Monotone Paths in Dense Edge-Ordered Graphs

Kevin G. Milans (milans@math.wvu.edu)

West Virginia University

AMS Spring Southeastern Sectional Meeting
University of Georgia
Athens, GA
March 5, 2016
Monotone paths

- Let G be a graph whose edges are ordered according to a labeling φ.

What is $f(K_n)$?
Monotone paths

Let G be a graph whose edges are ordered according to a labeling φ.

![Diagram of a graph with labeled edges]
Monotone paths

- Let G be a graph whose edges are ordered according to a labeling φ.

- A monotone path traverses edges in increasing order.
Monotone paths

Let G be a graph whose edges are ordered according to a labeling φ.

A monotone path traverses edges in increasing order.
Monotone paths

- Let G be a graph whose edges are ordered according to a labeling φ.

- A monotone path traverses edges in increasing order.

- The altitude of G, denoted $f(G)$, is the maximum integer k such that every edge-ordering of G has a monotone path of length k.
Monotone paths

- Let G be a graph whose edges are ordered according to a labeling φ.

- A monotone path traverses edges in increasing order.

- The altitude of G, denoted $f(G)$, is the maximum integer k such that every edge-ordering of G has a monotone path of length k.

- [Chvátal–Komlós (1971)] What is $f(K_n)$?
Prior work

Theorem (Graham–Kleitman (1973))

\[\sqrt{n - \frac{3}{4} - \frac{1}{2}} \leq f(K_n) \leq \frac{3n}{4} \]
Prior work

Theorem (Graham–Kleitman (1973))
\[\sqrt{n - \frac{3}{4} - \frac{1}{2}} \leq f(K_n) \leq \frac{3n}{4} \]

- Rödl: Graham–Kleitman and design theory give
 \[f(K_n) \leq (\frac{2}{3} + o(1))n \]
Prior work

Theorem (Graham–Kleitman (1973))
\[\sqrt{n - \frac{3}{4} - \frac{1}{2}} \leq f(K_n) \leq \frac{3n}{4} \]

- Rödl: Graham–Kleitman and design theory give
 \[f(K_n) \leq \left(\frac{2}{3} + o(1) \right) n \]
- Alspach–Heinrich–Graham (unpublished):
 \[f(K_n) \leq \left(\frac{7}{12} + o(1) \right) n \]
Prior work

Theorem (Graham–Kleitman (1973))
\[
\sqrt{n - \frac{3}{4}} - \frac{1}{2} \leq f(K_n) \leq \frac{3n}{4}
\]

- Rödl: Graham–Kleitman and design theory give
 \[f(K_n) \leq \left(\frac{2}{3} + o(1)\right)n\]
- Alspach–Heinrich–Graham (unpublished):
 \[f(K_n) \leq \left(\frac{7}{12} + o(1)\right)n\]

Theorem (Calderbank–Chung–Sturtevant (1984))
\[f(K_n) \leq \left(\frac{1}{2} + o(1)\right)n\]
Prior work II

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in \{5, 6, 7, 8, 9\}.

If \(p(n) = \omega(\log n / \sqrt{n}) \), then \(f(G(n, p)) \geq (1 - o(1)) \sqrt{n} \) with probability tending to 1.
Prior work II

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in \(\{5, 6, 7, 8, 9\} \).
- Alon (2003): the max. altitude of a \(k \)-regular graph is in \(\{k, k + 1\} \).
Prior work II

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in \{5, 6, 7, 8, 9\}.
- Alon (2003): the max. altitude of a k-regular graph is in \{\(k\), \(k + 1\)\}.
- Mynhardt–Burger–Clark–Falvai–Henderson (2005): the max. altitude of a 3-regular graph is 4, achieved by the flower snarks.
Prior work II

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in \(\{5, 6, 7, 8, 9\} \).
- Alon (2003): the max. altitude of a \(k \)-regular graph is in \(\{k, k + 1\} \).
- Mynhardt–Burger–Clark–Falvai–Henderson (2005): the max. altitude of a 3-regular graph is 4, achieved by the flower snarks.

