Cycle Spectra of Hamiltonian Graphs

Kevin G. Milans (milans@math.sc.edu)
University of South Carolina
Joint with F. Pfender, D. Rautenbach, F. Regen, and D. B. West

Fall 2011 Southeastern Section Meeting of the AMS
Wake Forest University
Winston-Salem, NC
25 September 2011
Cycle spectrum

- The *cycle spectrum* of a graph G is the set of lengths of cycles in G.
Cycle spectrum

- The *cycle spectrum* of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Theorem (Bondy (1971))

If $d(u) + d(v) \geq n$ whenever u and v are non-adjacent, then $G = K_{n/2,n/2}$ or $S(G) = \{3, \ldots, n\}$.
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Theorem (Bondy (1971))

If $d(u) + d(v) \geq n$ whenever u and v are non-adjacent, then $G = K_{n/2,n/2}$ or $S(G) = \{3, \ldots, n\}$.

Theorem (Gould–Haxell–Scott (2002))

\(\forall \varepsilon > 0 \exists c: \text{ if } G \text{ is a graph with } \delta(G) \geq \varepsilon n \text{ and maximum even cycle length } 2\ell, \text{ then } S(G) \text{ contains all even lengths up to } 2\ell - c. \)
Cycle spectrum

The cycle spectrum of a graph G is the set of lengths of cycles in G.

Let $S(G)$ denote the cycle spectrum of G.

Let $s(G)$ denote $|S(G)|$.

Theorem (Bondy (1971))

If $d(u) + d(v) \geq n$ whenever u and v are non-adjacent, then $G = K_{n/2, n/2}$ or $S(G) = \{3, \ldots, n\}$.

Theorem (Gould–Haxell–Scott (2002))

$\forall \varepsilon > 0 \exists c$: if G is a graph with $\delta(G) \geq \varepsilon n$ and maximum even cycle length 2ℓ, then $S(G)$ contains all even lengths up to $2\ell - c$.

Conjecture

$\exists c$: if G is a Hamiltonian subgraph of $K_{n,n}$ with $\delta(G) \geq c\sqrt{n}$, then $S(G) = \{4, 6, \ldots, 2n\}$.
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Conjecture (Erdős)
If G has girth g and average degree k, then $s(G) \geq \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

(Sudakov–Verstraëte 2008) True for all g.

Question (Jacobson–Lehel)
Lower bounds on $s(G)$ when G is Hamiltonian and k-regular.
In particular, what about $k = 3$?
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \geq \Omega(k^{\lfloor(g-1)/2\rfloor})$.

Question (Jacobson–Lehel)

Lower bounds on $s(G)$ when G is Hamiltonian and k-regular.

In particular, what about $k = 3$?
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Conjecture (Erdős)
If G has girth g and average degree k, then $s(G) \geq \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

- (Sudakov–Verstraëte 2008) True for all g.

Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \geq \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

- (Sudakov–Verstraëte 2008) True for all g.

Question (Jacobson–Lehel)

- Lower bounds on $s(G)$ when G is Hamiltonian and k-regular.
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Conjecture (Erdős)

If G has girth g and average degree k, then $s(G) \geq \Omega(k^{\lfloor (g-1)/2 \rfloor})$.

- (Sudakov–Verstraëte 2008) True for all g.

Question (Jacobson–Lehel)

- Lower bounds on $s(G)$ when G is Hamiltonian and k-regular.
- In particular, what about $k = 3$?
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Example (Jacobson–Lehel)
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Example (Jacobson–Lehel)

$S(G) = \{4, 6\} \cup \left\{ \frac{2}{3} n, \frac{2}{3} n + 2, \frac{2}{3} n + 4, \ldots, n \right\}$
Cycle spectrum

- The cycle spectrum of a graph G is the set of lengths of cycles in G.
- Let $S(G)$ denote the cycle spectrum of G.
- Let $s(G)$ denote $|S(G)|$.

Example (Jacobson–Lehel)

- $S(G) = \{4, 6\} \cup \left\{\frac{2}{3}n, \frac{2}{3}n + 2, \frac{2}{3}n + 4, \ldots, n\right\}$
- $s(G) = n/6 + 3$
The **cycle spectrum** of a graph G is the set of lengths of cycles in G.

Let $S(G)$ denote the cycle spectrum of G.

Let $s(G)$ denote $|S(G)|$.

