BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING

The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological and Medical Physics, Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information.

Books in the series emphasize established and emergent areas of science including molecular, membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering.

Editor-in-Chief:
Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Editorial Board:
Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
Olaf S. Andersen, Department of Physiology, Biophysics & Molecular Medicine, Cornell University, New York, USA
Robert H. Austin, Department of Physics, Princeton University, Princeton, New Jersey, USA
James Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England
Howard C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
Victor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA
Robert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
Britton Chance, Department of Biochemistry/ Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Steven Chu, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Louis J. DeFelice, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
Johann Deisenhofer, Howard Hughes Medical Institute, The University of Texas, Dallas, Texas, USA
George Feher, Department of Physics, University of California, San Diego, La Jolla, California, USA
Hans Frauenfelder, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Ivar Giaever, Rensselaer Polytechnic Institute, Troy, New York, USA
Sol M. Gruner, Cornell University, Ithaca, New York, USA
Judith Herzfeld, Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
Mark S. Humayun, Doheny Eye Institute, Los Angeles, California, USA
Pierre Joliot, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
Lajos Keszthelyi, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
Robert S. Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
Aaron Lewis, Department of Applied Physics, Hebrew University, Jerusalem, Israel
Stuart M. Lindsay, Department of Physics and Astronomy, Arizona State University, Tempe, Arizona, USA
David Mauzerall, Rockefeller University, New York, USA, USA
David Mauzerall, Rockefeller University, New York, USA, USA
Eugenie V. Mielczarek, Department of Physics and Astronomy, George Mason University, Fairfax, Virginia, USA
Markolf Niemz, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
V. Adrian Parsegian, Physical Science Laboratory, National Institutes of Health, Bethesda, Maryland, USA
Linda S. Powers, University of Arizona, Tucson, Arizona, USA
Earl W. Prohofsky, Department of Physics, Purdue University, West Lafayette, Indiana, USA
Andrew Rubin, Department of Biophysics, Moscow State University, Moscow, Russia
Michael Seibert, National Renewable Energy Laboratory, Golden, Colorado, USA
David Thomas, Department of Biochemistry, University of Minnesota Medical School, Minneapolis, Minnesota, USA
Thomas M. Deserno
Editor

Biomedical Image Processing

With 254 Figures
To Verena – the beauty and the beauty of images
YATBIP: Yet another textbook on biomedical image processing? – Hopefully not...

Based on the tutorial SC086 – *Fundamentals of Medical Image Processing* regularly offered at the International SPIE Symposium on Medical Imaging, the Springer-Verlag Series Editor of *Biological and Medical Physics, Medical Engineering* invited me in January 2009 to compile this book. Actually, the idea of providing a “suitable” textbook – comprehensive but short, up-to-date but essential, and detailed but illustrative – for novices like experts, and at reasonable costs, is not new. For years, the lack of any such textbook in image processing covering all of the special needs in biology and medicine is evident. In any teaching lecture, tutorial as well as graduate class. I’m always asked by the students to suggest literature but cannot answer satisfyingly, simply because there isn’t a “suitable” textbook yet.

So we aimed at compiling a high-quality collection of chapters, written for scientists, researchers, lectures and graduate students as well, covering the recent advantages in the broad field of biomedical imaging and image processing in an exemplary way. In February 2009, several fruitful discussions with colleagues at SPIE Medical Imaging convinced me to face the challenge, and I started recruiting author teams for contributions. Finally, 47 authors from 11 nations all over the world collaborated – all of them leading experts in their field. Intensive efforts were made to direct all authors towards a similar style of presentation and equal degree of technical details. Beside some written guidelines, the overview chapter was provided to the authors as an example before they started writing. All authors first provided a short outline and a detailed table of content, which were distributed between all contributors together with a strictly enforced time line. In October 2009, submission of chapters started, and each manuscript was edited carefully. Editor requests have been processed by the authors improving completeness and clarity of presentation, and finally in June 2010, the manuscript was submitted to the publisher.
Fig. 1. *Eierlegende Wollmilchsau*. Every morning, this special animal provides a cooked egg with chilled fresh milk. Its wool is used for high-quality clothes and the meat for excellent dining. It is the first *all-in-one* approach documented in history
(Courtesy of: http://neulehrer.wordpress.com/)

As a result, this book has appeared as uniform monograph with an overview chapter contributed by the editor, followed by some twenty chapters focusing on particular parts selected from biomedical imaging and image processing. Each chapter gives an introduction and overview of recent trends in its field and provides particular case examples, usually taken from the author’s own research.

Primarily addressing engineers and system developers in computer sciences, the book covers the entire processing pipeline of biomedical imaging. In particular, the following parts are included, with about three chapters in each of it:

1. Image formation
2. Image enhancement
3. Feature extraction and selection
4. Segmentation
5. Classification and measurements
6. Image data visualization
7. Image management and integration
8. Evaluation and customizing

Many people might object me at this point, because we clearly aimed at reaching the unreachable. In Germany, we have the common phrase “eierlegende Wollmilchsau”, a metaphor that directly translates to “egg-providing wool-milk-pig” describing the union of all benefits (Fig. 1).

You as the reader shall judge our success realizing this all-in-one approach: YATBIP or eierlegende Wollmilchsau? Any feedback is deeply welcome and should be directed personally to me as the editor.

Facing now the final manuscript, I want to thank Claus Ascheron for encouraging me to initiate this project, and all contributors for timely delivering their high-quality material and appropriately responding to the editorial remarks and suggestions. Jens Hoffmann was assisting me in \LaTeX{} programming and Max Jung helped in text and image conversion and optimization.

Also, I want to mention Peter Jentsch and Dirk Bartz, who have passed away during the very last iterations of the manuscript, which leaves me behind speechless. We have included the obituaries in the next pages.

Aachen, December 2010

Thomas M. Deserno, né Lehmann
Obituaries

Prof. Dr. Peter Jensch died unexpectedly during the period of the proof-reading of this book chapter on April 15, 2010 after a fulfilling life. Peter Jensch was the initiator of the DICOM research activities at the OFFIS - Institute for Information Technology, Oldenburg, Germany, in the early 1990s and was pushing this topic forward for the rest of his life. The most popular result of this engagement is the well-known Open Source DICOM toolkit DCMTK that is hosted and maintained by OFFIS since 1993. Against this background, all members of the DICOM team at OFFIS would like to thank Peter Jensch for establishing this extraordinary project and for being such a likeable, energetic boss, mentor, and colleague to us. Without him, OFFIS would not be the popular name in the world of DICOM it is today and we all would not have such encouraging opportunities and research projects we still enjoy. As Chap. 17 of this book is the last publication Peter Jensch participated in and since the content of this chapter is the very topic that strongly influenced his work, we like to use this opportunity to express our sincere gratitude to Peter Jensch.

