Hungerford: Algebra

III.4. Rings of Quotients and Localization

1. Determine the complete ring of quotients of the ring \mathbb{Z}_n for each $n \geq 2$.

Proof: Denote $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$, and the set of all non zero divisors of \mathbb{Z}_n by $S(\mathbb{Z}_n)$.

(1.1) Claim: $S(\mathbb{Z}_n) = \{m : (m, n) = 1\}$.

Suppose that $0 < m < n$ and $(m, n) = d$. If $\overline{m} \notin S(\mathbb{Z}_n)$. Then there exists an x with $0 < x < n$ such that $\overline{mx} = 0$. Thus $n|(mx)$. If $(m, n) = 1$, then $n|x$, contrary to the assumption that $0 < x < n$.

Conversely, assume that $d > 1$. Then for some positive integers m' and n' with $0 < m' < n$ and $0 < n' < n$, we have $m = m'd$ and $n = n'd$. Therefore

$$\overline{mn'} = \overline{mm'} = \overline{mn} = 0 \in \mathbb{Z}_n,$$

and so $\overline{m} \notin S(\mathbb{Z}_n)$. Thus $S(\mathbb{Z}_n) \supseteq \{m : (m, n) = 1\}$. This proves the claim.

By the claim, we can write $S^{-1}\mathbb{Z}_n = \{\overline{m}/\overline{s} : (n, s) = 1\}$.

Example: For $n = 4$,

$$S^{-1}\mathbb{Z}_4 = \{1/3, 2/3\} \cup \mathbb{Z}_4.$$

2. Let R be a multiplication subset of a commutative ring with identity and let T be a multiplication subset of the ring $S^{-1}R$. Let $S_* = \{r \in R : r/s \in T \text{ for some } s \in S\}$. Then S_* is a multiplicative subset of R and there is a ring isomorphism $S_*^{-1}R \cong T^{-1}(S^{-1}R)$.

Proof: We may assume that $0 \notin S$.

For any $r, r' \in S_*$, there exist $s, s' \in S$ such that $r/s, r'/s' \in T$. Since T is multiplicative, $(rr')/ss' \in T$; and since S is multiplicative, $ss' \in S$. Thus $rr' \in S_*$, and so S_* is also multiplicative.

We now define a map $f : S_*^{-1}R \rightarrow T^{-1}(S^{-1}R)$. For any $r/w \in S_*^{-1}R$ with $r \in R$ and $w \in S_*$, there exists $s \in S$ such that $w/s \in T$. Thus we define

$$f(r/w) = (r/s)/(w/s) \in T^{-1}(S^{-1}R).$$

(2.1) f is well-defined.

Suppose that $r/w = r'/w'$ in $S_*^{-1}R$. As $w, w' \in S_*$, there exist $s, s' \in S$ such that $w/s, w'/s' \in T$.

Since $r/w = r'/w'$ in $S_*^{-1}R$, we have, for some $r'' \in S_*$, $r''(rw' - r'w) = 0$ in R, and for some $s'' \in S$,

$$s''(rw' - r'w) = 0 \in R,$$
\(r''/s'' \in T \). It follows that in \(R \), we also have

\[
r''(rw's's' - r'wss') = 0.
\]

Hence in \(S^{-1}R \), we have \((r''/s'')(w'/s') - (rw'')(ss') = 0\), and so \((r/s)(w'/s') = (rw'')(ss') = (r''w)/(ss') = (r'/s')(w/s)\). This, in turn, implies that in \(T^{-1}(S^{-1}R)\),

\[
f(r/w) = (r/s)/(w/s) = (r'/s')/(w'/s') = f(r'/w').
\]

(2.2) \(f : S^{-1}_*R \mapsto T^{-1}(S^{-1}R) \) is a ring homomorphism.

Let \(r_1/w_1, r_2/w_2 \in S^{-1}_*R \). Then \(\exists s_1, s_2 \in S \) such that \(w_1/s_1, w_2/s_2 \in T \), which implies that \((w_1/w_2)/(s_1s_2) \in T \).

\[
f(r_1/w_1 + r_2/w_2) = f((r_1w_2 + r_2w_1)/(w_1w_2)) \quad \text{(addition in } S^{-1}_*R)\]

\[
= ((r_1w_2 + r_2w_1)/(s_1s_2))/((w_1w_2)/(s_1s_2)) \quad \text{(definition of } f)\]

\[
= ((r_1/s_1)(w_2/s_2) + (r_2/s_2)(w_1/s_1))/((w_1/s_1)(w_2/s_2)) \quad \text{(addition and multiplication in } T^{-1}(S^{-1}R)\]

\[
= (r_1/s_1)/(w_1/s_1) + (r_2/s_2)/(w_2/s_2) \quad \text{(addition in } T^{-1}(S^{-1}R)\]

\[
= f(r_1/w_1) + f(r_2/w_2) \quad \text{(definition of } f)\]

