Exercises on Compact and Connected Subsets in \mathbb{R}^n

(2.28) Show that compactness is a topological property and give examples to show that closedness and boundedness are not.

Proof: Suppose that X and Y are topological spaces, and $f : X \mapsto Y$ is a homeomorphism. That is, $f : X \mapsto Y$ is a bijection, f and $f^{-1} : Y \mapsto X$ are continuous.

(i) Compactness is a topological property.

This is to show that if X is compact, then Y is also. Suppose that X is compact. We want to show that Y is also compact. Our strategy is to apply the definition, and show that every infinite sequence of points in Y has a limit point in Y.

Let $\{y_i\}_{i=1}^{\infty}$ be an infinite sequence of points in Y. Let $x_i = f^{-1}(y_i)$, $i = 1, 2, ...$. Then $\{x_i\}_{i=1}^{\infty}$ is an infinite sequence of points in X. Since X is compact, $\{x_i\}_{i=1}^{\infty}$ has a limit point a in X. Since $f : X \mapsto Y$ is continuous, by Theorem (2.16) and Theorem (2.12), $f(a)$ is a limit point of $\{f(x_i)\}_{i=1}^{\infty} = \{y_i\}_{i=1}^{\infty}$. Since $f(a) \in Y$, the sequence $\{y_i\}_{i=1}^{\infty}$ has a limit point in Y. By the definition of compact sets, Y is compact.

(ii) closedness and boundedness are not topological properties.

Let $f(x) = \tan(x)$, $X = (-\frac{\pi}{2}, \frac{\pi}{2}) \subseteq \mathbb{R}$ and $Y = (-\infty, \infty) = \mathbb{R}$. Then $f : X \mapsto Y$ is a homeomorphism (need to check this fact). X is bounded but Y is not bounded; and X is not closed in \mathbb{R} but Y is closed in \mathbb{R}.

(2.29) Prove that X is connected if and only if X cannot be written as a union of two non-empty disjoint sets which are closed related to X.

Proof: First we assume that X is connected. By contradiction, we assume that $X = A \cup B$ such that $A \neq \emptyset$ and $B \neq \emptyset$, $A \cap B = \emptyset$ and A and B are closed related to X. (So we are looking for a contradiction).

Since X is connected, by the definition of connected sets, either A or B contains a limit point of the other. We may assume that A contains a limit point b of B. Since B is closed, and since $b \in A = A - B$, b has a neighborhood N such that $b \in N$ and $N \cap B = \emptyset$. By the definition of limit points, b cannot be a limit point of B, contrary to the assumption that b is a limit point of B. This contradiction shows that X cannot be written as a union of two non-empty disjoint sets which are closed related to X.

Conversely, we assume that X cannot be written as a union of two non-empty disjoint sets which are closed related to X. We will verify the definition of connected sets for X. Suppose that for some subsets A and B of X,

$$X = A \cup B, A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset.$$

By the assumption, A and B cannot be both closed in X. We assume that A is not closed in X.

Then by Exercise 2.5 (done before), \(A\) cannot be equal to its closure \(\text{Cl}(A)\). Thus there must be a point \(a \in \text{Cl}(A) - A\), or \(a \in \text{Fr}(A)\) by the definition of \(\text{Cl}(A)\). Pick one such \(a \in \text{Cl}(A) - A\). Then \(A\) has a limit point (frontier point) \(a\) which is not in \(A\). Since \(X = A \cup B\) and since \(a \in X - A\), we have \(a \in B\), and so \(B\) contains a limit point of \(A\). By the definition of connected sets, \(X\) is connected.