Convert equations from one coordinate system to another: I

Useful Facts

<table>
<thead>
<tr>
<th>Cylindrical</th>
<th>Rectangle</th>
<th>Spherical</th>
<th>Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^2 = x^2 + y^2)</td>
<td>(x = r \cos \theta)</td>
<td>(\rho^2 = x^2 + y^2 + z^2)</td>
<td>(x = \rho \sin \phi \cos \theta)</td>
</tr>
<tr>
<td>(\theta = \tan^{-1} \frac{y}{x})</td>
<td>(y = r \sin \theta)</td>
<td>(\phi = \tan^{-1} \sqrt{\frac{x^2+y^2}{z}})</td>
<td>(y = \rho \sin \phi \sin \theta)</td>
</tr>
<tr>
<td>(z = z)</td>
<td>(z = z)</td>
<td>(\theta = \tan^{-1} \frac{y}{x})</td>
<td>(z = \rho \cos \phi)</td>
</tr>
</tbody>
</table>

Example (1) : Describe the graph \(r = 5 \) in cylindrical coordinates.

Solution: As \(z \) and \(\theta \) can take any values, the graph of \(r = 5 \) is an infinite cylinder with \(z \)-axis as the axis of the cylinder, and every point on the graph has distance 5 to the \(z \)-axis. Notice that the straight line \(L : x = \sqrt{5}, y = 0, z = t \) is on this graph, this graph can also be obtained by rotating \(L \) about the \(z \)-axis.

Example (2) : Describe the graph \(\theta = \frac{\pi}{4} \) in cylindrical (or spherical) coordinates.

Solution: As \(z \) and \(r \) can take any values, the graph of \(\theta = \frac{\pi}{4} \) consists of all the points in the space whose \(\theta \) value is \(\frac{\pi}{4} \), and so it is a plane that contains the \(z \)-axis.

Remark As \(\theta \) in cylindrical coordinates represents the same measure as in spherical coordinates, in this example, \(\theta = \frac{\pi}{4} \) in spherical coordinates has the same graph \(y = x \).

Example (3) : Describe the graph \(\phi = \frac{\pi}{6} \) in spherical coordinates.

Solution: As \(\rho \) and \(\theta \) can take any valid values, the graph of \(\phi = \frac{\pi}{6} \) consists of all the points in the space whose \(\phi \) value is \(\frac{\pi}{6} \), and so it is a (two penning) cone with its vertex at the origin, and with its axis being the \(z \)-axis.

Remark As \(\theta \) in cylindrical coordinates represents the same measure as in spherical coordinates, in this example, \(\theta = \frac{\pi}{4} \) in spherical coordinates has the same graph \(y = x \).

One can also use algebraic techniques to see what the graph is like. Apply the formula \(r = z \tan \phi \) and \(r^2 = x^2 + y^2 \), and substitute \(\phi \) by \(\frac{\pi}{6} \) (knowing that \(\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \)). This yields the equation for the graph

\[
\frac{x^2}{3} + \frac{y^2}{3} = \frac{z^2}{3}.
\]

Therefore, the graph can be obtained from the straight line \(z = \sqrt{3}x \) on the \(xz \)-plane by rotating this line about the \(z \)-axis.