Homework Assignment 4

Homework 4. Due day: 10/25/06

(1.3) A ring R such that $\forall a \in R, a^2 = a$ is called a Boolean ring. Prove that every Boolean ring is commutative and $a + a = 0, \forall a \in R$.

(1.6) A finite ring with more than one element and no zero divisors is a division ring.

(2.2) Let I be an ideal in a commutative ring R and let $\text{Rad } I = \{r \in R : r^n \in I \text{ for some integer } n \in \mathbb{Z}\}$. Show that $\text{Rad } I$ is an ideal.

(2.10) (a) Show that \mathbb{Z} is a principal ideal ring.
(b) Every homomorphic image of a principal ideal ring is also a principal ideal ring.
(c) \mathbb{Z}_m is a principal ideal ring for every $m > 0$.

(2.19) The ring of even integers contains a maximal ideal M such that E/M is not a field.
Solutions

(1.3) A ring \(R \) such that \(\forall a \in R, a^2 = a \) is called a \textbf{Boolean ring}. Prove that every Boolean ring is commutative and \(a + a = 0, \forall a \in R \).

\textbf{Proof} Let \(R \) be a Boolean ring, and \(a, b \in R \). Since \(R \) is Boolean,
\[
 a + b = (a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b,
\]
and so \(ab + ba = 0 \), implying \(ab = -ba \). Since \(a, b \) are arbitrary, setting \(b = a \), we have \(a = a^2 = -a^2 = -a \). Therefore, for any \(a \in R \), \(a + a = 0 \), and for any \(a, b \in R \), \(ab = -ba = b(-a) = ba \).

(1.6) A finite ring with more than one element and no zero divisors is a division ring.

\textbf{Proof} Let \(R \) be such a ring. It suffices to show that \(R \) has a multiplicative identity (unity) and that every nonzero element of \(R \) has a multiplicative inverse.

Since \(R \) is finite, denote \(R^* := R \setminus \{0\} = \{r_1, r_2, \cdots, r_n\} \). Since \(R \) has no zero divisor, the map \(f : R^* \to R^* \) by \(f(r_x) = r_1r_x \) is bijection, and so \(r_1R^* = R^* = R^*r_1 \). Therefore, there must be some \(i \), such that \(r_1r_i = r_1 \).

Fix \(i \). For any \(x \) with \(1 \leq x \leq n \), \(r_1r_i = r_1r_x \). Since \(R \) has no zero divisor, \(r_1r_x = r_x \).

Since \(R \) has no zero divisor, for any \(x \) with \(1 \leq x \leq n \), \(r_xr_i \in R^* \), and \(R^r_x = R^* \). Therefore, there must be a \(j \) with \(1 \leq j \leq n \), such that \(r_xr_i = r_jr_x \). Multiply \(r_x \) both sides from right, and apply \(r_xr_x = r_x \) to get \(r_x^2 = r_jr_x^2 \). It follows that \(r_1r_x = r_x = r_jr_x = r_xr_i \). Hence, \(r_i \) is the multiplicative identity of \(R \). We denote \(r_i = 1 \).

Now pick an arbitrary \(r_x \in R^* \). By \(r_xR^* = R^* \), there must be a \(r_y \in R^* \) such that \(r_xr_y = r_i = 1 \). Let \(r_t = r_yr_x \). Then as \(r_xr_y = 1 \), \(r_x = (r_xr_y)r_x = r_x(r_yr_x) = r_xr_t \). Since \(R \) has no zero divisor, and since \(R \) has 1, we have \(r_t = 1 \), and so \(r_yr_x = 1 = r_xr_y \). Thus every \(r_x \in R^* \) has an inverse.

(2.2) Let \(I \) be an ideal in a commutative ring \(R \) and let \(\text{Rad} \, I = \{ r \in R : r^n \in I \text{ for some integer } n \in \mathbb{Z} \} \). Show that \(\text{Rad} \, I \) is an ideal.

\textbf{Proof:} Let \(a, b \in \text{Rad} \, I \). Then for some integers \(m, n \), we have \(a^m \in I \) and \(b^n \in I \). Since \(R \) is commutative,
\[
(a - b)^{m+n} = \sum_{k=0}^{m+n} (-1)^k \binom{m+n}{k} a^kb^{m+n-k}.
\]
Note that \(k < m \) if and only if \(m + n - k \geq n \). Since \(I \) is an ideal and since \(a^m, b^n \in I \), it follows that for each \(k \) with \(0 \leq k \leq m + n \), \(a^kb^{m+n-k} \in I \), and so \(a + b \in \text{Rad} \, I \).