Example (Jacobson–Lehel)

$S(G) = \{4, 6\} \cup \{\frac{2}{3}n, \frac{2}{3}n + 2, \frac{2}{3}n + 4, \ldots, n\}$

$s(G) = n/6 + 3$

Generalizes to provide k-regular Hamiltonian graphs with $s(G) = \frac{k-2}{2k} n + k$ when $2k$ divides n.
How small can the cycle spectrum be?

Definition
Let $f_n(m)$ be the minimum size of the cycle spectrum of an n-vertex Hamiltonian graph with m edges.
How small can the cycle spectrum be?

Definition
Let $f_n(m)$ be the minimum size of the cycle spectrum of an n-vertex Hamiltonian graph with m edges.

Theorem (Bondy (1971))

If G is an n-vertex Hamiltonian graph with m edges and $m > \frac{n^2}{4}$, then G is \textit{pancyclic} (has cycles of all lengths from 3 to n).
How small can the cycle spectrum be?

Definition
Let $f_n(m)$ be the minimum size of the cycle spectrum of an n-vertex Hamiltonian graph with m edges.

Theorem (Bondy (1971))
If G is an n-vertex Hamiltonian graph with m edges and $m > n^2/4$, then G is pancyclic (has cycles of all lengths from 3 to n).

Theorem (Entringer–Schmeichel (1988))
If G is an n-vertex bipartite Hamiltonian graph with m edges and $m > n^2/8$, then G is bipancyclic (has cycles of all even lengths from 4 to n).
Overlapping chords lemma

Lemma

Let G be a graph with an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq \frac{\ell + 3}{2}$.

Proof.
Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of h − 1 distinct lengths. Having only h − 1 lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

Let n be the length of P.
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- Let n be the length of P.
- Let e_1, \ldots, e_h be the chords in G.
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- Let \(n \) be the length of \(P \).
- Let \(e_1, \ldots, e_h \) be the chords in \(G \).
- Let \(P_{i,j} \) be the \(x, y \)-path using \(e_i, e_j \), and edges of \(P \).
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- Let n be the length of P.
- Let e_1, \ldots, e_h be the chords in G.
- Let $P_{i,j}$ be the x, y-path using e_i, e_j, and edges of P.
- The length of $P_{i,j}$ is $n + 2 - 2d(e_i, e_j)$.

\[\begin{align*}
\text{Let } n & \text{ be the length of } P. \\
\text{Let } e_1, \ldots, e_h & \text{ be the chords in } G. \\
\text{Let } P_{i,j} & \text{ be the } x, y \text{-path using } e_i, e_j, \text{ and edges of } P. \\
\text{The length of } P_{i,j} & \text{ is } n + 2 - 2d(e_i, e_j).
\end{align*}\]
Overlapping chords lemma

Lemma

Given a graph G with an x,y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x,y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

![Diagram showing overlapping chords]

- The length of $P_{i,j}$ is $n + 2 - 2d(e_i, e_j)$.

$\exists d(e_i, e_j)$
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- The length of \(P_{i,j} \) is \(n + 2 - 2d(e_i, e_j) \).
- Already, \(P_{1,2}, \ldots, P_{1,h} \) provide \(h - 1 \) lengths.
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \).
Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- The length of \(P_{i,j} \) is \(n + 2 - 2d(e_i, e_j) \).
- Already, \(P_{1,2}, \ldots, P_{1,h} \) provide \(h - 1 \) lengths.
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \).

Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- The length of \(P_{i,j} \) is \(n + 2 - 2d(e_i, e_j) \).
- Already, \(P_{1,2}, \ldots, P_{1,h} \) provide \(h - 1 \) lengths.
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and

2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- The length of \(P_{i,j} \) is \(n + 2 - 2d(e_i, e_j) \).
- Already, \(P_{1,2}, \ldots, P_{1,h} \) provide \(h - 1 \) lengths.
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- The length of $P_{i, j}$ is $n + 2 - 2d(e_i, e_j)$.
- Already, $P_{1, 2}, \ldots, P_{1, h}$ provide $h - 1$ lengths.
Overlapping chords lemma

Lemma

\(G\): an \(x, y\)-path \(P\) plus \(h\) pairwise-overlapping chords of length \(\ell\). Then \(G\) contains \(x, y\)-paths of \(h - 1\) distinct lengths. Having only \(h - 1\) lengths requires that

1. the chords are consecutive along \(P\), and
2. \(\ell\) is odd and \(h \geq (\ell + 3)/2\).

