SAMPLE TEST # 2

1. Find the intervals on which function \(f(x) \) is increasing, and those on which it is decreasing.
\[
 f(x) = x^4 + 8x^3 + 7
\]

2. Apply the first derivative test to find and classify (as local minimum, local maximum, or not an extremum) each of the critical points of
\[
 h(x) = x^4 - 2x^2 + 100
\]

3. Find the third derivative \(g'''(x) \) of \(g(x) = x^4 + x^{-1} + \cos x \).

4. Find \(y' \) and \(y'' \) assuming that \(y \) is defined implicitly as function of \(x \) by the equation
\[
 \sin^2 x + \cos^2 y = 1.
\]

5. Sketch the graph of the function \(f(x) = 3x^5 - 5x^3 \) indicating critical points and inflection points. Apply the second derivative test at each critical point.

6. Find the particular solution of the differential equation \(\frac{dy}{dx} = 4x^3 + x \) that satisfies the initial condition \(y(-1) = 2 \).

7. Find the most general antiderivatives of
 (a) \(g(z) = z^{1/2} + 5 \)
 (b) \(f(x) = \cos(2x + 1) \)

8. Evaluate the integrals:
 (a) \(\int \left(\sqrt{x} - \frac{2}{\sqrt{x}} \right) \, dx = \)
 (b) \(\int \left(\frac{1}{2x^2} + x^3 \right) \, dx = \)

9. Evaluate the limit
\[
 \lim_{x \to \infty} \frac{\sqrt[3]{x^6} + x - 1}{x^2 + 5} = \]