Oldenburg, June 2010

Michael Onken
Marco Eichelberg
Jörg Riesmeier
Prof. Dr. Dirk Bartz died unexpectedly on March 28, 2010 while attending the thirtieth Vattenfall Berlin Half Marathon. Running half-marathon in Berlin was one of his favorite activities.

During his academic career, Dirk strongly supported the idea of building a German Interest Group on Medical Visualization and actively took part the whole time giving advice to many students; particularly supporting female researchers was an important issue. Furthermore, Dirk organized many tutorials at Visualization, Eurographics, and Computer-Assisted Radiology and Surgery (CARS).

In 2005, I was very glad that Dirk joined the effort of writing a textbook on “Visualization in Medicine”. For an 18 month period, we communicated daily on the various aspects of the book. It was enlightening and a pleasure to discuss with Dirk all the time. He was always perfectly reliable and good-humored even in situations where he had a very high workload.

In the end of 2006, Dirk became appointed as Full Professor for Computer-Assisted Surgery at the International Center for Computer-Assisted Surgery (ICCAS), Leipzig, Germany, and started to build a new research group. He focused on visualization techniques, such as illustrative rendering, perceptual studies (from Dirk I learned the term “psychophysical studies”), and applications in neurosurgery and Ear, Nose and Throat (ENT) surgery.

Dirk belonged to the core team which tried to establish a new workshop series “Visual Computing in Biology and Medicine”. It was quite natural that Dirk would host the second event, scheduled to take place in July in Leipzig. Until the very last days of his life, he discussed strategies for this workshop.

Dirk was only 42 years old, leaving behind Heidi, his wife, and his two little sons.

Magedeburg, June 2010

Berhard Preim
Contents

1 Fundamentals of Biomedical Image Processing

Thomas M. Deserno .. 1
1.1 Introduction .. 1
 1.1.1 Steps of Image Processing 2
 1.1.2 Remarks on Terminology 3
 1.1.3 Biomedical Image Processing 4
1.2 Medical Image Formation .. 4
 1.2.1 Basic Physics ... 5
 1.2.2 Imaging Modalities ... 6
 1.2.3 Digitalization .. 13
1.3 Image Enhancement .. 16
 1.3.1 Histogram Transforms 16
 1.3.2 Convolution .. 18
 1.3.3 Mathematical Morphology 18
 1.3.4 Calibration .. 19
 1.3.5 Registration ... 20
1.4 Image Data Visualization .. 22
 1.4.1 Marching Cube Algorithm 23
 1.4.2 Surface Rendering .. 23
 1.4.3 Volume Rendering ... 23
1.5 Visual Feature Extraction .. 25
 1.5.1 Data Level ... 25
 1.5.2 Pixel Level ... 25
 1.5.3 Edge Level ... 25
 1.5.4 Texture Level .. 26
 1.5.5 Region Level .. 26
1.6 Segmentation ... 27
 1.6.1 Pixel-Based Segmentation 27
 1.6.2 Edge-Based Segmentation 30
 1.6.3 Region-Based Segmentation 31
Part I Image Formation

2 Fusion of PET and MRI for Hybrid Imaging

Zang-Hee Cho, Young-Don Son, Young-Bo Kim,
and *Seung-Schik Yoo*

2.1 Introduction

2.2 Positron Emission Tomography
- 2.2.1 Basic Principles
- 2.2.2 Image Reconstruction
- 2.2.3 Signal Optimization
- 2.2.4 High-Resolution Research Tomograph

2.3 Magnetic Resonance Imaging
- 2.3.1 Basic Principles
- 2.3.2 Image Reconstruction
- 2.3.3 Signal Optimization
- 2.3.4 High-Field MRI

2.4 Hybrid PET Fusion System
- 2.4.1 PET/CT Systems
- 2.4.2 PET/MRI Systems
- 2.4.3 High-Resolution Fusion
- 2.4.4 PET/MRI Fusion Algorithm

2.5 Conclusions

References

References
Chapter 3: Cardiac 4D Ultrasound Imaging

Jan D’hooge

3.1 The Role of Ultrasound in Clinical Cardiology
- **Page:** 81

3.2 Principles of Ultrasound Image Formation
- **3.2.1 The Pulse-Echo Measurement:** 82
- **3.2.2 Gray Scale Encoding:** 83
- **3.2.3 Gray Scale Imaging:** 85
- **3.2.4 Phased Array Transducer Technology:** 85

3.3 Limitations of 2D Cardiac Ultrasound
- **3.3.1 Complex Anatomy (Congenital Heart Disease):** 87
- **3.3.2 Geometric Assumptions to Assess Volumes:** 88
- **3.3.3 Out-of-Plane Motion and Foreshortening:** 89

3.4 Approaches Towards 3D Cardiac Ultrasound
- **3.4.1 Freehand 3D Ultrasound:** 90
- **3.4.2 Prospective Gating:** 90
- **3.4.3 Retrospective Gating:** 91
- **3.4.4 Two-Dimensional Arrays:** 92

3.5 Validation of 3D Cardiac Ultrasound Methodologies
- **Page:** 95

3.6 Emerging Technologies
- **3.6.1 Transesophageal 3D Imaging:** 96
- **3.6.2 True Real-Time Volumetric Imaging:** 97

3.7 Remaining Challenges in 4D Cardiac Ultrasound
- **3.7.1 Resolution:** 98
- **3.7.2 Image Quality:** 99
- **3.7.3 Data Visualization and Interaction:** 101
- **3.7.4 Segmentation/Automated Analysis:** 101

References
- **Page:** 102

Part II: Image Enhancement

Chapter 4: Morphological Image Processing Applied in Biomedicine

Ricardo A. Litufo, Leticia Rittner, Romaric Audigier, Rubens C. Machado, and André V. Sáude

4.1 Introduction
- **Page:** 107

4.2 Binary Morphology
- **4.2.1 Erosion and Dilation:** 108
- **4.2.2 Opening and Closing:** 110
- **4.2.3 Morphological Reconstruction from Markers:** 111
- **4.2.4 Reconstruction from Opening:** 112