- \(f(Q_n) \geq n/\lg n \)
Prior work II

- Roditty–Shoham–Yuster (2001): the max. altitude of a planar graph is in \(\{5, 6, 7, 8, 9\} \).
- Alon (2003): the max. altitude of a \(k \)-regular graph is in \(\{k, k + 1\} \).
- Mynhardt–Burger–Clark–Falvai–Henderson (2005): the max. altitude of a 3-regular graph is 4, achieved by the flower snarks.

- \(f(Q_n) \geq n / \lg n \)
- If \(p(n) = \omega \left(\log n / \sqrt{n} \right) \), then \(f(G(n, p)) \geq (1 - o(1)) \sqrt{n} \) with probability tending to 1.
Random edge-orderings

Theorem (Lavrov–Loh (2015+))

- With probability tending to 1, a random edge-labeling of K_n has a monotone path of length $0.85n$.
- With probability at least $\frac{1}{e} - o(1)$, a random edge-labeling of K_n has a Hamiltonian monotone path.

Conjecture (Lavrov–Loh)

With high probability, a random edge-labeling of K_n has a Hamiltonian monotone path.
Random edge-orderings

Theorem (Lavrov–Loh (2015+))

- With probability tending to 1, a random edge-labeling of K_n has a monotone path of length $0.85n$.
- With probability at least $1/e - o(1)$, a random edge-labeling of K_n has a Hamiltonian monotone path.
Random edge-orderings

Theorem (Lavrov–Loh (2015+))

- With probability tending to 1, a random edge-labeling of K_n has a monotone path of length $0.85n$.
- With probability at least $1/e - o(1)$, a random edge-labeling of K_n has a Hamiltonian monotone path.

Conjecture (Lavrov–Loh)

With high probability, a random edge-labeling of K_n has a Hamiltonian monotone path.
Our result

Theorem (Graham–Kleitman (1973))

\[f(K_n) \geq \sqrt{n - \frac{3}{4}} - \frac{1}{2} \]
Our result

Theorem (Graham–Kleitman (1973))
\[f(K_n) \geq \sqrt{n - \frac{3}{4}} - \frac{1}{2} \]

Theorem (Rödl (1973))
If \(G \) has average degree \(d \), then \(f(G) \geq (1 - o(1))\sqrt{d} \).
Our result

Theorem (Graham–Kleitman (1973))

\[f(K_n) \geq \sqrt{n - \frac{3}{4}} - \frac{1}{2} \]

Theorem (Rödl (1973))

If G has average degree d, then \(f(G) \geq (1 - o(1))\sqrt{d} \).

Theorem

Let G be an n-vertex graph, and let \(s = Cn^{1/3}(\lg n)^{2/3} \). If G has average degree d, then

\[f(G) \geq \frac{d}{4s} \left(1 - \frac{2}{d} \right) \left(1 - \frac{1}{s} \right) \left(1 - \frac{4s^2}{d - 2} \right). \]
Our result

Theorem (Graham–Kleitman (1973))

\[f(K_n) \geq \sqrt{n - \frac{3}{4} - \frac{1}{2}} \]

Theorem (Rödl (1973))

If G has average degree d, then \(f(G) \geq (1 - o(1))\sqrt{d} \).