Proof.

- The length of \(P_{i,j}\) is \(n + 2 - 2d(e_i, e_j)\).
- Already, \(P_{1,2}, \ldots, P_{1,h}\) provide \(h - 1\) lengths.
- Only \(h - 1\) lengths: every length is realized by \(P_{1,j}\) for some \(j\).
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- The length of $P_{i,j}$ is $n + 2 - 2d(e_i, e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide $h - 1$ lengths.
- Only $h - 1$ lengths: every length is realized by $P_{1,j}$ for some j.
- Length n is realized: e_2 immediately follows e_1.
Overlapping chords lemma

Lemma

G: an x,y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x,y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- The length of $P_{i,j}$ is $n + 2 - 2d(e_i, e_j)$.
- Already, $P_{1,2}, \ldots, P_{1,h}$ provide $h - 1$ lengths.
- Only $h - 1$ lengths: every length is realized by $P_{1,j}$ for some j.
- Length n is realized: e_2 immediately follows e_1.
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

Consider a chord \(e_j \).

\(\begin{align*}
 e_1 \quad e_2 &\quad e_j
\end{align*} \)
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- Consider a chord \(e_j \).
- The length of \(P_{2,j} \) ...
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- Consider a chord \(e_j \).
- The length of \(P_{2,j} \) ...
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- Consider a chord e_j.
- The length of $P_{2,j}$...
- ... is also realized by $P_{1,i}$.
Overlapping chords lemma

Lemma

Let G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- Consider a chord e_j.
- The length of $P_{2,j} \ldots$
- \ldots is also realized by $P_{1,i}$.
Overlapping chords lemma

Lemma

\(G: \) an \(x, y\)-path \(P\) plus \(h\) pairwise-overlapping chords of length \(\ell\). Then \(G\) contains \(x, y\)-paths of \(h - 1\) distinct lengths. Having only \(h - 1\) lengths requires that

1. the chords are consecutive along \(P\), and
2. \(\ell\) is odd and \(h \geq (\ell + 3)/2\).

Proof.

- Consider a chord \(e_j\).
- The length of \(P_{2,j}\)...
- ...is also realized by \(P_{1,i}\).
- So, there is a chord immediately preceding \(e_j\).
Overlapping chords lemma

Lemma

\(G: an \ x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \).
Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- Consider a chord \(e_j \).
- The length of \(P_{2,j} \ldots\)
- \ldots is also realized by \(P_{1,i} \).
- So, there is a chord immediately preceding \(e_j \).
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. \(\) the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- Consider a chord \(e_j \).
- The length of \(P_{2,j} \ldots \)
- \(\ldots \) is also realized by \(P_{1,i} \).
- So, there is a chord immediately preceding \(e_j \).
Overlapping chords lemma

Lemma

\(G: \) an \(x, y \)-path \(P \) plus \(h \) pairwise-overlapping chords of length \(\ell \). Then \(G \) contains \(x, y \)-paths of \(h - 1 \) distinct lengths. Having only \(h - 1 \) lengths requires that

1. the chords are consecutive along \(P \), and
2. \(\ell \) is odd and \(h \geq (\ell + 3)/2 \).

Proof.

- Lengths of paths: \(n, n - 2, \ldots, n - 2(h - 2) \).
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- Lengths of paths: $n, n - 2, \ldots, n - 2(h - 2)$.
- Path with a single chord: length $n - (\ell - 1)$.
Overlapping chords lemma

Lemma

G: an x, y-path P plus h pairwise-overlapping chords of length ℓ. Then G contains x, y-paths of $h - 1$ distinct lengths. Having only $h - 1$ lengths requires that

1. the chords are consecutive along P, and
2. ℓ is odd and $h \geq (\ell + 3)/2$.

Proof.

- Lengths of paths: $n, n - 2, \ldots, n - 2(h - 2)$.
- Path with a single chord: length $n - (\ell - 1)$.
- So $\ell - 1 \in \{0, 2, \ldots, 2(h - 2)\}$.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.

Diagram:

- e_1: chord with most overlapping chords going forward.
- e_2: first chord not overlapping e_1.
- e_3: first chord not overlapping e_2 or e_1.
- e_4: first chord not overlapping e_3 or e_1.

Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e_1: chord with most overlapping chords going forward.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

Choose a forward direction along C.
- e_1: chord with most overlapping chords going forward.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a **greedy chord system**.

Choose a forward direction along C.

- e_1: chord with most overlapping chords going forward.
Greedy chord system

- **G**: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along C.
- e_1: chord with most overlapping chords going forward.
- e_2: first chord not overlapping e_1.
Greedy chord system

- \(G \): Hamiltonian cycle \(C \) plus \(q \) chords of length \(\ell \)
- Find many distinct cycle lengths using a greedy chord system.

- Choose a forward direction along \(C \).
- \(e_1 \): chord with most overlapping chords going forward.
- \(e_2 \): first chord not overlapping \(e_1 \).
- \(e_3 \): first chord not overlapping \(e_2 \) or \(e_1 \).
Greedy chord system

- **G**: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

Choose a forward direction along C.
- e_1: chord with most overlapping chords going forward.
- e_2: first chord not overlapping e_1.
- e_3: first chord not overlapping e_2 or e_1.
- e_4: first chord not overlapping e_3 or e_1.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e_1.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e_1.
- For $1 \leq j \leq \alpha$, let F_j consist of e_j plus chords overlapping e_j going forward.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e_1.

For $1 \leq j \leq \alpha$, let F_j consist of e_j plus chords overlapping e_j going forward.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e_1.

- For $1 \leq j \leq \alpha$, let F_j consist of e_j plus chords overlapping e_j going forward.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e_1.
- For $1 \leq j \leq \alpha$, let F_j consist of e_j plus chords overlapping e_j going forward.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e_1.
- For $1 \leq j \leq \alpha$, let F_j consist of e_j plus chords overlapping e_j going forward.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- The process ends with e_α, when all remaining chords in the forward direction overlap e_α or e_1.
- For $1 \leq j \leq \alpha$, let F_j consist of e_j plus chords overlapping e_j going forward.
Greedy chord system

- **G**: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

Let F^* be the set of remaining chords.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

Let F^* be the set of remaining chords.

When $F^* \neq \emptyset$, define e^* to be the first chord in F^* after e_α.

F_1, \ldots, F_α and F^* form a partition of the chords.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Let F^* be the set of remaining chords.
- When $F^* \neq \emptyset$, define e^* to be the first chord in F^* after e_α.
- F_1, \ldots, F_{α} and F^* form a partition of the chords.
Greedy chord system

- G: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Let F^* be the set of remaining chords.
- When $F^* \neq \emptyset$, define e^* to be the first chord in F^* after e_α.
- F_1, \ldots, F_α and F^* form a partition of the chords.
- Greedy choice of e_1: $|F_1| \geq |F_j|$ for $1 \leq j \leq \alpha$.
Greedy chord system

- **G**: Hamiltonian cycle C plus q chords of length ℓ
- Find many distinct cycle lengths using a greedy chord system.

- Let F^* be the set of remaining chords.
- When $F^* \neq \emptyset$, define e^* to be the first chord in F^* after e_α.
- F_1, \ldots, F_α and F^* form a partition of the chords.
- Greedy choice of e_1: $|F_1| \geq |F_j|$ for $1 \leq j \leq \alpha$.
- Also: $|F_1| \geq |F^*|$.

- α
Spectrum bands

We find many cycle lengths by dividing the space of possible cycle lengths into bands.
We find many cycle lengths by dividing the space of possible cycle lengths into bands.

Let $C[x, y]$ denote the subpath of C from x to y along the forward direction.
We find many cycle lengths by dividing the space of possible cycle lengths into bands.

Let $C[x, y]$ denote the subpath of C from x to y along the forward direction.

Let uv be a chord such that $C[u, v]$ has length ℓ. Replacing $C[u, v]$ with uv reduces the length of a cycle containing $C[u, v]$ by $\ell - 1$.
Spectrum bands

<table>
<thead>
<tr>
<th>3</th>
<th>α</th>
<th>⋯</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$-\ell - 1$</td>
<td>n</td>
</tr>
</tbody>
</table>

- We find many cycle lengths by dividing the space of possible cycle lengths into bands.
- Let $C[x, y]$ denote the subpath of C from x to y along the forward direction.
- Let uv be a chord such that $C[u, v]$ has length ℓ. Replacing $C[u, v]$ with uv reduces the length of a cycle containing $C[u, v]$ by $\ell - 1$.
- We have α bands at the top, each of size $\ell - 1$.
Spectrum bands

<table>
<thead>
<tr>
<th>3</th>
<th>α</th>
<th>…</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>

- The jth band: from $n - j(\ell - 1) + 1$ to $n - (j - 1)(\ell - 1)$.
- The short cycles: lengths below the top α bands.
- The long cycles: lengths in the top 2 bands.
Spectrum bands

The jth band: from $n - j(\ell - 1) + 1$ to $n - (j - 1)(\ell - 1)$.

