Artur Bartoszewicz, Institute of Mathematics, Łódź Technical University, Al. Politechniki 11, 90-924 Łódź, Poland (arturbar@ck-sg.p.lodz.pl)

Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA (K_Cies@math.wvu.edu)

http://www.math.wvu.edu/~kcies

MB-representations and topological algebras

Abstract

For an algebra \mathcal{A} and an ideal \mathcal{I} of subsets of a set X we consider pairs $(\mathcal{A}, \mathcal{I})$ which have the common inner Marczewski-Burstin representation. The main goal of the paper is to investigate which inner Marczewski-Burstin representable algebras and pairs are topological.

1 Introduction

Let X be a nonempty set and let \mathcal{F} be a nonempty family of nonempty subsets of X. Following the idea of Burstin and Marczewski we define:

$$S(\mathcal{F}) = \{A \subset X : (\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset A \cap P \text{ or } Q \subset P \setminus A)\}$$

and

$$S_0(\mathcal{F}) = \{A \subset X : (\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset P \setminus A)\}.$$

Then $S(\mathcal{F})$ is an algebra of subsets of X and $S_0(\mathcal{F})$ is an ideal on X. (See [BBRW]. In this paper family $S_0(\mathcal{F})$ is denoted by $S^0(\mathcal{F})$.) Burstin [Bu] showed that if we take as \mathcal{F} the family of perfect subsets of \mathbb{R} with a positive Lebesgue measure then $S(\mathcal{F})$ equals to the σ-algebra of measurable sets and $S_0(\mathcal{F})$ is the ideal of null sets. On the other hand, if \mathcal{F} is the family of all perfect subsets of \mathbb{R} then $S(\mathcal{F})$ and $S_0(\mathcal{F})$ become Marczewski’s σ-algebra and Marczewski’s σ-ideal, which are closely related to a class of Sierpiński functions [Ma].

Key Words: Generalized Marczewski’s sets, topology.
Mathematical Reviews subject classification: Primary 54E52; Secondary 06E25, 03E35

*The second author was partially supported by NATO Grant PST.CLG.977652.
Papers authored or co-authored by a Contributing Editor are managed by a Managing Editor or one of the other Contributing Editors.
We say that an algebra \mathcal{A} (an ideal \mathcal{I}) of subsets of X has a Marczewski-Burstin representation if there exists a nonempty family \mathcal{F} of nonempty subsets of X such that $\mathcal{A} = S(\mathcal{F})$ ($\mathcal{I} = S_0(\mathcal{F})$, respectively). If in addition $\mathcal{F} \subset \mathcal{A}$ then we say that \mathcal{A} is inner MB-representable. For $\mathcal{I} \subset \mathcal{A}$ we say that the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ is MB-representable provided $\langle \mathcal{A}, \mathcal{I} \rangle = \langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ for some family \mathcal{F}. If in addition $\mathcal{F} \subset \mathcal{A}$ then we say that $\langle \mathcal{A}, \mathcal{I} \rangle$ is inner MB-representable. MB-representations of algebras and ideals were recently considered in the papers [Re, BR, BET, BBRW, BBC]. In the first three of these papers a family \mathcal{F} was always chosen from “nice” sets: Borel or perfect with respect to some topology; papers [BBRW, BBC] contain the systematic studies of MB-representations for quite arbitrary families \mathcal{F}.

We say that the pair $\langle \mathcal{A}, \mathcal{I} \rangle$ (an algebra \mathcal{A}, or an ideal \mathcal{I}) is topological provided there exists a topology τ on X such that $\langle \mathcal{A}, \mathcal{I} \rangle = \langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ ($\mathcal{A} = S(\mathcal{F})$, or $\mathcal{I} = S_0(\mathcal{F})$, respectively), where $\mathcal{F} = \tau \setminus \{\emptyset\}$. It was noticed in [BBRW, prop. 1.3] that $\mathcal{I} = S_0(\tau \setminus \{\emptyset\})$ is equal to the ideal $NWD(\tau)$ of τ-nowhere dense sets, while $\mathcal{A} = S(\tau \setminus \{\emptyset\})$ is the algebra of subsets of X with nowhere dense boundary. Clearly every topological pair $\langle \mathcal{A}, \mathcal{I} \rangle$ is inner MB-representable. The main question we investigate in this note is whether the converse is also true, that is, more precisely

Which inner MB-representable pairs $\langle \mathcal{A}, \mathcal{I} \rangle$ are topological?