Theorem

Let G be an n-vertex graph, and let \(s = Cn^{1/3}(\lg n)^{2/3} \). If G has average degree d, then

\[
f(G) \geq \frac{d}{4s} \left(1 - \frac{2}{d}\right) \left(1 - \frac{1}{s}\right) \left(1 - \frac{4s^2}{d - 2}\right).
\]

Corollary

\[f(K_n) \geq (\frac{1}{20} - o(1))(n/\lg n)^{2/3} \]
The height table

- Let G be a graph with vertices w_1, \ldots, w_n.
The height table

- Let G be a graph with vertices w_1, \ldots, w_n.

```

w_1

w_2  w_1
  5
5

w_3

w_2  w_3
  7  13
11

w_4

w_2  w_3  w_4
  10  14  14
15

w_5

w_2  w_3  w_4  w_5
  5  7  13  10
15

w_6

w_1  w_2  w_3  w_4  w_5  w_6
  11  5  2  6  4  9
12

w_5

w_2  w_3  w_4  w_5  w_6
  5  7  10  15  4
14

w_3

w_2  w_3  w_4
  5  7  14
10

w_4

w_2  w_3  w_4
  5  7  14
10

w_5

w_2  w_3  w_4  w_5
  5  7  14  15
10

w_6

w_1  w_2  w_3  w_4  w_5  w_6
  11  5  2  6  4  9
12
```
The height table

- Let G be a graph with vertices w_1, \ldots, w_n.

- The **height table** A has a column for each vertex in G.

 - Fill in the cells row by row, from bottom to top.
 - Next entry in column i is the edge incident to w_i with largest label not already appearing in A.
 - The height of an edge e, denoted $h(e)$, is the index of the row containing e. For example, $h(w_1w_2) = 3$.

The diagram shows a graph with vertices w_1, w_2, \ldots, w_6 and labeled edges.
The height table

- Let G be a graph with vertices w_1, \ldots, w_n.

- The height table A has a column for each vertex in G.

- Fill in the cells row by row, from bottom to top.
 - Next entry in column i is the edge incident to w_i with largest label not already appearing in A.
 - The height of an edge e, denoted $h(e)$, is the index of the row containing e. For example, $h(w_1w_2) = 3$.
The height table

- Let G be a graph with vertices w_1, \ldots, w_n.

- The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
The height table

- Let G be a graph with vertices w_1, \ldots, w_n.

- The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column i is the edge incident to w_i with largest label not already appearing in A.

\[
\begin{array}{ccccccc}
& w_1 & w_2 & w_3 & w_4 & w_5 & w_6 \\
\hline
w_1 & 1 & 7 & 14 & 15 & & \\
w_2 & 5 & 13 & 2 & & & \\
w_3 & 11 & 12 & & & & \\
w_4 & 6 & 9 & 4 & 1 & & \\
w_5 & & & 6 & 8 & & \\
w_6 & & 5 & & & & \\
\end{array}
\]
The height table

- Let G be a graph with vertices w_1, \ldots, w_n.

- The height table A has a column for each vertex in G.
- Fill in the cells row by row, from bottom to top.
- Next entry in column i is the edge incident to w_i with largest label not already appearing in A.

```plaintext

\[
\begin{array}{cccccc}
16 & 1 & 2 & 3 & 4 & 5 \\
1 & 7 & 5 & 6 & 2 & 11 \\
2 & 5 & 6 & 2 & 12 & 9 \\
3 & 15 & 6 & 11 & 11 & 10 \\
4 & 15 & 11 & 10 & 10 & 10 \\
5 & 9 & 12 & 9 & 9 & 11 \\
6 & 4 & 2 & 9 & 12 & 12 \\
\end{array}
\]
Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.

Fill in the cells row by row, from bottom to top.

Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

$\begin{array}{ccccccc}
16 & 24 & & & & & \\
\hline
w_1 & w_2 & w_3 & w_4 & w_5 & w_6 \\
\end{array}$
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

- The height table $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$.
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.

- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

```
<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>24</th>
<th>35</th>
<th>46</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

![Graph with vertices and edges labeled with numbers]

- The **height table** $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$.

<table>
<thead>
<tr>
<th></th>
<th>$w_1$</th>
<th>$w_2$</th>
<th>$w_3$</th>
<th>$w_4$</th>
<th>$w_5$</th>
<th>$w_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>24</td>
<td>35</td>
<td>46</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.

- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>24</th>
<th>35</th>
<th>46</th>
<th>56</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

- The height table $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

```
 13 23 35 46 56 62
w_1 w_2 w_3 w_4 w_5 w_6
```
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

- The height table $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

<table>
<thead>
<tr>
<th></th>
<th>$w_1$</th>
<th>$w_2$</th>
<th>$w_3$</th>
<th>$w_4$</th>
<th>$w_5$</th>
<th>$w_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>16</td>
<td>23</td>
<td>34</td>
<td>46</td>
<td>56</td>
<td>62</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>35</td>
<td>46</td>
<td>56</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>
The height table

Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.

Fill in the cells row by row, from bottom to top.

Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

<table>
<thead>
<tr>
<th></th>
<th>$w_1$</th>
<th>$w_2$</th>
<th>$w_3$</th>
<th>$w_4$</th>
<th>$w_5$</th>
<th>$w_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1$</td>
<td>13</td>
<td>23</td>
<td>34</td>
<td>41</td>
<td>51</td>
<td>62</td>
</tr>
<tr>
<td>$w_2$</td>
<td>16</td>
<td>24</td>
<td>35</td>
<td>46</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>$w_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.

- Fill in the cells row by row, from bottom to top.

- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

\[
\begin{array}{c|c|c|c|c|c}
    & w_1 & w_2 & w_3 & w_4 & w_5 \\
\hline
w_1 & 13 & 23 & 34 & 41 & 51 \\
16 & 24 & 35 & 46 & 56 & 62 \\
\hline
w_6
\end{array}
\]
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

- The height table $A$ has a column for each vertex in $G$.

- Fill in the cells row by row, from bottom to top.

- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

- The height table $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 
The height table

Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.
Fill in the cells row by row, from bottom to top.
Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

<table>
<thead>
<tr>
<th></th>
<th>$w_1$</th>
<th>$w_2$</th>
<th>$w_3$</th>
<th>$w_4$</th>
<th>$w_5$</th>
<th>$w_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1$</td>
<td>12</td>
<td>25</td>
<td>-</td>
<td>41</td>
<td>51</td>
<td>63</td>
</tr>
<tr>
<td>$w_2$</td>
<td>13</td>
<td>23</td>
<td>34</td>
<td>56</td>
<td>56</td>
<td>62</td>
</tr>
<tr>
<td>$w_3$</td>
<td>16</td>
<td>24</td>
<td>35</td>
<td>46</td>
<td>51</td>
<td>63</td>
</tr>
<tr>
<td>$w_4$</td>
<td>1</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>$w_5$</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>$w_6$</td>
<td>14</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

The height table $A$ has a column for each vertex in $G$.
- Fill in the cells row by row, from bottom to top.
- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$. 

<table>
<thead>
<tr>
<th></th>
<th>$w_1$</th>
<th>$w_2$</th>
<th>$w_3$</th>
<th>$w_4$</th>
<th>$w_5$</th>
<th>$w_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>25</td>
<td>–</td>
<td>45</td>
<td>51</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>34</td>
<td>41</td>
<td>56</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>35</td>
<td>46</td>
<td>51</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>$w_1$</td>
<td>$w_2$</td>
<td>$w_3$</td>
<td>$w_4$</td>
<td>$w_5$</td>
<td>$w_6$</td>
<td></td>
</tr>
</tbody>
</table>
The height table

- Let $G$ be a graph with vertices $w_1, \ldots, w_n$.

- The height table $A$ has a column for each vertex in $G$.

- Fill in the cells row by row, from bottom to top.

- Next entry in column $i$ is the edge incident to $w_i$ with largest label not already appearing in $A$.

- The height of an edge $e$, denoted $h(e)$, is the index of the row containing $e$. For example, $h(w_1w_2) = 3$. 

\[ 
\begin{array}{cccccc} 
12 & 25 & - & 45 & 51 & 63 \\
13 & 23 & 34 & 41 & 56 & 62 \\
16 & 24 & 35 & 46 & 56 & 62 \\
\hline 
w_1 & w_2 & w_3 & w_4 & w_5 & w_6 
\end{array} \]
Monotone path extension

- Given $G$, construct the height table $A$. 
Monotone path extension

Given $G$, construct the height table $A$.