4.3 Gray-Scale Operations
- **4.3.1 Erosion and Dilation:** 114
- **4.3.2 Opening and Closing:** 116
- **4.3.3 Component Filters and Morphological Reconstruction:** 119
- **4.3.4 Regional Maxima:** 121

References
- **Page:** 121
4.4 Watershed Segmentation

4.4.1 Classical Watershed Transform

4.4.2 Filtering the Minima

4.4.3 Watershed from Markers

4.4.4 Inner and Outer Markers

4.5 Segmentation of Diffusion MRI

4.6 Conclusions

References

5 Medical Image Registration

Daniel Rueckert and Julia A. Schnabel

5.1 Introduction

5.2 Transformation Model

5.2.1 Rigid Transformation

5.2.2 Affine Transformation

5.2.3 Projective Transformation

5.2.4 Non-Rigid Transformation: Parametric Models

5.2.5 Non-Rigid Transformation: Non-Parametric Models

5.3 Registration Basis

5.3.1 Feature-Based Registration

5.3.2 Voxel-Based Registration

5.4 Optimization

5.5 Validation of Registration

5.6 Application

5.6.1 Intra-Subject Registration

5.6.2 Inter-Subject Registration

5.7 Summary and Conclusions

References

Part III Feature Extraction and Selection

6 Texture in Biomedical Images

Maria Petrou

6.1 Introduction

6.2 Characterizing the Texture of Swatches

6.2.1 From Grammars to Markov Random Fields

6.2.2 From Markov Random Fields to Fractals

6.2.3 From Markov Random Fields to Gibbs Distributions

6.2.4 Co-occurrence Matrices

6.2.5 Generalized Co-occurrence Matrices

6.2.6 Orientation Histograms

6.2.7 Textons

6.2.8 Features from the Discrete Fourier Transform

6.3 Simultaneous Texture Segmentation and Recognition

Part IV Segmentation

9 Parametric and Non-Parametric Clustering for Segmentation
Hayit Greenspan and Tanveer Syeda-Mahmood ... 227
9.1 Introduction ... 227
9.2 Image Modeling and Segmentation ... 229
 9.2.1 Image Modeling ... 230
 9.2.2 Segmentation .. 230
 9.2.3 State of the Art .. 231
9.3 Probabilistic Modeling of Feature Space 231
 9.3.1 Gaussian Mixture Models .. 232
 9.3.2 Expectation Maximization .. 232
 9.3.3 Visualization .. 233
9.4 Using GMMs for Brain Tissue and Lesion Segmentation 234
 9.4.1 Application Domain ... 234
 9.4.2 Spatial Constraints ... 234
 9.4.3 Modeling Spatial Constraints Through GMM 235
 9.4.4 Tissue Segmentation ... 238
 9.4.5 Lesion Segmentation ... 238
9.5 Non-Parametric Clustering Approaches to Segmentation 240
 9.5.1 Description of the Feature Space 241
 9.5.2 Clustering Intensity, Geometry, and Motion 243
9.6 Using Non-Parametric Clustering for Cardiac Ultrasound 245
 9.6.1 Application Domain ... 245
 9.6.2 Cardiac Motion Estimation .. 246
 9.6.3 Segmentation of Meaningful Regions 246
10 Region-Based Segmentation: Fuzzy Connectedness, Graph Cut and Related Algorithms
Krzysztof Chris Ciesielski and Jayaram K. Udupa ... 251
10.1 Introduction and Overview ... 251
 10.1.1 Digital Image Scene ... 252
 10.1.2 Topological and Graph-Theoretical Scene
 Representations ... 253
 10.1.3 Digital Image ... 253
 10.1.4 Delineated Objects ... 254
10.2 Threshold-Indicated Fuzzy Connected Objects 254
 10.2.1 Absolute Fuzzy Connectedness Objects 255
 10.2.2 Robustness of Objects ... 256
 10.2.3 Algorithm for Delineating Objects ... 256
10.3 Optimization in Foreground-Background Case 257
 10.3.1 Relative Fuzzy Connectedness ... 258
 10.3.2 Algorithm for Delineating Objects ... 259
 10.3.3 Graph Cut Delineation ... 259
10.4 Segmentation of Multiple Objects ... 262
 10.4.1 Relative Fuzzy Connectedness ... 262
 10.4.2 Iterative Relative Fuzzy Connectedness 263
 10.4.3 Algorithm for Iterative Relative Fuzzy Connectedness 265
 10.4.4 Variants of IRFC ... 266
10.5 Scale-Based and Vectorial Fuzzy Connectedness 266
10.6 Affinity Functions in Fuzzy Connectedness 267
 10.6.1 Equivalent Affinities ... 267
 10.6.2 Essential Parameters in Affinity Functions 269
10.7 Other Delineation Algorithms ... 270
 10.7.1 Generalized Graph Cut ... 270
 10.7.2 Level Set vs. Generalized Graph Cut 271
10.8 Medical Image Examples ... 273
10.9 Concluding Remarks ... 276
References ... 276

11 Model-Based Segmentation
Tobias Heimann and Hervé Delingette .. 279
11.1 Introduction ... 279
11.2 Deformable Simplex Meshes ... 281
 11.2.1 Internal Forces on Simplex Meshes 282
 11.2.2 Image Forces .. 283
 11.2.3 Globally Constrained Deformation 285
 11.2.4 3D+t Deformable Simplex Meshes 286
 11.2.5 Advanced Segmentation Strategies 288
 11.2.6 Geometric Representations
 for Model-Based Segmentation .. 290
Part V Classification and Measurements