The short cycles: lengths below the top α bands.
Spectrum bands

- The jth band: from $n - j(\ell - 1) + 1$ to $n - (j - 1)(\ell - 1)$.
- The short cycles: lengths below the top α bands.
- The long cycles: lengths in the top 2 bands.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.
Short cycles lemma

Lemma
If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.

Diagram:
- $v_{\ell+1}$
- e_1
- v_1
- e^*
- v_j
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*|-1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- Cycle using e^* and e has length $2(k - j + 1)$.

e^*
v_k
v_1
vj
v_{\ell+1}$
e_1
Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*|-1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- Cycle using e^* and e has length $2(k - j + 1)$.
- Cycle using e and e_1 has length $2(n - k + 2)$.

Note: $j \geq 1 + \alpha \ell$.

This cycle has length at most $n - \alpha \ell + 2$.

$\alpha \geq 2$: this cycle is short.
Short cycles lemma

Lemma
If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- Cycle using e^* and e has length $2(k - j + 1)$.
- Cycle using e and e_1 has length $2(n - k + 2)$.
- Some cycle has length at most $n - j + 3$.

Note: $j \geq 1 + \alpha \ell$.

This cycle has length at most $n - \alpha \ell + 2$.

$\alpha \geq 2$: this cycle is short.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- Cycle using e^* and e has length $2(k - j + 1)$.
- Cycle using e and e_1 has length $2(n - k + 2)$.
- Some cycle has length at most $n - j + 3$.

Note: $j \geq 1 + \alpha \ell$.

This cycle has length at most $n - \alpha \ell + 2$.

$\alpha \geq 2$: this cycle is short.
Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- Cycle using e^* and e has length $2(k - j + 1)$.
- Cycle using e and e_1 has length $2(n - k + 2)$.
- Some cycle has length at most $n - j + 3$.
- Note: $j \geq 1 + \alpha \ell$.

Diagram: A graph with vertices $v_1, v_2, \ldots, v_{\ell+1}$ and edges $e_1, e_2, e_3, e_4, e_\alpha, e^*$ connecting them.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least \(\frac{|F^*| - 1}{2} \) distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- Cycle using e^* and e has length $2(k - j + 1)$.
- Cycle using e and e_1 has length $2(n - k + 2)$.
- Some cycle has length at most $n - j + 3$.
- Note: $j \geq 1 + \alpha \ell$.
- This cycle has length at most $n - \alpha \ell + 2$.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

- We may assume $|F^*| \geq 2$.
- Consider a chord $e \in F^*$ with $e \neq e^*$.
- Cycle using e^* and e has length $2(k - j + 1)$.
- Cycle using e and e_1 has length $2(n - k + 2)$.
- Some cycle has length at most $n - j + 3$.
- Note: $j \geq 1 + \alpha \ell$.
- This cycle has length at most $n - \alpha \ell + 2$.
- $\alpha \geq 2$: this cycle is short.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

We obtain $|F^* - 1|$ short cycles.
Short cycles lemma

Lemma

If $\alpha \geq 2$, then G has short cycles of at least $\frac{|F^*| - 1}{2}$ distinct lengths.

- We obtain $|F^* - 1|$ short cycles.
- Each length occurs at most twice.
Longer cycles
Longer cycles

<table>
<thead>
<tr>
<th>Short Cycles</th>
<th>Long Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>3 2 1</td>
</tr>
<tr>
<td>(\ell - 1)</td>
<td></td>
</tr>
</tbody>
</table>
Longer cycles

\[\alpha \]

Short Cycles

Long Cycles

\[\ell > 3 \]

\[e_1, e_2, e_3, e_4, e_\alpha, e^* \]
A long cycle is good if it contains $C[u, v]$.
A long cycle is good if it contains $C[u, v]$.

- Let ρ be the number of lengths of good cycles.
- Overlapping chords lemma: $\rho \geq |F_1| - 1$.