We say that the families \mathcal{F}_1 and \mathcal{F}_2 of subsets of X are mutually coinitial provided

\[(\forall U \in \mathcal{F}_1)(\exists V \in \mathcal{F}_2)(V \subset U) \quad \text{and} \quad (\forall U \in \mathcal{F}_2)(\exists V \in \mathcal{F}_1)(V \subset U).\]

We will need the following facts from [BBRW].

Fact 1 If families \mathcal{F}_1 and \mathcal{F}_2 are mutually coinitial then $S(\mathcal{F}_1) = S(\mathcal{F}_2)$ and $S_0(\mathcal{F}_1) = S_0(\mathcal{F}_2)$.

Fact 2 If $\mathcal{F}_1 \subset S(\mathcal{F}_1)$, $\mathcal{F}_2 \subset S(\mathcal{F}_2)$ and $\langle S(\mathcal{F}_1), S_0(\mathcal{F}_1) \rangle = \langle S(\mathcal{F}_2), S_0(\mathcal{F}_2) \rangle$ then \mathcal{F}_1 and \mathcal{F}_2 are mutually coinitial.

Since topological algebras are always inner MB-representable, the problem: is a given pair $\langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$, with $\mathcal{F} \subset S(\mathcal{F})$, topological? is equivalent to: is \mathcal{F} mutually coinitial with some topology (or with a base of some topology) on X? If we consider only an inner MB-representable algebra $S(\mathcal{F})$, the problem is $S(\mathcal{F})$ topological cannot be formulated in these terms: the ideals $S_0(\mathcal{F})$ and $S_0(\tau \setminus \{\emptyset\})$ can be quite different and so \mathcal{F} and $\tau \setminus \{\emptyset\}$ need not be mutually coinitial. On the other hand, any ideal \mathcal{I} is the ideal of nowhere dense sets in some topology (see [CJ]), so in our terms any ideal of sets is topological.
2 The results

We use the standard set theoretic notation as in [Ci].

Theorem 1 Let $|X| = \kappa \geq \omega$ and \mathcal{I} be a proper ideal of subsets of X such that $\mathcal{I} \subset [X]^{<\kappa}$. If $\bigcup \mathcal{I} = X$ then the pair $\langle \mathcal{P}(X), \mathcal{I} \rangle$ is inner MB-representable but is not topological.

Proof. To see that $\langle \mathcal{P}(X), \mathcal{I} \rangle$ is inner MB-representable put $\mathcal{F} = \mathcal{P}(X) \setminus \mathcal{I}$ and notice that $S_0(\mathcal{F}) = \mathcal{I}$ and $S(\mathcal{F}) = \mathcal{P}(X)$. (It is true for any proper ideal \mathcal{I}.)

To see that $\langle \mathcal{P}(X), \mathcal{I} \rangle$ is not topological suppose, by way of contradiction, that for some topology τ we have $\mathcal{I} = S_0(\tau \setminus \{\emptyset\})$ and $\mathcal{P}(X) = S(\tau \setminus \{\emptyset\})$. Consider a family $\{A_\alpha: \alpha < \kappa\}$ of disjoint sets such that $|A_\alpha| = \kappa$ for each $\alpha < \kappa$. For every $\alpha < \kappa$ the interior $\text{int}(A_\alpha)$ is nonempty since the boundary of A_α belongs to \mathcal{I} and has the cardinality less then κ. Moreover $|\text{int}(A_\alpha)| = \kappa$. For each $\alpha < \kappa$ choose an $x_\alpha \in \text{int}(A_\alpha)$. Then $\{x_\alpha\}$ has cardinality κ, so $\text{Int}(\{x_\alpha\}) = \emptyset$. Pick $x_\alpha \in \text{int}(A)$. Then $\{x_\alpha\} \in \mathcal{I} = \text{NWD}(\tau)$, a contradiction.