12 Melanoma Diagnosis

Alexander Horsch

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 The Cutaneous Melanoma</td>
<td>307</td>
</tr>
<tr>
<td>12.1.1 Medical Basics</td>
<td>307</td>
</tr>
<tr>
<td>12.1.2 Relevance of Early Diagnosis</td>
<td>309</td>
</tr>
<tr>
<td>12.2 State of the Art in CM Diagnosis</td>
<td>309</td>
</tr>
<tr>
<td>12.2.1 Diagnostic Algorithms</td>
<td>309</td>
</tr>
<tr>
<td>12.2.2 Imaging Techniques</td>
<td>311</td>
</tr>
<tr>
<td>12.2.3 Diagnostic Accuracies</td>
<td>313</td>
</tr>
<tr>
<td>12.3 Dermoscopy Image Analysis</td>
<td>314</td>
</tr>
<tr>
<td>12.3.1 Image Analysis Approaches</td>
<td>314</td>
</tr>
<tr>
<td>12.3.2 Segmentation of Skin Lesions</td>
<td>315</td>
</tr>
<tr>
<td>12.3.3 Feature Extraction</td>
<td>316</td>
</tr>
<tr>
<td>12.3.4 Feature Visualization</td>
<td>317</td>
</tr>
<tr>
<td>12.3.5 Classification Methods</td>
<td>319</td>
</tr>
<tr>
<td>12.4 Commercial Systems</td>
<td>322</td>
</tr>
<tr>
<td>12.4.1 System Design Principles</td>
<td>322</td>
</tr>
<tr>
<td>12.4.2 Image Capture Devices</td>
<td>323</td>
</tr>
<tr>
<td>12.4.3 Dermoscopy Computer Systems</td>
<td>324</td>
</tr>
<tr>
<td>12.5 Evaluation Issues</td>
<td>324</td>
</tr>
<tr>
<td>12.5.1 Case Databases</td>
<td>325</td>
</tr>
<tr>
<td>12.5.2 Evaluation Methods</td>
<td>325</td>
</tr>
<tr>
<td>12.6 Conclusion</td>
<td>325</td>
</tr>
<tr>
<td>References</td>
<td>326</td>
</tr>
</tbody>
</table>

13 CADx Mammography

Lena Costaridou

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>329</td>
</tr>
<tr>
<td>13.2 Basic Terms and Definitions</td>
<td>330</td>
</tr>
<tr>
<td>13.2.1 Breast Imaging Modalities</td>
<td>330</td>
</tr>
<tr>
<td>13.2.2 Mammographic Lesions</td>
<td>331</td>
</tr>
<tr>
<td>13.2.3 CADe Schemes</td>
<td>332</td>
</tr>
<tr>
<td>13.2.4 CADx Architectures</td>
<td>333</td>
</tr>
</tbody>
</table>
13.3 CADx Schemes in X-ray Mammography 335
 13.3.1 Morphology Analysis of MC Clusters 335
 13.3.2 Texture Analysis of MC Clusters 338
 13.3.3 Morphology and Texture Analysis of Masses 339
13.4 CADx Schemes in Breast Ultrasound 341
13.5 CADx Schemes in Breast MRI 344
13.6 Application Examples ... 346
 13.6.1 Segmentation Accuracy on MC Cluster Content 346
 13.6.2 Heterogeneity of Enhancement Kinetics in DCE-MRI . . 349
13.7 Discussion and Conclusions 351
References .. 353

14 Quantitative Medical Image Analysis
for Clinical Development of Therapeutics
Mostafa Analoui .. 359
14.1 Introduction .. 359
14.2 Key Issues in Drug Research and Clinical Development 361
 14.2.1 Biological Marker 361
 14.2.2 Imaging Modality 362
14.3 Quantitative Image Analysis 363
 14.3.1 Assessment of Osteoarthritis 364
 14.3.2 Assessment of Carotid Atherosclerosis 365
 14.3.3 Assessment of Cancer 367
14.4 Managing Variability in Imaging Biomarkers 369
 14.4.1 Technical Validation 370
 14.4.2 Standard Operation Procedures 371
 14.4.3 Regulatory Issues 372
14.5 Future Directions .. 373
References .. 374

Part VI Image Data Visualization

15 Visualization and Exploration
of Segmented Anatomic Structures
Dirk Bartz and Bernhard Preim 379
15.1 Introduction .. 379
15.2 Indirect and Direct Volume Rendering 380
 15.2.1 Indirect Volume Rendering 380
 15.2.2 Rendering of Multiple Objects 380
 15.2.3 Direct Volume Rendering 382
 15.2.4 Rendering of Segmented Data 383
 15.2.5 Discussion .. 384
15.3 Generation of Smooth and Accurate Surface Models 386
 15.3.1 Mesh Smoothing with Fairing 386
 15.3.2 Improving Mesh Quality 388
16 Processing and Visualization of Diffusion MRI
James G. Malcolm, Yogesh Rathi, and Carl-Fredrik Westin

16.1 Introduction ... 403
16.2 Modeling .. 404
 16.2.1 Imaging the Tissue 404
 16.2.2 Parametric Models 405
 16.2.3 Non-parametric Models 405
 16.2.4 Regularization 407
 16.2.5 Characterizing Tissue 407
16.3 Tractography .. 408
 16.3.1 Deterministic Tractography 408
 16.3.2 Probabilistic Tractography 409
 16.3.3 Global Tractography 411
 16.3.4 Validation .. 412
16.4 Applications ... 413
 16.4.1 Volume Segmentation 413
 16.4.2 Fiber Clustering 414
 16.4.3 Connectivity .. 416
 16.4.4 Tissue Analysis 417
16.5 Summary .. 418
References .. 419

Part VII Image Management and Integration

17 Digital Imaging and Communications in Medicine
Michael Onken, Marco Eichelberg, Jörg Riesmeier, and Peter Jensch

17.1 DICOM Basics .. 427
 17.1.1 Introduction and Overview 428
 17.1.2 Information Objects 428
 17.1.3 Display Pipeline 430
 17.1.4 Network and Media Services 433
 17.1.5 Conformance ... 437
18 PACS-Based Computer-Aided Detection and Diagnosis
H.K. (Bernie) Huang, Brent J. Liu, Anh HongTu Le, and Jorge Documet

18.1 Introduction

18.2 The Need for CAD-PACS Integration

18.3 DICOM Standard and IHE Workflow Profiles

18.4 The CAD-PACS™ Toolkit

18.5 Example of CAD-PACS Integration

18.6 Conclusion

19 Content-Based Medical Image Retrieval
Henning Müller and Thomas M. Deserno

19.1 Introduction

19.2 General Image Retrieval

19.3 Medical Image Retrieval

References
XXII Contents

19.4 Evaluation ... 481
 19.4.1 Available Databases 481
 19.4.2 Tasks and User Models 481
 19.4.3 Ground Truth and Gold Standards 482
 19.4.4 Benchmarks and Events 483
19.5 Examples for Medical CBIR Systems 483
 19.5.1 Medical Gnu Image Finding Tool 484
 19.5.2 Image Retrieval in Medical Applications 484
19.6 Discussion and Conclusions 487
 19.6.1 Strengths and Weaknesses of Current Systems 488
 19.6.2 Gaps of Medical CBIR Systems 488
 19.6.3 Future Developments 488
References .. 490