First, suppose $\rho \geq |F_1|$.

Longer cycles

α

Short Cycles

<table>
<thead>
<tr>
<th></th>
<th>Long Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lll - 1\rrr$</td>
<td>3 2 1</td>
</tr>
</tbody>
</table>
A long cycle is **good** if it contains $C[u, v]$.

Let ρ be the number of lengths of good cycles.
Longer cycles

<table>
<thead>
<tr>
<th>Short Cycles</th>
<th>Long Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>$\ell - 1$</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- A long cycle is **good** if it contains $C[u, v]$.
- Let ρ be the number of lengths of good cycles.
A long cycle is **good** if it contains $C[u, v]$.

Let ρ be the number of lengths of good cycles.

Overlapping chords lemma: $\rho \geq |F_1| - 1.$
A long cycle is good if it contains $C[u, v]$.

Let ρ be the number of lengths of good cycles.

Overlapping chords lemma: $\rho \geq |F_1| - 1$.

First, suppose $\rho \geq |F_1|$.
A long cycle is **good** if it contains $C[u, v]$.

Let ρ be the number of lengths of good cycles.

Overlapping chords lemma:

$\rho \geq |F_1| - 1$.

First, suppose $\rho \geq |F_1|$.
Longer cycles

Using a chord shifts these lengths down by $\ell - 1$.
Using a chord shifts these lengths down by $\ell - 1$.

<table>
<thead>
<tr>
<th>Short Cycles</th>
<th>Long Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td></td>
</tr>
<tr>
<td>$\ell - 1$</td>
<td></td>
</tr>
</tbody>
</table>

α sets of ρ lengths; each length appears at most once.
Longer cycles

Using a chord shifts these lengths down by \(\ell - 1 \).
Longer cycles

Using a chord shifts these lengths down by $\ell - 1$.

<table>
<thead>
<tr>
<th>Short Cycles</th>
<th>Long Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$\ell - 1$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- u and v are vertices.
- e_1, e_2, e_3, e_4, and e_α are edges.

Each length occurs at most twice. Add one more set. Now: α sets of ρ lengths; each length appears at most once.
Using a chord shifts these lengths down by \(\ell - 1 \).

This yields \(\alpha - 1 \) sets of \(\rho \) lengths. Each length occurs at most twice.
Using a chord shifts these lengths down by $\ell - 1$.

This yields $\alpha - 1$ sets of ρ lengths. Each length occurs at most twice.

Add one more set.
Using a chord shifts these lengths down by $\ell - 1$.

This yields $\alpha - 1$ sets of ρ lengths. Each length occurs at most twice.

Add one more set.

Now: α sets of ρ lengths; each length appears at most once.
Longer cycles

Short Cycles

Long Cycles

\[\frac{\alpha \rho}{2} \]

So we have \(\frac{\alpha \rho}{2} \) longer cycle lengths, plus \(\frac{|F^*| - 1}{2} \) short cycle lengths.
Longer cycles

\[\alpha \]

Short Cycles

Long Cycles

\[\ell - 1 \]

\[u \]

\[v \]

\[e_1 \]

\[e_2 \]

\[e_3 \]

\[e_4 \]

\[e_\alpha \]

\[\alpha \rho \]

\[|F^*| - 1 \]

\[s(G) \geq \frac{\alpha}{2} |F_1| + \frac{|F^*| - 1}{2} \]

\[\geq \frac{\alpha}{2} q - \frac{|F^*|}{\alpha} + \frac{|F^*| - 1}{2} \]

\[\geq \frac{q - 1}{2} \]

So we have \(\frac{\alpha \rho}{2} \) longer cycle lengths, plus \(\frac{|F^*| - 1}{2} \) short cycle lengths.

Since \(\rho \geq |F_1| \),

\[s(G) \geq \frac{\alpha |F_1|}{2} + \frac{|F^*| - 1}{2} \]

\[\geq \frac{\alpha q - |F^*|}{2} + \frac{|F^*| - 1}{2} \]

\[\geq \frac{q - 1}{2} \]
Longer cycles

\[u \quad \text{Short Cycles} \quad \alpha \quad \text{Long Cycles} \]

\[
\begin{array}{c|c|c|c}
\alpha & \cdot\cdot\cdot & \cdot\cdot\cdot & \cdot\cdot\cdot \\
3 & 2 & 1 \\
\end{array}
\]

\[\ell - 1 \]

\[\text{Otherwise } \rho = |F_1| - 1. \]
Longer cycles

Short Cycles

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>Long Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

$\ell - 1$

\Rightarrow Otherwise $\rho = |F_1| - 1$.