Let $x_0x_1$ be a max-height edge in column $x_0$. Set $P = x_0x_1$. 
Let $P$ be a monotone path $x_0 \ldots x_k$; let $e = x_{k-1}x_k$. We extend $P$ as follows.
Let $P$ be a monotone path $x_0 \ldots x_k$; let $e = x_{k-1}x_k$. We extend $P$ as follows.

- Note $\varphi(e') > \varphi(e)$ if $e'$ is in a lower row in column $x_k$. 

![Monotone path extension](image)
Let $P$ be a monotone path $x_0 \ldots x_k$; let $e = x_{k-1}x_k$. We extend $P$ as follows.

- Note $\varphi(e') > \varphi(e)$ if $e'$ is in a lower row in column $x_k$. 

### Let $P$ be a monotone path $x_0 \ldots x_k$; let $e = x_{k-1}x_k$. We extend $P$ as follows.

- Note $\varphi(e') > \varphi(e)$ if $e'$ is in a lower row in column $x_k$. 

- Let $e'$ be the highest such edge joining $x_k$ to a vertex outside $\{x_1, \ldots, x_{k-1}\}$.
- Extend $P$ along $e'$.
- Iteratively extending gives $f(G) \geq \lfloor 1/2 + \sqrt{d} \rfloor$, matching Rödl's bound asymptotically.
Let $P$ be a monotone path $x_0 \ldots x_k$; let $e = x_{k-1}x_k$. We extend $P$ as follows.

- Note $\varphi(e') > \varphi(e)$ if $e'$ is in a lower row in column $x_k$. 

![](https://via.placeholder.com/150)
Let $P$ be a monotone path $x_0 \ldots x_k$; let $e = x_{k-1}x_k$. We extend $P$ as follows.

- Note $\varphi(e') > \varphi(e)$ if $e'$ is in a lower row in column $x_k$.
- Let $e'$ be the highest such edge joining $x_k$ to a vertex outside $\{x_1, \ldots, x_{k-1}\}$.
- Extend $P$ along $e'$. 
Let $P$ be a monotone path $x_0 \ldots x_k$; let $e = x_{k-1}x_k$. We extend $P$ as follows.

- Note $\varphi(e') > \varphi(e)$ if $e'$ is in a lower row in column $x_k$.
- Let $e'$ be the highest such edge joining $x_k$ to a vertex outside \{x_1, \ldots, x_{k-1}\}.
- Extend $P$ along $e'$.

Iteratively extending gives $f(G) \geq \left\lfloor \frac{1}{2} + \sqrt{d} \right\rfloor$, matching Rödl’s bound asymptotically.
The algorithm

- Given $G$, construct the height table $A$. Let $P = x_0 x_1$, where $x_0 x_1$ is a max-height edge.
Given $G$, construct the height table $A$. Let $P = x_0x_1$, where $x_0x_1$ is a max-height edge.
The algorithm

Given $G$, construct the height table $A$. Let $P = x_0 x_1$, where $x_0 x_1$ is a max-height edge.

Extend $P$ to $x_0 \ldots x_{s+1}$, where $s = C n^{1/3} (\lg n)^{2/3}$. 
The algorithm

- Given $G$, construct the height table $A$. Let $P = x_0x_1$, where $x_0x_1$ is a max-height edge.
- Extend $P$ to $x_0 \ldots x_{s+1}$, where $s = Cn^{1/3}(\lg n)^{2/3}$.
- Let $G' = G - \{x_0, \ldots, x_{s-1}\}$. 