Part VIII Evaluation and Customizing

20 Systematic Evaluations and Ground Truth
 Jayashree Kalpathy-Cramer and Henning Müller 497
20.1 Introduction ... 497
20.2 Components for Successful Evaluation Campaigns 498
 20.2.1 Applications and Realistic Tasks 498
 20.2.2 Collections of Images and Ground Truth 499
 20.2.3 Application-Specific Metrics 500
 20.2.4 Organizational Resources and Participants 501
20.3 Evaluation Metrics and Ground Truth 502
 20.3.1 Registration .. 502
 20.3.2 Segmentation 503
 20.3.3 Retrieval ... 506
20.4 Examples of Successful Evaluation Campaigns 508
 20.4.1 Registration .. 508
 20.4.2 Segmentation 509
 20.4.3 Annotation, Classification and Detection 511
 20.4.4 Information Retrieval 512
 20.4.5 Image Retrieval 512
20.5 Lessons Learned .. 517
20.6 Conclusions .. 517
References .. 518

21 Toolkits and Software for Developing
Biomedical Image Processing
and Analysis Applications
 Ivo Wolf .. 521
21.1 Introduction ... 521
21.2 Toolkits ... 522
21.2.1 The NA-MIC Kit 522
21.2.2 Insight Segmentation and Registration Toolkit 523
21.2.3 The Visualization Toolkit 524
21.2.4 Open Inventor 525
21.2.5 Medical Imaging Interaction Toolkit 526
21.2.6 The Image-Guided Surgery Toolkit 527
21.2.7 The Multimod Application Framework 528
21.2.8 vtkINRIA3D 529
21.2.9 OFFIS DICOM ToolKit 529
21.2.10 Grassroots DICOM Library 530
21.2.11 The Common Toolkit 530
21.2.12 Simulation Open Framework Architecture 530

21.3 Development Environments 531
21.3.1 SCIRun .. 532
21.3.2 OpenXIP ... 532
21.3.3 DeVIDE ... 533
21.3.4 VisTrails ... 534
21.3.5 LONI Pipeline 534
21.3.6 MeVisLab .. 535
21.3.7 MATLAB® .. 535
21.3.8 Interactive Data Language 536

21.4 Extensible Software ... 537
21.4.1 3D Slicer ... 537
21.4.2 MITK ExtApp and MITK 3M3 538
21.4.3 Graphical Interface for Medical Image Analysis and Simulation .. 539
21.4.4 OsiriX ... 539
21.4.5 ParaView .. 539
21.4.6 ImageJ and Fiji 540
21.4.7 MIPAV .. 541
21.4.8 VolView .. 541
21.4.9 Analyze .. 541
21.4.10 Amira ... 542

21.5 Conclusion and Discussion 543

References .. 543

22 Image Processing and the Performance Gap

Steven C. Horii and Murray H. Loew 545

22.1 Introduction ... 545

22.2 Examples of Clinically Useful Image Processing 546
22.2.1 Windowing and Image Display 546
22.2.2 Contrast and Edge Enhancement 546
22.2.3 Noise Reduction and Color Coding 547
22.2.4 Registration and Segmentation 547
22.2.5 Image Compression and Management 548

Contents XXIII

21.2.1 The NA-MIC Kit 522
21.2.2 Insight Segmentation and Registration Toolkit 523
21.2.3 The Visualization Toolkit 524
21.2.4 Open Inventor 525
21.2.5 Medical Imaging Interaction Toolkit 526
21.2.6 The Image-Guided Surgery Toolkit 527
21.2.7 The Multimod Application Framework 528
21.2.8 vtkINRIA3D 529
21.2.9 OFFIS DICOM ToolKit 529
21.2.10 Grassroots DICOM Library 530
21.2.11 The Common Toolkit 530
21.2.12 Simulation Open Framework Architecture 530

21.3 Development Environments 531
21.3.1 SCIRun .. 532
21.3.2 OpenXIP ... 532
21.3.3 DeVIDE ... 533
21.3.4 VisTrails ... 534
21.3.5 LONI Pipeline 534
21.3.6 MeVisLab .. 535
21.3.7 MATLAB® .. 535
21.3.8 Interactive Data Language 536

21.4 Extensible Software ... 537
21.4.1 3D Slicer ... 537
21.4.2 MITK ExtApp and MITK 3M3 538
21.4.3 Graphical Interface for Medical Image Analysis and Simulation .. 539
21.4.4 OsiriX ... 539
21.4.5 ParaView .. 539
21.4.6 ImageJ and Fiji 540
21.4.7 MIPAV .. 541
21.4.8 VolView .. 541
21.4.9 Analyze .. 541
21.4.10 Amira ... 542

21.5 Conclusion and Discussion 543

References .. 543

22 Image Processing and the Performance Gap

Steven C. Horii and Murray H. Loew 545

22.1 Introduction ... 545

22.2 Examples of Clinically Useful Image Processing 546
22.2.1 Windowing and Image Display 546
22.2.2 Contrast and Edge Enhancement 546
22.2.3 Noise Reduction and Color Coding 547
22.2.4 Registration and Segmentation 547
22.2.5 Image Compression and Management 548
22.3 Why are there Gaps? 549
 22.3.1 The Conservative Radiologist 549
 22.3.2 The Busy Radiologist: Digital vs. Analog Workflow 549
 22.3.3 The Wary Radiologist: Malpractice Concerns 550
 22.3.4 The Skeptical Radiologist:
 Evidence-Based Requirements 551
 22.3.5 Tails, Dogs, and Gaps 552

22.4 The Goals of Image Processing
 for Medical Imaging .. 553
 22.4.1 Automation of Tasks 553
 22.4.2 Improvement of Observer Performance 555

22.5 Closing the Gap .. 561
 22.5.1 Education ... 561
 22.5.2 Research .. 562

22.6 Conclusion .. 563

References .. 563

Index .. 567
List of Contributors

Mostafa Analoui
Healthcare and Life Sciences
The Livingston Group
New York, NY, USA
analoui@yahoo.com

Romaric Audigier
Laboratoire Vision et Ingénierie des Contenus, CEA-LIST
romaric.audigier@cea.fr

Paulo M. Azevedo-Marques
Medical School of Ribeirão Preto
University of São Paulo
São Paulo, Brazil
pmarques@fmrp.usp.br

André G.R. Balan
Computer Science, Mathematics and Cognition Center
Federal University of ABC
São Paulo, Brazil
agrbalan@icmc.usp.br

Dirk Bartz†
Innovation Center for Computer Assisted Surgery (ICCAS)
University of Leipzig
Leipzig, Germany