\Rightarrow The Overlapping cycles lemma implies:
Longer cycles

- Short Cycles
- Long Cycles

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ηα = \|F_1\| - 1.

- Otherwise ρ = |F_1| - 1.

- The Overlapping cycles lemma implies:
 1. \(ι \) is odd
 2. Chords in \(F_1 \) are consecutive
 3. \(|F_1| \geq (ι + 3)/2\)
Longer cycles

\[\alpha \]

Short Cycles

Long Cycles

\[\ell - 1 \]

\(u \) \(v \)

- Otherwise \(\rho = |F_1| - 1. \)
- The Overlapping cycles lemma implies:
 1. \(\ell \) is odd
 2. Chords in \(F_1 \) are consecutive
 3. \(|F_1| \geq (\ell + 3)/2 \)
- We exploit the structure in two cases to show

\[s(G) \geq \left(q - 1 - \frac{q}{\ell} \right)/2. \]
Summary and Open Problems

Theorem

If G is an n-vertex Hamiltonian graph with p chords, then

$$s(G) \geq \sqrt{p} - \frac{1}{2} \ln p - 1.$$

Open Problems

▶ What is the maximum number of edges in an n-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between $(1 + o(1))n^2/16$ and $(1 + o(1))n^2/8$.

▶ What is the maximum number of edges in an n-vertex Hamiltonian graph with $s(G) < n/2 - 1$? The answer lies between $(1 + o(1))n^2/16$ and $(1 + o(1))n^2/4$.

▶ Obtain better bounds on $f_n(m)$.

▶ Is a constant c such that $s(G) \geq cn$ for every Hamiltonian graph G with $\delta(G) \geq 3$?
Summary and Open Problems

Theorem

If G is an n-vertex Hamiltonian graph with p chords, then
\[s(G) \geq \sqrt{p} - \frac{1}{2} \ln p - 1. \]

Open Problems

- What is the maximum number of edges in an n-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{8}$.
Summary and Open Problems

Theorem

If G is an n-vertex Hamiltonian graph with p chords, then

$$s(G) \geq \sqrt{p} - \frac{1}{2} \ln p - 1.$$

Open Problems

- What is the maximum number of edges in an n-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{8}$.

- What is the maximum number of edges in an n-vertex Hamiltonian graph with $s(G) < n/2 - 1$? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{4}$.
Summary and Open Problems

Theorem

If G is an n-vertex Hamiltonian graph with p chords, then
\[s(G) \geq \sqrt{p} - \frac{1}{2} \ln p - 1. \]

Open Problems

- What is the maximum number of edges in an n-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{8}$.
- What is the maximum number of edges in an n-vertex Hamiltonian graph with $s(G) < n/2 - 1$? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{4}$.
- Obtain better bounds on $f_n(m)$.
Summary and Open Problems

Theorem
If G is an n-vertex Hamiltonian graph with p chords, then
\[s(G) \geq \sqrt{p} - \frac{1}{2} \ln p - 1. \]

Open Problems

- What is the maximum number of edges in an n-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{8}$.
- What is the maximum number of edges in an n-vertex Hamiltonian graph with $s(G) < \frac{n}{2} - 1$? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{4}$.
- Obtain better bounds on $f_n(m)$.
- Is a constant c such that $s(G) \geq cn$ for every Hamiltonian graph G with $\delta(G) \geq 3$?
Summary and Open Problems

Theorem

If G is an n-vertex Hamiltonian graph with p chords, then

$$s(G) \geq \sqrt{p} - \frac{1}{2} \ln p - 1.$$

Open Problems

- What is the maximum number of edges in an n-vertex bipartite Hamiltonian graph that is not bipancyclic? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{8}$.

- What is the maximum number of edges in an n-vertex Hamiltonian graph with $s(G) < n/2 - 1$? The answer lies between $(1 + o(1)) \frac{n^2}{16}$ and $(1 + o(1)) \frac{n^2}{4}$.

- Obtain better bounds on $f_n(m)$.

- Is a constant c such that $s(G) \geq cn$ for every Hamiltonian graph G with $\delta(G) \geq 3$?

Thank You