Let 1 denote the identity of \(R \). Since \(S \) is multiplicative, \(1/1 = s/s \) in \(S^{-1}R \) for any \(s \in S \). For any \(w/s \in T \), \((w/s)(1/1)(w/s) - (w/s)(1/1)) = 0/s and so \((1/1)(1/1) = (w/s)/(w/s) \) in \(T^{-1}(S^{-1}R) \).

(2.3) For any \(w \in S_* \) and for any \(s \in S \), \(sw \in S_* \).

In fact, if \(w \in S_* \), then \(\exists s' \in S \) such that \(w/s' \in T \). For any \(s \in S \), since \(1/1 = s/s \in S^{-1}R \),

\[
(sw)/(ss') = (1/1)(w/s) \in T,
\]

and so \(ss' \in S \), \(sw \in S_* \).

(2.4) Let \(r \in R \). If for some \(w' \in S_* \), \(rw' = 0 \), then for any \(w \in S_* \), \(r/w = (rw'/w) = 0/(ww') = 0/w \). In particular, in \(S^{-1}_*R \),

\[
\{0/w\} = \{r/w : r \in R, w \in S_* \}, \text{ and for one } w \in S_* \{rw = 0 \text{ in } R\}.
\]

(2.5) \(f \) is a bijection.

For any \((r/s)(w/s) \in T^{-1}(S^{-1}R)\), we have \(r \in R \), \(s \in S \) and \(w/s \in T \). Thus \(w \in S_* \) and so \(f(r/w) = (r/s)(w/s) \). Thus \(f \) is surjective.

By (2.3) and (2.4)

\[
\text{Ker } f = \{r/w \in S^{-1}_*R : f(r/w) = 0 \in T^{-1}(S^{-1}R)\}
\]

\[
= \{r/w \in S^{-1}_*R : \text{ for some } w \in R, s \in S \text{ with } w/s \in T, (r/s)(w/s) = (0/s)/(w/s) \in T^{-1}(S^{-1}R)\}\]
(b) We claim that for a multiplicative subset S of the rational numbers, first assume that p is a prime, so $a/b = 1$, and every irreducible element is a prime, for some primes $a/b, p/q, m/p/q$.

Let $Q = (Z - \{0\})^{-1}Z$ denote the field of the rational numbers. Then $\forall p/q \in Q$, $p, q \in Z$ and $q \neq 0$. Without loss of generality, we may assume that $q > 0$, and so $p/q = (2p)/2q \in E^{-1}bfZ$. This proves that $Q \subseteq E^{-1}bfZ$, and so equality must hold.

(b) We claim that for a multiplicative subset $S \subseteq Z - \{0\}$, $S^{-1}Z = Q$ if and only if for any prime p, $S \cap pZ \neq \emptyset$.

First assume that $S^{-1}Z = Q$. For any prime p, as $1/p \in Q = S^{-1}Z$, $\exists a \in Z$ and $b \in S$ such that $a/b = 1/p$, or in Z, $ap = b \in S$. Hence $S \cap pZ = \emptyset$.

Conversely, we assume that for any prime p, $S \cap pZ \neq \emptyset$. Let $a/b \in Q$. Then as Z is a PID (and so a UFD, and every irreducible element is a prime), for some primes p_1, p_2, \ldots, p_m, and positive integers n_1, n_2, \ldots, n_m,

$$b = p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m}.$$

Since $p_iZ \cap S \neq \emptyset$, for each i, $\exists s_i \in Z$ such that $s_ip_i \in S$. Let $s = s_1s_2 \cdots s_m$. Then $sb = (s_1p_1)(s_2p_2) \cdots (s_mp_m) \in S$, and so $a/b = (sa)/sb \in S^{-1}Z$. This proves $Q \subseteq S^{-1}bfZ$, and completes the proof.

4. If $S = \{2, 4\}$ and $R = Z_6$, then $S^{-1}R \cong Z_3$.

Proof: For the simplicity of notation, we denote $Z_6 = \{0, 1, 2, 3, 4, 5\}$. Therefore, $|S \times R| = 12$.