\[ G' \]

\[ x_0 \quad x_1 \quad \ldots \quad x_{s-1} \quad x_s \]

\[ x_{s+1} \]

\[ G' \]

\[ x_0 \quad x_1 \quad \ldots \quad x_{s-1} \quad x_s \]

\[ x_{s+1} \]
The algorithm

- Given $G$, construct the height table $A$. Let $P = x_0x_1$, where $x_0x_1$ is a max-height edge.
- Extend $P$ to $x_0 \ldots x_{s+1}$, where $s = C n^{1/3} (\lg n)^{2/3}$.
- Let $G' = G - \{x_0, \ldots, x_{s-1}\}$.
- Recursively find a long mono. path in $G'$ extending $x_s x_{s+1}$.
The algorithm

Analysis:

- Extending to $x_0 \ldots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of $A$. 

"G"
The algorithm

Analysis:

- Extending to $x_0 \ldots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of $A$.
- Let $g(n, s)$ be the maximum loss of height of an edge when deleting $s$ vertices from an $n$-vertex graph.
The algorithm

Analysis:

- Extending to $x_0 \ldots x_{s+1}$ uses at most $\frac{(s+1)}{2}$ rows of $A$.
- Let $g(n, s)$ be the maximum loss of height of an edge when deleting $s$ vertices from an $n$-vertex graph.
- From $G$ to $G'$, the height of $x_s x_{s+1}$ falls by at most $g(n, s)$. 
The algorithm

Analysis:
- Extending to $x_0 \ldots x_{s+1}$ uses at most $\left(\frac{s+1}{2}\right)$ rows of $A$.
- Let $g(n, s)$ be the maximum loss of height of an edge when deleting $s$ vertices from an $n$-vertex graph.
- From $G$ to $G'$, the height of $x_s x_{s+1}$ falls by at most $g(n, s)$.
- Each iteration extends the path by $s$ edges and costs at most $\left(\frac{s+1}{2}\right) + g(n, s)$ in height.
The algorithm

Analysis:

- Extending to $x_0 \ldots x_{s+1}$ uses at most $\binom{s+1}{2}$ rows of $A$.
- Let $g(n, s)$ be the maximum loss of height of an edge when deleting $s$ vertices from an $n$-vertex graph.
- From $G$ to $G'$, the height of $x_s x_{s+1}$ falls by at most $g(n, s)$.
- Each iteration extends the path by $s$ edges and costs at most $\binom{s+1}{2} + g(n, s)$ in height.

Lemma

If $G$ has average degree $d$, then $f(G) \geq s \left\lceil \frac{d/2 - 1}{\binom{s+1}{2} + g(n, s)} \right\rceil$. 
The \((n, s)\)-token game
The \((n, s)\)-token game
The \((n, s)\)-token game

- Some cells contain tokens, others are empty.
The \((n, s)\)-token game

- Some cells contain tokens, others are empty.
- One of the columns is *active*.
The \((n, s)\)-token game

- Some cells contain tokens, others are empty.
- One of the columns is *active*.
- Initially, each column has at most \(s\) tokens.
The \((n, s)\)-token game

- Some cells contain tokens, others are empty.
- One of the columns is \textit{active}.
- Initially, each column has at most \(s\) tokens.
- A token is \textit{grounded} if all lower cells in the same column contain tokens.
The \((n, s)\)-token game

A step produces a new token array as follows:
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
The \((n, s)\)-token game

- A step produces a new token array as follows:
  1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
The \((n, s)\)-token game

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.

▷ A step produces a new token array as follows:
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
The \((n, s)\)-token game

A step produces a new token array as follows:

1. The highest grounded token in the active column may move to an empty cell in another column, provided that its height does not increase and no previous step moved a token between these columns.
2. All ungrounded tokens in the active column drop by one cell.
3. The active column advances.
The \((n, s)\)-token game

- Let \(\hat{g}(n, s)\) be the maximum number of tokens in a column in an \((n, s)\)-token game.
The \((n, s)\)-token game

Let \(\hat{g}(n, s)\) be the maximum number of tokens in a column in an \((n, s)\)-token game.