Pedro H. Bugatti
Computer Science Department
University of São Paulo
São Paulo, Brazil
pbugatti@icmc.usp.br

Zang-Hee Cho
Neuroscience Research Institute
Gachon University of Medicine and Science, Seoul, Korea
zcho@gachon.ac.kr

Krzysztof Chris Ciesielski
Department of Mathematics
West Virginia University
Morgantown, WV, USA
and
Department of Radiology
University of Pennsylvania
Philadelphia, PA, USA
kcies@math.wvu.edu

Lena Costaridou
Department of Medical Physics
University of Patras
Patras, Greece
costarid@upatras.gr

Hervé Delingette
Asclepios Team, INRIA
Sophia-Antipolis, France
herve.delingette@inria.fr
List of Contributors

Thomas M. Deserno
Department of Medical Informatics
RWTH Aachen University
Aachen, Germany
deserno@ieee.org

Jan D’hooge
Department of Cardiovascular Diseases, Katholieke Universiteit
Leuven, Leuven, Belgium
jan.dhooge@uz.kuleuven.ac.be

Jorge Documet
Image Processing and Informatics Lab, University of Southern California, Los Angeles, CA, USA
documet@usc.edu

Marco Eichelberg
OFFIS Institute for Information Technology, Oldenburg, Germany
eichelberg@offis.de

Hayit Greenspan
Department of Biomedical Engineering, Tel-Aviv University
Tel-Aviv, Israel
hayit@eng.tau.ac.il

Bart M. ter Haar Romeny
Department of Biomedical Engineering, Eindhoven University of Technology
Eindhoven, The Netherlands
b.m.terhaarromeny@tue.nl

Tobias Heimann
French Research Institute of Computer Science and Automatic Control, INRIA
Sophia Antipolis Cedex, France
and
German Cancer Research Center
Heidelberg, Germany
t.heimann@dkfz.de

Steven C. Horii
Department of Radiology
University of Pennsylvania
Philadelphia PA, USA
steve.horii@uphs.upenn.edu

Alexander Horsch
Department of Medical Statistics and Epidemiology, Technische Universität München
Munich, Germany
and
Computer Science Department
University of Tromsø
Tromsø, Norway
alexander.horsch@tum.de

H.K. (Bernie) Huang
Image Processing and Informatics Lab, University of Southern California, Los Angeles, CA, USA
hkhuang@aol.com

Peter Jensch†
OFFIS Institute for Information Technology, Oldenburg, Germany

Jayashree Kalpathy-Cramer
Department of Medical Informatics and Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
kalpathy@ohsu.edu

Young-Bo Kim
Neuroscience Research Institute
Gachon University of Medicine and Science, Seoul, Korea
neurokim@gachon.ac.kr

Anh HongTu Le
Image Processing and Informatics Lab, University of Southern California, Los Angeles, CA, USA
anhhle@usc.edu
Brent J. Liu
Image Processing and Informatics Lab, University of Southern California, Los Angeles, CA, USA
brentliu@usc.edu

Murray H. Loew
Biomedical Engineering Program Department of Electrical and Computer Engineering The George Washington University Washington, DC, USA
loew@gwu.edu

Roberto A. Lotufo
School of Electrical and Computer Engineering, State University of Campinas (UNICAMP) Campinas, Brazil
lotufo@unicamp.br

Rubens C. Machado
Center for Information Technology Renato Archer (CTI), Ministry of Science and Technology (MCT) Campinas, Brazil
rubens.machado@cti.gov.br

James G. Malcolm
Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
malcolm@bwh.harvard.edu

Henning Müller
University of Applied Sciences Western Switzerland (HES-SO) Sierre, Switzerland
and University and Hospitals of Geneva Geneva, Switzerland
henning.mueller@hevs.ch

Michael Onken
OFFIS Institute for Information Technology, Oldenburg, Germany
onken@offis.de

Maria Petrou
Informatics and Telematics Institute Centre for Research and Technology Hellas (CERTH) Thessaloniki, Greece
petrou@iti.gr

Bernhard Preim
Department of Simulation and Graphics, University of Magdeburg Magdeburg, Germany
preim@isg.cs.uni-magdeburg.de

Yogesh Rathi
Department of Psychiatry, Brigham and Women’s Hospital Harvard Medical School Boston, MA, USA
yogesh@bwh.harvard.edu

Marcela X. Ribeiro
Computer Science Department University of São Paulo São Paulo, Brazil
mxavier@icmc.usp.br

Jörg Riesmeier
ICSMED AG, Oldenburg, Germany
riesmeier@icsmed.de

Letícia Rittner
School of Electrical and Computer Engineering, State University of Campinas (UNICAMP) Campinas, Brazil
lrittner@dca.fee.unicamp.br

Daniel Rueckert
Department of Computing, Imperial College London, London, UK
d.rueckert@imperial.ac.uk

André V. Saúde
Department of Computer Science Federal University of Lavras Lavras, Minas Gerais, Brazil
saude@dcc.ufla.br
XXVIII List of Contributors

Julia A. Schnabel
Institute of Biomedical Engineering
Department of Engineering
Science, University of Oxford
Oxford, UK
julia.schnabel@eng.ox.ac.uk

Young-Don Son
Neuroscience Research Institute
Gachon University of Medicine and Science, Seoul, Korea
ydson@gachon.ac.kr

Tanveer Syeda-Mahmood
IBM Almaden Research Center
San Jose, CA, USA
stf@almaden.ibm.com

Agma J.M. Traina
Computer Science Department
University of São Paulo
São Paulo, Brazil
agma@icmc.usp.br

Caetano Traina
Computer Science Department
University of São Paulo
São Paulo, Brazil
caetano@icmc.usp.br

Jayaram K. Udupa
Department of Radiology
University of Pennsylvania
Philadelphia, PA, USA
jay@mail.med.upenn.edu

Carolina Y.V. Watanabe
Computer Science Department
University of São Paulo
São Paulo, Brazil
carolina@icmc.usp.br

Carl-Fredrik Westin
Department of Radiology
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA, USA
westin@bwh.harvard.edu

Ivo Wolf
Department of Medical Informatics
Mannheim University of Applied Science, Mannheim, Germany
i.wolf@hs-mannheim.de

