RSA encryption/decryption, file RSA demonstration

P and Q are prime numbers. If you enter a number that is not prime for P or Q, the next larger prime number is displayed.

N = PQ and (P-1)(Q-1) are calculated from P and Q.

E is a positive integer relatively prime to (P-1)(Q-1). If you enter a number for E that is not relatively prime to (P-1)(Q-1), the next larger number that is relatively prime is displayed. By default, the smallest integer relatively prime to (P-1)(Q-1) is displayed.

To use the program, choose parameters P, Q, E. The program calculates D. Publish N and D, keep E secret.

Enter a message in plaintext and push the Encrypt button. The message is converted character-by character into ASCII code and translated into binary. Characters are grouped two at a time to form blocks. Blocks are transformed by raising the numerical value of the block to the E power modulo N. Often the ASCII code for the result does not consist of printable characters, so it shows on the display as a blank or as an empty rectangle.

1) Encrypt several test messages to see how ASCII code works. Try consecutive capital letters (e.g. “ABCDE”), consecutive lower case letters, and consecutive numbers to see how it works.

2) Check out the conversion from ASCII to binary. It is nothing tricky. I will show you how it works if you don’t see the pattern.

3) Observe how two characters are encoded in the same block. What happens at the end when there is a plaintext message of odd length?

4) Use your calculator to verify the T^E (mod N) encoding for a “small” block or two. You need to calculate T^E, divide by N, and report the remainder. Note that you don’t need to know P, Q, or D to encode the message, but if you happened to know P as well as N you could calculate Q easily, find D, and decode the message at will.

5) For decryption the process is reversed. With the same parameters P, Q, and E the original message is recovered. Push the Decrypt button to see how the original message is reconstructed step by step.

6) With default parameters decrypt the secret message 12126 3036 26912 40701 3865 2767. Pay attention to the spaces to separate blocks.
7) With $P=569$, $Q=379$, and $E=11$ try to decrypt the message above. Gibberish, right? Try the message 47979 137307. It was encoded with those parameters.

8) If the primes are too small the process as laid out doesn’t work because there aren’t enough residues mod N to represent the codewords. Get N above about 40000 and there won’t be any problems. Try some small values for P and Q and see what goes wrong.

9) A stupid spy publishes $N = 12007001$ and $E=7$. Find the obvious factorization of N and use it to decrypt the “secret” message 3973692 165810 6506132 5228823 11249839 4543968