Lemma

\[ g(n, s) \leq \hat{g}(n - s, s) \]
The \((n, s)\)-token game

- Let \(\hat{g}(n, s)\) be the maximum number of tokens in a column in an \((n, s)\)-token game.

**Lemma**

\[ g(n, s) \leq \hat{g}(n - s, s) \]

**Lemma**

\[ \Omega(s + \sqrt{ns}) \leq \hat{g}(n, s) \leq O(s + \sqrt{ns} \log n) \]
Summary

Lemma

If $G$ has average degree $d$, then $f(G) \geq s \left[ \frac{d/2-1}{\binom{s+1}{2}+g(n,s)} \right]$. 

Question

Can the bound $g(n,s) \leq O(s + \sqrt{ns \log n})$ be improved?
Summary

Lemma

If $G$ has average degree $d$, then $f(G) \geq s \left\lfloor \frac{d/2-1}{\binom{s+1}{2}+g(n,s)} \right\rfloor$.

Lemma

$\Omega(s + \sqrt{ns}) \leq \hat{g}(n, s) \leq O(s + \sqrt{ns \log n})$
Summary

Lemma
If G has average degree d, then \( f(G) \geq s \left\lfloor \frac{d/2-1}{(s+1)/2 + g(n,s)} \right\rfloor \).

Lemma
\( \Omega(s + \sqrt{ns}) \leq \hat{g}(n, s) \leq O(s + \sqrt{ns \log n}) \)

Theorem
Let G be an n-vertex graph, and let \( s = C n^{1/3} (\log n)^{2/3} \). If G has average degree d, then

\[
f(G) \geq \frac{d}{4s} \left(1 - \frac{2}{d}\right) \left(1 - \frac{1}{2}\right) \left(1 - \frac{4s^2}{d - 2}\right).
\]

In particular, \( f(K_n) \geq (\frac{1}{20} - o(1))(n/\log n)^{2/3} \).
Summary

**Lemma**

*If* $G$ *has average degree* $d$, *then* $f(G) \geq s \left\lceil \frac{d/2 - 1}{(s+1)/2 + g(n,s)} \right\rceil$.

**Lemma**

$\Omega(s + \sqrt{ns}) \leq \hat{g}(n, s) \leq O(s + \sqrt{ns \log n})$

**Theorem**

*Let* $G$ *be an* $n$-*vertex graph, and let* $s = Cn^{1/3}(\lg n)^{2/3}$. *If* $G$ *has average degree* $d$, *then*

$$f(G) \geq \frac{d}{4s} \left( 1 - \frac{2}{d} \right) \left( 1 - \frac{1}{2} \right) \left( 1 - \frac{4s^2}{d-2} \right).$$

*In particular,* $f(K_n) \geq \left( \frac{1}{20} - o(1) \right) (n/\lg n)^{2/3}$.

**Question**

Can the bound $g(n, s) \leq O(s + \sqrt{ns \log n})$ be improved?
Summary

Lemma
If $G$ has average degree $d$, then $f(G) \geq s \left[ \frac{d/2 - 1}{(s+1)/2 + g(n,s)} \right]$.

Lemma
$\Omega(s + \sqrt{ns}) \leq \hat{g}(n, s) \leq O(s + \sqrt{ns \log n})$

Theorem
Let $G$ be an $n$-vertex graph, and let $s = Cn^{1/3}(\lg n)^{2/3}$. If $G$ has average degree $d$, then

$$f(G) \geq \frac{d}{4s} \left( 1 - \frac{2}{d} \right) \left( 1 - \frac{1}{2} \right) \left( 1 - \frac{4s^2}{d - 2} \right).$$

In particular, $f(K_n) \geq (\frac{1}{20} - o(1))(n/\lg n)^{2/3}$.

Question
Can the bound $g(n, s) \leq O(s + \sqrt{ns \log n})$ be improved?

Thank You.