Consequences of the Covering Property Axiom CPA

Under CPA we have $\mathfrak{c} = \omega_2$; 2^{ω_1} can be arbitrarily large.

Real Functions

(F1) There exists a family \mathcal{G} of uniformly continuous functions from \mathbb{R} to $[0, 1]$ such that $|\mathcal{G}| = \omega_1$ and for every $S \in [\mathbb{R}]^\mathfrak{c}$ there exists a $g \in \mathcal{G}$ with $g[S] = [0, 1]$.

(F2) There exists a family \mathcal{F} of less than continuum many C^1 functions from \mathbb{R} to \mathbb{R} such that the plain \mathbb{R}^2 is covered by functions from \mathcal{F} and their inverses (i.e., each $f \in \mathcal{F}$ is used as a function on a horizontal axis and on a vertical axis.)

(F3) For every Borel function $f: \mathbb{R} \to \mathbb{R}$ there exists a family \mathcal{F} of less than continuum many “C^1” functions (i.e., differentiable functions with continuous derivatives, where derivative can be infinite) whose graphs cover the graph of f.

(F4) For an arbitrary function h from a subset S of a Polish space X onto a Polish space Y there exists a uniformly continuous function f from a subset of X into Y such that $|f \cap h| = \mathfrak{c}$. In particular,

- there is no Darboux Sierpiński-Zygmund function $f: \mathbb{R} \to \mathbb{R}$, that is, for every Darboux function $f: \mathbb{R} \to \mathbb{R}$ there is a subset Y of \mathbb{R} of cardinality \mathfrak{c} such that $f \upharpoonright Y$ is continuous;

- for any function h from a subset S of \mathbb{R} onto a perfect subset of \mathbb{R} there exists a function $f \in \mathcal{C}^\infty_{\text{per}}$ such that $|f \cap h| = \mathfrak{c}$ and f can be extended to a function $\bar{f} \in \mathcal{C}^1(\mathbb{R})$ such that either $\bar{f} \in C^1$ or \bar{f} is an autohomeomorphism of \mathbb{R} with $\bar{f}^{-1} \in C^1$.

(F5) For every Darboux function $g: \mathbb{R} \to \mathbb{R}$ there exists a continuous nowhere constant function $f: \mathbb{R} \to \mathbb{R}$ such that $f + g$ is Darboux.

(F6) There is a family \mathcal{H} of ω_1 pairwise disjoint perfect subsets of \mathbb{R} such that $\mathcal{H} = \bigcup \mathcal{H}$ is a Hamel basis, that is, a linear basis of \mathbb{R} over \mathbb{Q}. In particular,

- there is a non-measurable subset X of \mathbb{R} without the Baire property which is $\mathcal{N} \cap \mathcal{M}$-rigid, that is, such that $X \Delta (r + X) \in \mathcal{N} \cap \mathcal{M}$ for every $r \in \mathbb{R}$,

- there is a function $f: \mathbb{R} \to \mathbb{R}$ such that for every $h \in \mathbb{R}$ the difference function $\Delta_h(x) = f(x + h) - f(x)$ is Borel, but for every $\alpha < \omega_1$ there is an $h \in \mathbb{R}$ such that Δ_h is not of Borel class α.
(F7) There exists a discontinuous, almost continuous, and additive function \(f : \mathbb{R} \to \mathbb{R} \) whose graph is of measure zero.

(F8) There exists a Hamel basis \(H \) such that \(E^+(H) \) has measure zero, where \(E^+(A) \) is a linear combination of \(A \subset \mathbb{R} \) with non-negative rational coefficients.

(F9) For a Polish space \(X \) and uniformly bounded sequence \(\langle f_n : X \to \mathbb{R} \rangle_{n<\omega} \) of Borel measurable functions there are the sequences: \(\langle P_{\xi} : \xi < \omega_1 \rangle \) of compact subsets of \(X \) and \(\langle W_{\xi} \in [\omega]^\omega : \xi < \omega_1 \rangle \) such that \(X = \bigcup_{\xi<\omega_1} P_{\xi} \) and for every \(\xi < \omega_1 \):

\[
\langle f_n \restriction P_{\xi} \rangle_{n \in W_{\xi}} \text{ is a monotone uniformly convergent sequence of uniformly continuous functions.}
\]

(F10) Let \(X \) be an arbitrary set and \(f_n : X \to \mathbb{R} \) be a sequence of functions such that the set \(\{ f_n(x) : n < \omega \} \) is bounded for every \(x \in X \). Then there are the sequences: \(\langle P_{\xi} : \xi < \omega_1 \rangle \) of subsets of \(X \) and \(\langle W_{\xi} \in [\omega]^\omega : \xi < \omega_1 \rangle \) such that \(X = \bigcup_{\xi<\omega_1} P_{\xi} \) and for every \(\xi < \omega_1 \):

\[
\langle f_n \restriction P_{\xi} \rangle_{n \in W_{\xi}} \text{ is monotone and uniformly convergent.}
\]

Combinatorial Cardinal Characteristics

(C1) \(\text{cof}(\mathcal{N}) = \omega_1 \), i.e., the cofinality of the measure ideal \(\mathcal{N} \) is \(\omega_1 \). In particular
- \(\mathfrak{c} > \omega_1 \) and there exists a Boolean algebra \(B \) of cardinality \(\omega_1 \) which is not a union of strictly increasing \(\omega \)-sequence of subalgebras of \(B \).

(C2) There exists a family \(\mathcal{F} \subset [\omega]^\omega \) of cardinality \(\omega_1 \) which is simultaneously independent and splitting. In particular, \(i = s = \omega_1 \).

(C3) There exists a family \(\mathcal{F} \subset [\omega]^\omega \) of cardinality \(\omega_1 \) which is simultaneously maximal almost disjoint and reaping. In particular, \(a = \tau = \omega_1 \).

(C4) \(u = \tau = \omega_1 \), where \(u \) is the smallest cardinality of the base for a non-principal ultrafilter on \(\omega \).

(C5) \(\text{add}(s_0) = \omega_1 \), where \(s_0 \) is the Marczewski’s ideal.

(C6) \(\text{cov}(s_0) = \mathfrak{c} \)

(C7) \(\mathfrak{c} > \omega_1 \) and for every Polish space there exists a partition of \(X \) into \(\omega_1 \) disjoint closed nowhere dense measure zero sets.

Small Sets

(S1) Every perfectly meager set \(S \subset \mathbb{R} \) has cardinality less than \(\mathfrak{c} \).

(S2) Every universally null set \(S \subset \mathbb{R} \) has cardinality less than \(\mathfrak{c} \).

(S3) (Nowik) Every uniformly completely Ramsey null set \(S \subset [\omega]^\omega \) has cardinality less than \(\mathfrak{c} \).
\(\beta \mathbb{N} \) and \(\beta \mathbb{Q} \)

1. There exist \(2^{\omega_1} \)-many distinct selective ultrafilter on \(\omega \).
2. Every selective filter on \(\omega \) can be extended to a selective ultrafilter.
3. Every selective ultrafilter on \(\omega \) is generated by \(\omega_1 \)-many sets.
4. There exist \(2^{\omega_1} \)-many distinct non-selective \(P \)-points.
5. There exists a non-principal ultrafilter on \(\mathbb{Q} \) which is crowded, that is, it is generated by (relatively) closed sets without isolated points.

Other

- **Total failure of Martin’s Axiom:** \(\check{\tau} > \omega_1 \) and for every non-trivial ccc forcing \(\mathbb{P} \) there exists \(\omega_1 \)-many dense sets in \(\mathbb{P} \) such that no filter intersects all of them.