Ellentuck topology, that is, the topology generated by the sets $[x, y] = \{z \in [\omega]^{\omega}: x \subset z \subset y\}$, where $x \in [\omega]^{\omega}$ and $y \in [\omega]^{\omega}$. A subset of $[\omega]^{\omega}$ is called a chain if it consists of sets incomparable with respect to inclusion. A chain is called a Sorgenfrey chain if its subspace topology is homeomorphic to the Sorgenfrey topology on $(0, 1]$. It is shown in [NR, thm. 3.4] that if $P \in \mathcal{D}$ does not contain a countable perfect set then P contains a perfect uncountable Sorgenfrey chain.

Let \mathcal{G} be the family of all perfect Sorgenfrey chains and let $A = S(\mathcal{D})$. By [NR, thm. 3.5] and [R, cor. 1.10], we have $A = S(\mathcal{D}) = S(\mathcal{G})$ and $J = S_0(\mathcal{D}) \subset S_0(\mathcal{G}) = \mathcal{H}(A)$. We will show that

(a) $A = S(A \setminus J)$, and
(b) \(\mathcal{A} = S(A \setminus \mathcal{H}(A)) \), but

(c) there is no \(\langle \mathcal{H}(A), \mathcal{J} \rangle \)-special set \(Y \in \mathcal{H}(A) \).

To prove (a) observe that \(D \subseteq S(D) \) since, for any two perfect sets \(P \) and \(Q \), at least one of the sets \(P \cap Q, P \setminus Q \) has a perfect part. Now, from \(D \subseteq S(D) \) and \(D \cap S_0(D) = \emptyset \) it follows that \(D \) and \(A \setminus \mathcal{J} = S(D) \setminus S_0(D) \) are mutually coinitial which, by [BBRW, prop. 1.2], implies (a). The clause (b) results from (a) and Proposition 7.

To prove (c), by way of contradiction assume that there is a \(\langle \mathcal{H}(A), S_0(D) \rangle \)-special set \(Y \in \mathcal{H}(A) \). Then \(\mathcal{H}(A) \cap \mathcal{P}(\omega^\omega \setminus Y) = S_0(D) \cap \mathcal{P}(\omega^\omega \setminus Y) \). Since \(\mathcal{H}(A) = S_0(\mathcal{G}) \), we have

\[
S_0(\mathcal{G}) \cap \mathcal{P}(\omega^\omega \setminus Y) = S_0(D) \cap \mathcal{P}(\omega^\omega \setminus Y). \tag{2}
\]

Next observe that

(d) each set from \(D \cap \mathcal{P}(\omega^\omega \setminus Y) \) contains a set from \(\mathcal{G} \).

Indeed, let \(D \in D \cap \mathcal{P}(\omega^\omega \setminus Y) \). Since \(D \subseteq S(D) \setminus S_0(D) \), it follows from \(S(D) = S(\mathcal{G}) \) and (2) that

\[
D \in (S(D) \setminus S_0(D)) \cap \mathcal{P}(\omega^\omega \setminus Y) = (S(\mathcal{G}) \setminus S_0(\mathcal{G})) \cap \mathcal{P}(\omega^\omega \setminus Y).
\]

Hence by [BBRW, prop 1.1(4)], there is a \(G \in \mathcal{G} \) such that \(G \subseteq D \) as desired.

Since \(\mathcal{G} \) consists of uncountable sets, from (d) we derive that no countable perfect set in \(\omega^\omega \) is contained in \(\omega^\omega \setminus Y \). From [NR] it follows that each nonempty open set in \(\omega^\omega \) contains a set from \(\mathcal{G} \). Thus \(Y \), which is in \(\mathcal{H}(A) = S_0(\mathcal{G}) \), has the empty interior. Consequently, \(\omega^\omega \setminus Y \) is dense and so, by [R, thm. 1.5], it contains a countable perfect set \(Q \). However, this contradicts the previous observation.

\[\blacksquare \]

References