Now let \(a \in \text{Rad} \, I \) and \(r \in R \). As \(a^m \in I \) and as \(I \) is an ideal, \((ra)^m = r^ma^m \in I \), and so \(ra \in \text{Rad} \, I \), which implies that \(\text{Rad} \, I \) is an ideal.

(2.10) (a) Show that \(\mathbb{Z} \) is a principal ideal ring.
(b) Every homomorphic image of a principal ideal ring is also a principal ideal ring.
(c) \(\mathbb{Z}_m \) is a principal ideal ring for every \(m > 0 \).
Proof: (a) Let $I \subseteq \mathbb{Z}$ be an ideal of \mathbb{Z}. Since $\mathbb{Z} = \langle 1 \rangle$, and $\{0\} = \langle 0 \rangle$, we may assume that I is proper. Then since I is a proper ideal, I contains at least one positive integer. Pick $a \in I$ be the smallest positive integer in I, and we claim that $I = \langle a \rangle$.

Since $a \in I$, it suffices to show that $I \subseteq \langle a \rangle$. Let $x \in I - \{0\}$. By division algorithm, we can find integers q and r such that $x = qa + r$ and such that $0 \leq r < a$. Since $a \in I$ and since I is an ideal, $qa \in I$ and so $r = x - qa \in I$. It follows by the choice of a that $r = 0$. Hence $\forall x \in I$, $x = qa$ for some $q \in \mathbb{Z}$. Thus $I \subseteq \langle a \rangle$.

(b) Let R, R' be rings, such that R is a principal ideal ring, and $f : R \rightarrow R'$ be a ring homomorphism such that $R' = f(R)$. We want to show that R' is also a principal ideal ring.

Let I' be an ideal of R' and let $I = f^{-1}(I')$. Then since $f(0_R) = 0_{R'} \in I'$, $0_R \in I$. If $a, b \in I$, then $f(a), f(b) \in I'$. Since f is a homomorphism, and since I' is an ideal, $f(a - b) = f(a) - f(b) \in I'$, and so $a - b \in I$. For any $r \in R$ and $a \in I$, since I' is an ideal in R', and since f is a ring homomorphism, $f(ra) = f(r)f(a) \in I'$, and so by the definition of I, $ra \in I$. This shows that I is an ideal of R. (You may also quote Exercise 13(a) of Chapter III, Section 2 on Page 134. But it is better to prove it yourself as it is also a good exercise for us to get familiar with the skill).

Hence I is an ideal of R. Since R is a principal ideal ring, $\exists a \in R$ such that $I = \langle a \rangle$. Thus $a \in I$ and so $f(a) \in I'$. Since I' is an ideal, $\langle f(a) \rangle \subseteq I'$. For any $x' \in I'$, $\exists x \in I$ such that $f(x) = x'$. Note that (by Theorem 2.5(i)),

$$I = \langle a \rangle = \{ra + as + na + \sum_{i=1}^{m} r_i a s_i : r, s, r_i, s_i \in R; \text{ and } m, n \in \mathbb{Z} \}.$$

Thus $x = ra + as + na + \sum_{i=1}^{m} r_i a s_i$. Since f is a homomorphism, $x' = f(x) = f(r)f(a) + f(a)f(s) + nf(a) + \sum_{i=1}^{m} f(r_i)f(a)f(s_i) \in \langle f(a) \rangle$ and so $\langle f(a) \rangle \subseteq I'$. Thus $I' = \langle f(a) \rangle$, and so R' is a principal ideal ring.

(c) Since \mathbb{Z} is a principal ideal ring (by (a)), and since the map $f(n) = \pi \in \mathbb{Z}_m$ is a ring epimorphism, it follows from (b) that \mathbb{Z}_m is a principal ideal ring.

(2.19) The ring of even integers contains a maximal ideal M such that E/M is not a field.

Proof: Note that $E = (2)$ is a principal ideal in \mathbb{Z}. Let $p > 2$ be a prime and let $M = \langle 2p \rangle$. Then M is a principal ideal of E. Let I be an ideal in E. Then $\exists 2a \in E$ with $a > 0$ such that $I = \langle 2a \rangle$ (One can imitate the proof that \mathbb{Z} is a principal ideal to show that E is also a principal ideal ring). If $M \subset I$, then $2a|2p$ or $a|p$. Hence either $a = p$ or $a = 1$, and so M is a maximal ideal.

To see that E/M is no an integral domain, we observe that $E/M = \{0, 2, \cdots, 2p - 2\}$. Since $p > 2$ is a prime, $\forall a, b \in E/M - \{0\}$, $ab \neq a$ and $ab \neq b$ (in E/M). Therefore E/M does not have an identity and so E/M cannot be a field.