Homework 3

1. Write your own functions to perform polynomial interpolation. Use the following structure:

 a) Write a function \texttt{A/ddiff(x,y)} to create a divided difference array \texttt{A} from the points \((x(i),y(i))\) in the one-dimensional arrays \texttt{x} and \texttt{y}. The divided difference table is to be created in the two-dimensional array \texttt{A}. The input arrays \texttt{x} and \texttt{y} should be columns, but if they are rows, your program should transpose them if necessary. The array \texttt{A} may or may not contain \texttt{x} as its first column - your choice. Otherwise, it should have the form

 \[
 \begin{align*}
 f(x_0) & \rightarrow f[x_0, x_1] \rightarrow f[x_0, x_1, x_2] \rightarrow f[x_0, x_1, x_2, x_3] \rightarrow \cdots \\
 f(x_1) & \rightarrow f[x_1, x_2] \rightarrow f[x_1, x_2, x_3] \rightarrow \cdots \\
 f(x_2) & \rightarrow f[x_2, x_3] \rightarrow \cdots \\
 f(x_3) & \rightarrow \cdots \\
 \cdots
 \end{align*}
 \]

 where the arrows show how each successive column is to be calculated.

 b) Write a function \texttt{y/newteval(a,t,x)} that will evaluate the polynomial in Newton form given by

 \[
 a_0 + a_1 (x - t_0) + a_2 (x - t_0)(x - t_1) + \ldots + a_n (x - t_0)(x - t_1) \cdots (x - t_{n-1})
 \]

 where the \(a_i\) are in the array \texttt{a} and the \(t_i\) are in the array \texttt{t}, and \texttt{x} is an array of points at which the polynomial is to be evaluated. Use nested multiplication to evaluate the polynomial:

 \[
 p(x) = a_0 + [a_1 + [a_2 + \ldots + [a_{n-1} + [a_n (x - t_{n-1})] \ldots] (x - t_2)] (x - t_1)] (x - t_0)
 \]

 c) Finally, incorporate the functions of a) and b) into function \texttt{a/interp(x,y)} which will take interpolation points \((x(i),y(i))\) contained in the arrays \texttt{x} and \texttt{y}, calculate in the array \texttt{a} the coefficients of the interpolating polynomial in Newton form, and plot the interpolating polynomial and the interpolation points. (Plot the interpolation points as circles using \texttt{plot(x,y,'o')}).

 You will need to use the MATLAB functions \texttt{size()} or \texttt{length()} to determine the size of the arrays that are passed to the functions.

2. Use your interpolation program on Runge’s example: \(f(x) = \frac{1}{1 + x^2}\) on the interval \([-5, 5]\) with equally spaced points. Plot \(f(x)\) as well as \(p_n(x)\). Spacing of \(h = 1\) and \(h = .5\) should be adequate to see what is happening - what is happening?

3. Apply your interpolation program to interpolate \(f(x) = \cos(\pi x)\) on the interval \([0, 1]\). (Use spacing of \(.2, .1, .05\)). Plot the interpolation error and see if it is consistent with the estimate that we developed in class. Add noise of size \(10^{-3}\) to the function and see the effect on the interpolant - to add noise of magnitude \(k\), add \(k \ast (2 \ast \text{rand(size(y))} - 1)\) to \texttt{y}. (Why is this the appropriate term to add?)
4. Recall that the Lagrange fundamental polynomials \(L_j \) interpolate the data \(y_i = 0, \ i \neq j \) and \(y_j = 1 \). For any other interpolation scheme, we will refer to the functions that interpolate the data \(y_i = 0, \ i \neq j \) and \(y_j = 1 \) as Lagrange fundamental functions. Find and plot the Lagrange fundamental functions for the cubic tabular interpolation scheme discussed in class; more specifically, we are given function values
\[f(a - h), f(a), f(a + h), f(a + 2h), \ldots, f(b - h), f(b), f(b + h) \]
at the \(x \) values
\[x_{-1} = a - h, x_0 = a, \ldots, x_n = b, x_{n+1} = b + h, \]
where \(nh = b - a \). Then for any \(x \) on the interval \([a, b]\) we approximate \(f(x) \) with the value \(p(x) \) of the cubic polynomial interpolating the function values at the four datapoints nearest to \(x \). You are to find and plot the approximating function obtained by applying this interpolation scheme to data for which \(f(x_j) = 1 \) and \(f(x_i) = 0 \) for \(i \neq j \), where \(1 < j < n - 1 \) may be assumed.