Determine the largest possible domain of a function

Example (1): Determine the largest possible domain of \(f(x, y) = (\sqrt{2x} + \sqrt[3]{3y}) \).

Solution: Any real value of \(y \) can make \(\sqrt[3]{3y} \) meaningful, and so the domain for \(\sqrt[3]{3y} \) is the whole \(y \)-axis. Only non-negative real value of \(x \) can make \(\sqrt{2x} \) meaningful, and so the domain for \(\sqrt{2x} \) is the half line \([0, \infty)\). Combining these facts, we conclude that the domain of the function \(f(x, y) = (\sqrt{2x} + \sqrt[3]{3y}) \) is the half plane where \(x \geq 0 \), or in set notation: \(\{(x, y) : 0 \leq x < \infty \text{ and } -\infty < y < \infty}\).

Example (2): Determine the largest possible domain of \(f(x, y) = \frac{xy}{x^2 - y^2} \).

Solution: To avoid zero denominators, we must have \(x^2 - y^2 \neq 0 \). Since \(x^2 - y^2 = (x-y)(x+y) \), the domain of this function is the whole \(xy \)-plane with the two straight lines \(y = x \) and \(y = -x \) taken away.