Seung-Schik Yoo
Department of Radiology
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA, USA
yoo@bwh.harvard.edu
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>One-Dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>Two-Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-Dimensional</td>
</tr>
<tr>
<td>4D</td>
<td>Four-Dimensional</td>
</tr>
<tr>
<td>AAM</td>
<td>Active Appearance Model</td>
</tr>
<tr>
<td>AAPM</td>
<td>American Association of Physicists in Medicine</td>
</tr>
<tr>
<td>ABCD</td>
<td>Asymmetry, Border, Color, and Differential structures</td>
</tr>
<tr>
<td>ACE</td>
<td>Associative Classifier Engine</td>
</tr>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>ACSE</td>
<td>Association Control Service Element</td>
</tr>
<tr>
<td>ADNI</td>
<td>Alzheimer’s Disease Neuroimaging Initiative</td>
</tr>
<tr>
<td>AE</td>
<td>Application Entity</td>
</tr>
<tr>
<td>AFC</td>
<td>Absolute Fuzzy Connectedness</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AIF</td>
<td>Arterial Input Function</td>
</tr>
<tr>
<td>AJAX</td>
<td>Asynchronous Javascript XML</td>
</tr>
<tr>
<td>AJCC</td>
<td>American Joint Committee on Cancer</td>
</tr>
<tr>
<td>ALM</td>
<td>Acral Lentiginous Melanoma</td>
</tr>
<tr>
<td>AMN</td>
<td>Atypical Melanocytic Nevi</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>AOM</td>
<td>Area Overlap Measure</td>
</tr>
<tr>
<td>APD</td>
<td>Avalanche Photodiode</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ASCF</td>
<td>Alternating Sequential Component Filter</td>
</tr>
<tr>
<td>ASD</td>
<td>Atrial Septal Defect</td>
</tr>
<tr>
<td>ASF</td>
<td>Alternating Sequential Filter</td>
</tr>
<tr>
<td>ASM</td>
<td>Active Shape Model</td>
</tr>
<tr>
<td>AVD</td>
<td>Absolute Volumetric Difference</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>BAA</td>
<td>Bone Age Assessment</td>
</tr>
<tr>
<td>BDWG</td>
<td>Biomarker Definitions Working Group</td>
</tr>
<tr>
<td>BI-RADS</td>
<td>Breast Imaging Reporting and Data System</td>
</tr>
<tr>
<td>BIR</td>
<td>Biomedical Imaging Resource</td>
</tr>
<tr>
<td>BSD</td>
<td>Berkeley Software Distribution</td>
</tr>
<tr>
<td>BSPS</td>
<td>Blending Softcopy Presentation States</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Diagnosis</td>
</tr>
<tr>
<td>CADe</td>
<td>Computer-Assisted Detection</td>
</tr>
<tr>
<td>CADx</td>
<td>Computer-Assisted Diagnostics</td>
</tr>
<tr>
<td>CARS</td>
<td>Computer-Assisted Radiology and Surgery</td>
</tr>
<tr>
<td>CART</td>
<td>Classification And Regression Tree</td>
</tr>
<tr>
<td>CAS</td>
<td>Chinese Academy of Sciences; Computer-Assisted Surgery</td>
</tr>
<tr>
<td>CASH</td>
<td>Color, Architecture, Symmetry, Homogeneity</td>
</tr>
<tr>
<td>CAT</td>
<td>Computer-Aided Therapy</td>
</tr>
<tr>
<td>CAVE</td>
<td>Cave Automatic Virtual Environment</td>
</tr>
<tr>
<td>CBIR</td>
<td>Content-Based Image Retrieval</td>
</tr>
<tr>
<td>CBVIR</td>
<td>Content-Based Visual Information Retrieval</td>
</tr>
<tr>
<td>CC</td>
<td>Cranio Caudal</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-Coupled Device</td>
</tr>
<tr>
<td>CGMM</td>
<td>Constrained GMM</td>
</tr>
<tr>
<td>CI</td>
<td>Computational Intelligence; Confidence Interval</td>
</tr>
<tr>
<td>CICE</td>
<td>Cumulative Inverse Consistency Error</td>
</tr>
<tr>
<td>CIE</td>
<td>Commission Internationale de L’Eclairage</td>
</tr>
<tr>
<td>CIMT</td>
<td>Carotid Intima-Media Thickness</td>
</tr>
<tr>
<td>CISTIB</td>
<td>Center for Computational Image and Simulation Technologies in Biomedicine</td>
</tr>
<tr>
<td>CIT</td>
<td>Center for Information Technology</td>
</tr>
<tr>
<td>CLEF</td>
<td>Cross Language Evaluation Forum</td>
</tr>
<tr>
<td>CM</td>
<td>Cutaneous Melanoma</td>
</tr>
<tr>
<td>CMY</td>
<td>Cyan, Magenta, Yellow</td>
</tr>
<tr>
<td>CNMD</td>
<td>Consensus Net Meeting on Dermoscopy</td>
</tr>
<tr>
<td>CNR</td>
<td>Contrast to Noise Ratio</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CR</td>
<td>Computed Radiography</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>CS</td>
<td>Conformance Statement</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebospinal Fluid</td>
</tr>
<tr>
<td>CSI</td>
<td>Chemical Shift Imaging</td>
</tr>
<tr>
<td>CSPS</td>
<td>Color Softcopy Presentation State</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>CTA</td>
<td>CT Angiography</td>
</tr>
<tr>
<td>CTC</td>
<td>CT Colonography</td>
</tr>
</tbody>
</table>
CTE Cumulative Transitive Error
CTK Common Toolkit
CTR Cardio-Thoracic Ratio
CVP Closest Vessel Projection
DAG Directed Acyclic Graph
DBM Deformation-Based Morphometry
DBT Digital Breast Tomosynthesis
DCE Dynamic Contrast-Enhanced
DCE-MRI Dynamic Contrast-Enhanced Magnetic Resonance Imaging
DCMR DICOM Content Mapping Resource
DCMTK OFFIS DICOM ToolKit
DDSM Digital Database for Screening Mammography
DES Density Emitter Model
DeVIDE Delft Visualisation and Image Processing Of Development Environment
DFT Discrete Fourier Transform
DICOM Digital Imaging and Communications in Medicine
DICOM SR DICOM Structured Reporting
DIMSE DICOM Message Service Element
DKFZ Deutsches Krebsforschungszentrum
dMRI Diffusion Magnetic Resonance Imaging
DNA Deoxyribonucleic Acid
DOF Degree Of Freedom
DP Detection Performed
DPV Dermatoscopic Point Value
DR Digital Radiography
DSA Digital Subtraction Angiography
DSI Diffusion Spectrum Imaging
DTI Diffusion Tensor Imaging
DTM Decision Tree Method
DVD Digital Versatile Disc
DWT Discrete Wavelet Transform
ECG Electrocardiography
EEG Electroencephalography
ELM Epi-Luminescence Microscopy
EM Expectation Maximization
EN European Norm
ENT Ear, Nose, and Throat
EPI Echo Planar Imaging
EXACT Extraction of Airways from CT
F-FP-CIT 18FluoroPropyl-CarbomethoxyIodophenyl-norTropane
XXXII Acronyms