As $\frac{3}{2} = \frac{3}{4} = \frac{9}{8} \neq \frac{9}{7}$, and so the equivalence class in $S^{-1}R$ represented by $\frac{9}{7}$ contains 4 elements; as $\frac{1}{4} = \frac{2}{2} = \frac{4}{4}$, and so the equivalence class in $S^{-1}R$ represented by $\frac{4}{4}$ contains 4 elements; as $\frac{5}{2} = \frac{2}{2} = \frac{4}{4}$, and so the equivalence class in $S^{-1}R$ represented by $\frac{4}{4}$ contains 4 elements. Thus $S \times R$ has exactly 3 equivalence classes.

Define $\phi : S^{-1}R \rightarrow Z_3$ by $\phi(\frac{9}{7}) = 0, \phi(\frac{4}{4}) = 1$ and $\phi(\frac{4}{4}) = 2$. Then one can verify that this is a ring epimorphism (verification is routine and so omitted here). Since $|S^{-1}R| = Z_3| = 3$, ϕ is also a monomorphism and so ϕ is an isomorphism.

5. Let R be an integral domain with quotient field F. It T is an integral domain such that $R \subseteq T \subseteq F$, then F is (isomorphic to) the quotient field of T.

Proof: Let E be the field of quotients of T. Then there is an monomorphism $f : T \rightarrow E$. By Corollary III-4.6 (Let R be an integral domain considered as a subring of its quotient field F. If
\(E \) is a field and \(f : R \mapsto E \) is a monomorphism of rings, then there is a unique monomorphism of fields \(\tilde{f} : F \mapsto E \) such that the restriction of \(\tilde{f} \) to \(R \) is \(f \). We here apply Corollary III-4.6 with \(T \) replacing \(R \), there is a field monomorphism \(\tilde{f} : E \mapsto F \) extending \(f \). View this isomorphism as an embedding, we may assume that

\[T \subseteq E \subseteq F. \]

Now apply Corollary III-4.6 to \(R \) with \(E \) replacing \(F \) in Corollary III-4.6, then we have

\[R \subseteq F \subseteq E. \]

8. Let \(R \) be a commutative ring with identity, \(I \) an ideal of \(R \) and \(\pi : R \mapsto R/I \) the canonical projection.

(a) If \(S \) is a multiplicative subset of \(R \), then \(\pi S = \pi(S) \) is a multiplicative subset of \(R/I \).

(b) The mapping \(\theta : S^{-1}R \mapsto (\pi S)^{-1}(R/I) \) given by \(r/s \mapsto \pi(r)/\pi(s) \) is a well defined function.

(c) \(\theta \) is a ring epimorphism with kernel \(S^{-1}I \) and hence induces a ring isomorphism \(S^{-1}R/S^{-1}I \cong (\pi S)^{-1}(R/I) \).

Proof:

(a) \(\forall s, s' \in S \), as \(S \) is a multiplicative subset, \(ss' \in S \). Thus \(\pi(s)\pi(s') = \pi(ss') \in \pi(S) = \pi(S) \) and so \(\pi(S) \) is a multiplicative subset.

(b) Suppose that \(r/s = r'/s' \in S^{-1}R \). Then \(rs' = r's \). Since \(\pi : R \mapsto R/I \) is a homomorphism,

\[\pi(r)\pi(s') = \pi(r's) = \pi(r's) = \pi(r)\pi(s'). \]

It follows that \(\theta(r/s) = \pi(r)/\pi(s) = \pi(r'/s') = \theta(r'/s') \) in \((\pi S)^{-1}(R/I) \).

(c) For any \(r/s, r'/s' \in S^{-1}R \),

\[\theta(r/s + r'/s') = \theta((r/s + r'/s')/ss') = \pi((rs' + r's)/ss') = \pi(r')/\pi(s') = \theta(r'/s'). \]

\[\theta((r/s)(r'/s')) = \theta((rr')/(ss')) = \pi(rr')/\pi(ss') = \pi(r')/\pi(s') \]

\[= (\pi(r)/\pi(s))(\pi(r')/\pi(s')) = \theta(r/s)\theta(r'/s'). \]

For any \(a/b \in (\pi S)^{-1}(R/I) \) with \(a \in R/I \) and \(b \in \pi S \), since \(\pi \) is an epimorphism, \(\exists r \in R, s \in S \) such that \(a = \pi(r) \) and \(b = \pi(s) \). Therefore, \(\theta(r/s) = a/b \) and so \(\theta \) is also an epimorphism.

\[\text{Ker} \theta = \{ r/s \in S^{-1}R : \theta(r/s) = 0 \in (\pi S)^{-1}(R/I) \} \]

\[= \{ r/s \in S^{-1}R : \pi(r)/\pi(s) = 0/\pi(s) \in (\pi S)^{-1}(R/I) \} \]

\[= \{ r/s \in S^{-1}R : \pi(r) = 0 \in R/I \text{ and } \pi(s) \in \pi(S) \} \]

\[= \{ r/s \in S^{-1}R : r \in I \text{ and } s \in S \} = S^{-1}I. \]
9. Let S be a multiplicative subset of a commutative ring with identity. If I is an ideal in R, then $S^{-1}(\text{Rad } I) = \text{Rad } (S^{-1}(I))$.