Remark 1 The condition $\bigcup \mathcal{I} = X$ in Theorem 1 is essential. For example, if $x_0 \in X$ and $\mathcal{I} = \{\emptyset, \{x_0\}\}$ then the pair $\langle \mathcal{P}(X), \mathcal{I} \rangle$ is made topological by a topology $\tau = \{A \subset X: x_0 \notin A\} \cup \{X\}$.

For a family \mathcal{G} of sets we let $i(\mathcal{G}) \overset{\text{def}}{=} \{\bigcap \mathcal{G}_0: \mathcal{G}_0 \in [\mathcal{G}]^{<\omega}\}$.

Theorem 2 Let κ be an infinite cardinal and \mathcal{F} be a family of nonempty subsets of X such that $\mathcal{F} \subset S(\mathcal{F})$, $|\mathcal{F}| \leq \kappa$, and

- $S_0(\mathcal{F})$ contains all sets $\bigcup \mathcal{J}$ where $\mathcal{J} \in [i(\mathcal{F}) \cap S_0(\mathcal{F})]^{<\kappa}$.

Then the pair $\langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$ is topological.

Proof. Recall that, by [BBRW, prop. 1.1(3)], we have $\mathcal{F} \cap S_0(\mathcal{F}) = \emptyset$. Let $\mathcal{F} = \{P_\alpha: \alpha < \kappa\}$. For every $\alpha < \kappa$ put

$$Z_\alpha = \bigcup (S_0(\mathcal{F}) \cap i(\{P_\xi: \xi \leq \alpha\})) \quad \text{and} \quad Q_\alpha = P_\alpha \setminus Z_\alpha.$$

Note that by our assumptions we have $Z_\alpha \in S_0(\mathcal{F})$, so $Q_\alpha \in S(\mathcal{F}) \setminus S_0(\mathcal{F})$.

Let τ be a topology on X generated by $\mathcal{B} = i(\{Q_\alpha: \alpha < \kappa\})$. By Fact 1 it is enough to show that families \mathcal{F} and $\mathcal{B} \setminus \{\emptyset\}$ are mutually coinitial.
Clearly for every $P_\alpha \in \mathcal{F}$ we have $Q_\alpha \subset P_\alpha$ and $Q_\alpha \in \mathcal{B}\setminus \{\emptyset\}$. So, $\mathcal{B}\setminus \{\emptyset\}$ is coinitial with \mathcal{F}. To see that \mathcal{F} is coinitial with $\mathcal{B}\setminus \{\emptyset\}$ take $Q \in \mathcal{B}\setminus \{\emptyset\}$. Since $Q \in S(\mathcal{F})$ it is enough to show that $Q \notin S_0(\mathcal{F})$ (as for every $A \in S(\mathcal{F})\setminus S_0(\mathcal{F})$ there are $P, P' \in \mathcal{F}$ with $P \subset A \cap P'$). Let $\alpha_1 < \cdots < \alpha_n < \kappa$ be such that

$$Q = \bigcap_{i=1}^{n} Q_{\alpha_i} = \bigcap_{i=1}^{n} (P_{\alpha_i} \setminus Z_{\alpha_i}) = \bigcap_{i=1}^{n} P_{\alpha_i} \setminus \bigcup_{i=1}^{n} Z_{\alpha_i}. $$

Since $\bigcap_{i=1}^{n} P_{\alpha_i} \in \{\{P_\xi : \xi \leq \alpha_n\}\}$, it cannot belong to $S_0(\mathcal{F})$, as otherwise we would have $\bigcap_{i=1}^{n} P_{\alpha_i} \subset Z_{\alpha_n}$ contradicting our assumption that $Q \neq \emptyset$. Thus $\bigcap_{i=1}^{n} P_{\alpha_i} \in S(\mathcal{F})\setminus S_0(\mathcal{F})$ and $\bigcup_{i=1}^{n} Z_{\alpha_i} \in S_0(\mathcal{F})$, leading to $Q \in S(\mathcal{F})\setminus S_0(\mathcal{F})$.

Remark 2 It was pointed to us by the referee that a very similar result (with almost identical proof) was proved earlier by Schilling in [5, thm. 3]. More precisely, Schilling considers the σ-ideals $S_0^\sigma(\mathcal{F})$ generated by $S_0(\mathcal{F})$ (which he denotes by $\mathcal{M}(\mathcal{F})$), defines $S^\sigma(\mathcal{F})$ as

$$\{A \subset X : (\forall P \in \mathcal{F})(\exists Q \in \mathcal{F}, Q \subset P)(Q \cap A \in S_0^\sigma(\mathcal{F}) \text{ or } Q \setminus A \in S_0^\sigma(\mathcal{F}))\}$$

(which he denotes by $\mathcal{B}(\mathcal{F})^1$), and proves that if (X, \mathcal{F}) is a category base, $\kappa = |\mathcal{F}|$, and the condition \bullet holds for $S_0^\sigma(\mathcal{F})$ in place of $S_0(\mathcal{F})$ then there exists a topology τ on X such that $S^\sigma(\mathcal{F}) = S^\sigma(\tau \setminus \{\emptyset\})$ and $S_0^\sigma(\mathcal{F})$ is equal to the σ-ideal $\mathcal{M}(\tau)$ of meager subsets of (X, τ).

It is not difficult to see that our result implies Schilling’s theorem since, by Fact 2, $(S(\mathcal{F}), S_0(\mathcal{F})) = (S(\tau \setminus \{\emptyset\}), S_0(\tau \setminus \{\emptyset\}))$ implies that \mathcal{F} and $\tau \setminus \{\emptyset\}$ are mutually coinitial so $S^\sigma(\mathcal{F}) = S^\sigma(\tau \setminus \{\emptyset\})$ and $S_0^\sigma(\mathcal{F})$ is equal to the σ-ideal generated by $S_0(\tau \setminus \{\emptyset\}) = NWD(\tau)$, that is, $S_0^\sigma(\mathcal{F}) = \mathcal{M}(\tau)$.

The relation between both results is the most straightforward when $S_0(\mathcal{F})$ is a σ-ideal, since then we have $S_0^\sigma(\mathcal{F}) = S_0(\mathcal{F}) = NWD(\tau) = \mathcal{M}(\tau)$ and $S^\sigma(\mathcal{F}) = S(\tau \setminus \{\emptyset\}) = S^\sigma(\tau \setminus \{\emptyset\})$.

We also should point here that our condition \bullet implies that $(X, \mathcal{F} \cup \{X\})$ forms a category base.

Applying Theorem 2 to κ equal to continuum \mathfrak{c} and the family \mathcal{F} of perfect subsets of the real line we obtain immediately the following corollary.

Corollary 3 The pair (S, S_0) of the classical Marczewski sets is topological.

\(^1\)If (X, τ) is a topological space then $\mathcal{B}(\tau \setminus \{\emptyset\}) = S^\sigma(\tau \setminus \{\emptyset\})$ is the family of all subsets of X with the Baire property.
The fact that $S = S^\tau (\tau \setminus \{0\})$ (which is equal to $S(\tau \setminus \{0\})$) was first proved by Aniszczyk [A] under the additional set-theoretical assumption that the ideal S_0 is continuum additive. Schilling [S] noticed that there is a topology τ on the real line for which $\langle S, S_0 \rangle = \langle S^\tau (\tau \setminus \{0\}), S_0^\tau (\tau \setminus \{0\}) \rangle$ which, as we noticed in Remark 2, is equal to $\langle S(\tau \setminus \{0\}), S_0(\tau \setminus \{0\}) \rangle$.