Proof: It is routine to show that $S^{-1}(\text{Rad } I) \subseteq \text{Rad } (S^{-1}I)$. In fact, if $\frac{a}{b} \in S^{-1}(\text{Rad } I)$, then $a \in \text{Rad } (I)$ and $b \in S$. Thus for some integer $n > 0$, $a^n \in I$. As S is multiplicative, $b^n \in S$. It follows that $(\frac{a}{b})^n = \frac{a^n}{b^n} \in S^{-1}I$, and so $S^{-1}(\text{Rad } I) \subseteq \text{Rad } (S^{-1}I)$.

Conversely, let $\frac{a}{b} \in \text{Rad}(S^{-1}I)$. Then for some integer $m > 0$, $\frac{a^m}{b^m} = (\frac{a}{b})^m \in S^{-1}I$. Therefore, for some $c \in I$ and $d \in S$, $\frac{a^m}{b^m} = \frac{c}{d}$. Thus $\exists s \in S$, such that

$$s(a^m d - b^m c) = 0,$$

or equivalently, $a^m sd = b^m sc$.

Since $c \in I$ and since I is an ideal, $a^m sd = b^m sc \in I$. Since S is a multiplicative set, and since $b, s, d \in S$, we have $bsd \in S$ and so

$$(asd)^m = a^m sd (sd)^{m-1} \in I, (bsd)^m \in S$$

and so $\left(\frac{asd}{bsd}\right)^m \in S^{-1}I$.

Thus $\frac{asd}{bsd} \in \text{Rad}(S^{-1}I)$. But then for any $s' \in S$, $s'(asd - absd) = 0$, and so

$$\frac{a}{b} = \frac{asd}{bsd} \in \text{Rad}(S^{-1}I).$$

This proves that $\text{Rad } (S^{-1}(I)) \subseteq S^{-1}(\text{Rad } I))$.

12. A commutative ring with identity is local if and only if for all $r, s \in R$, $r + s = 1_R$ implies r or s is a unit.

Proof: Let R be a commutative ring with identity 1_R.

Suppose first that R is local, and so R has exactly one maximal ideal M. Suppose that $r, s \in R$ with $r + s = 1$. If neither r nor s are units, then (r) and (s) are principal ideals. Let M_1 and M_2 be maximal ideals of R containing (r) and (s), respectively. Then since M is the only maximal ideal of R, we have $M_1 = M_2 = M$, and so $r, s \in M$. Since $r + s = 1_R$, we must have $1_R \in M$, and so $M = R$, contrary to the assumption that $M \neq R$.

Conversely, assume that $\forall r, s \in R$, that $r + s = 1_R$ implies that r or s is a unit. By contradiction, we assume that R has at least two distinct maximal ideals M_1 and M_2. Since M_1 and M_2 are distinct maximal ideals, the ideal $M_1 + M_2$ must be R itself. Therefore, since $1_R \in R$, $\exists r \in M_1$ and $s \in M_2$ such that $r + s = 1_R$. Therefore, either r or s is a unit, and so either M_1 or M_2 equals R, contrary to the fact that a maximal ideal is not equal to R.

13. The ring R consisting of all rational numbers with denominators not divisible by some (fixed) prime p is a local ring.

Proof: Consider the ring \mathbb{Z} of the integers. For a fixed prime p, (p) is a prime ideal of \mathbb{Z} and so $S = \mathbb{Z} - (p)$ is a multiplicative subset. By Theorem III-4.11(ii) (Let P be a prime idea in a commutative ring R with identity, the ideal $P_P = S^{-1}P$ is the unique maximal ideal of the ring
$R_P = S^{-1}R$, the localization of R at P, $Z_{(p)}$, having $S^{-1}(p)$ as its only maximal ideal, is a local ring.

Fact: The structure of $Z_{(p)}$. As $(p) = pZ$, $S = Z - (p) = \{ n \in Z - \{0\} : p \nmid n \}$. Thus

$$Z_{(p)} = \{ n/m \in \mathbb{Q} : p \nmid m \}.$$

In particular.

$$Z_{(2)} = \{ n/m \in \mathbb{Q} : m \text{ is odd} \}.$$

6