We also get

Corollary 4 Assume the Continuum Hypothesis. If $\emptyset \notin F \in [\mathcal{P}(X)]^{<\kappa}$ is such that $S_0(F)$ is a σ-ideal and $F \subset S(F)$ then the pair $\langle S(F), S_0(F) \rangle$ is topological.

For the rest of this note we will assume that X is a set of cardinality $\kappa \geq \omega$.

We say that a family $F_0 \subset [X]^\kappa$ is *almost disjoint* provided $|F_1 \cap F_2| < \kappa$ for every distinct $F_1, F_2 \in F_0$. It is a basic fact that there exist an almost disjoint family $F_0 \subset [X]^\kappa$ of cardinality greater than κ.

Notice the following simple fact.

Fact 3 If $F_0 \subset [X]^\kappa$ is almost disjoint and $F = \{F \Delta A : F \in F_0 \& A \in [X]^{<\kappa}\}$ then

$$F \subset S(F) = \{A : (\forall F \in F)(|F \setminus A| < \kappa \text{ or } |F \cap A| < \kappa)\}$$

and $[X]^{<\kappa} \subset S_0(F) = \{A : (\forall F \in F)(|F \cap A| < \kappa)\}$.

Moreover, $S_0(F) = [X]^{<\kappa}$ if and only if F_0 is maximal almost disjoint.

Theorem 5 Let $F = \{F \Delta A : F \in F_0 \& A \in [X]^{<\kappa}\}$, where $F_0 \subset [X]^\kappa$ is almost disjoint.

(a) If κ is a regular cardinal and $|F_0| \leq \kappa$ then the pair $\langle S(F), S_0(F) \rangle$ is topological.

(b) If $|F_0| > \kappa$ then the algebra $S(F)$ is not topological.

Proof. (a) Let $X = \{x_\alpha : \alpha < \kappa\}$ and put

$$F_1 = \{F \setminus \{x_\xi : \xi < \alpha\} : F \in F_0 \& \alpha < \kappa\}.$$

Regularity of κ implies that families F and F_1 are mutually coinitial. So, by Fact 1, we have $\langle S(F), S_0(F) \rangle = \langle S(F_1), S_0(F_1) \rangle$. Clearly $|F_1| \leq \kappa$ and $F_1 \subset F \subset S(F) \subset S(F_1)$.

Since regularity of κ implies also that $S_0(F)$ is κ-additive (i.e., union if less than κ-many sets from $S_0(F)$ belongs to $S_0(F)$), condition \bullet from Theorem 2 holds and so $\langle S(F_1), S_0(F_1) \rangle$ is topological.

(b) By way of contradiction suppose that there exists a topology τ on X such that $S(F) = S(\tau_0)$, where $\tau_0 = \tau \setminus \{\emptyset\}$.

Note that for every $F \in \mathcal{F}$ we have $F \in S(\mathcal{F}) \setminus S_0(\mathcal{F}) = S(\tau_0) \setminus NWD(\tau)$, so
\[\text{int}_\tau(F) \neq \emptyset \text{ for every } F \in \mathcal{F}. \] (1)
Also, if $F_0, F_1 \in \mathcal{F}_0$ are different then
\[\text{int}_\tau(F_0) \cap \text{int}_\tau(F_1) \subset F_0 \cap F_1 \in [X]^<\kappa \subset S_0(\mathcal{F}) = S_0(\tau_0) = NWD(\tau). \]
So, $\{\text{int}_\tau(F): F \in \mathcal{F}_0\}$ is the family of non-empty pairwise disjoint subsets of X of cardinality $|\mathcal{F}_0| > |X|$, which is impossible. ■

Remark 3 Notice that if κ has uncountable cofinality, $\mathcal{F}_0 \subset [X]^\kappa$ is maximal almost disjoint, and \mathcal{F} is as in Fact 3 then the algebra \mathcal{A} generated by the family \mathcal{F} (i.e., the closure of \mathcal{F} under finite unions, finite intersections and complements in X) is not inner MB-representable. This follows immediately from [BBC, thm. 13].

References