FA Fractional Anisotropy
FB Filtered Backprojection
FC Fuzzy Connectedness
FDA Food and Drug Administration
FDG 18F-Fludeoxyglucose
FDI Fédération Dentaire Internationale
FEM Finite Element Model
FFD Free-Form Deformation
FFDM Full-Field Digital Mammography
FID Free Induction Decay
Fiji Fiji Is Just ImageJ
FISH Fluorescent In-Situ Hybridization
FLT 18F-L-Thymidine
fMRI Functional MRI
FND False Negative Dice
FOV Field-Of-View
FPD False Positive Dice
FROC Free-Response Receiver Operating Characteristic
FSC File Set Creator
FSR File Set Reader
FSU File Set Updater
FWHM Full Width Half Maximum
GA Genetic Algorithms
GC Graph Cut
GDCM Grassroots DICOM Library
GG Generalized Graph
GIF Graphics Interchange Format
GIFT GNU Image Finding Tool
GIMIAS Graphical Interface for Medical Image Analysis and Simulation
GLCM Gray-Level Co-occurrence Matrices
GMM Gaussian Mixture Model
GMP Good Manufacturing Practice
GNU GNU’s Not Unix
GPA Generalized Procrustes Analysis
GPU Graphics Processing Unit
GSPS Grayscale Softcopy Presentation State
GTC Generalized Tanimoto Coefficient
GUI Graphical User Interface
HARAG Hierarchical Attributed Region Adjacency Graph
HARDI High Angular Resolution Diffusion Imaging
HD Hausdorff Distance
HIPAA Health Insurance Portability and Accountability Act
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIS</td>
<td>Hospital Information System; Hue, Intensity, Saturation</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level Seven</td>
</tr>
<tr>
<td>HRRT</td>
<td>High-Resolution Research Tomograph</td>
</tr>
<tr>
<td>HSV</td>
<td>Hue-Saturation-Value</td>
</tr>
<tr>
<td>HU</td>
<td>Hounsfield Unit</td>
</tr>
<tr>
<td>IBSR</td>
<td>Internet Brain Segmentations Repository</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Component Analysis</td>
</tr>
<tr>
<td>ICC</td>
<td>International Color Consortium</td>
</tr>
<tr>
<td>ICCAS</td>
<td>International Center for Computer-Assisted Surgery</td>
</tr>
<tr>
<td>ICP</td>
<td>Iterative Closest Point</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>IDEA</td>
<td>Image Diagnosis Enhancement Through Associations</td>
</tr>
<tr>
<td>IDL</td>
<td>Interactive Data Language</td>
</tr>
<tr>
<td>IFT</td>
<td>Image Foresting Transform</td>
</tr>
<tr>
<td>IGS</td>
<td>Image-Guided Surgery</td>
</tr>
<tr>
<td>IGSTK</td>
<td>Image-Guided Surgery Toolkit</td>
</tr>
<tr>
<td>IGT</td>
<td>Image-Guided Therapy</td>
</tr>
<tr>
<td>IHE</td>
<td>Integrating the Healthcare Enterprise</td>
</tr>
<tr>
<td>IHS</td>
<td>Intensity, Hue, Saturation</td>
</tr>
<tr>
<td>IOD</td>
<td>Information Object Definition</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IR</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>IRB</td>
<td>Institutional Review Board</td>
</tr>
<tr>
<td>IRFC</td>
<td>Iterative Relative Fuzzy Connectedness</td>
</tr>
<tr>
<td>IRMA</td>
<td>Image Retrieval in Medical Applications</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITK</td>
<td>Insight Segmentation and Registration Toolkit</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group</td>
</tr>
<tr>
<td>JSW</td>
<td>Joint Space Width</td>
</tr>
<tr>
<td>k-NN</td>
<td>k-Nearest Neighbor</td>
</tr>
<tr>
<td>KIN</td>
<td>Key Image Note</td>
</tr>
<tr>
<td>KLT</td>
<td>Karhunen-Loève Transform</td>
</tr>
<tr>
<td>LA</td>
<td>Left Atrium</td>
</tr>
<tr>
<td>LAC</td>
<td>Los Angeles County Hospital</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LDA</td>
<td>Linear Discriminant Analysis</td>
</tr>
<tr>
<td>LGPL</td>
<td>Lesser General Public License</td>
</tr>
<tr>
<td>LIDC</td>
<td>Lung Image Database Consortium</td>
</tr>
<tr>
<td>LMM</td>
<td>Lentigo Maligna Melanoma</td>
</tr>
<tr>
<td>LoG</td>
<td>Laplacian Of Gaussian</td>
</tr>
<tr>
<td>LONI</td>
<td>Laboratory Of Neuro Imaging</td>
</tr>
<tr>
<td>LRA</td>
<td>Logistic Regression Analysis</td>
</tr>
<tr>
<td>LS</td>
<td>Level Set</td>
</tr>
<tr>
<td>LSA</td>
<td>Lenticulostriate Arterie</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>LSO</td>
<td>Lutetium Oxyorthosilicate</td>
</tr>
<tr>
<td>LUT</td>
<td>Look-Up Table</td>
</tr>
<tr>
<td>LV</td>
<td>Left Ventricle</td>
</tr>
<tr>
<td>MAF</td>
<td>Multimod Application Framework</td>
</tr>
<tr>
<td>MAP</td>
<td>Maximization A Posterior; Mean Average Precision</td>
</tr>
<tr>
<td>MATLAB</td>
<td>MATrix LABoratory</td>
</tr>
<tr>
<td>MC</td>
<td>Micro-Calcification</td>
</tr>
<tr>
<td>MDL</td>
<td>Minimum Description Length</td>
</tr>
<tr>
<td>MedGIFT</td>
<td>Medical GIFT</td>
</tr>
<tr>
<td>MEDICOM</td>
<td>Medical Image Communication</td>
</tr>
<tr>
<td>MeSH</td>
<td>Medical Subject Headings</td>
</tr>
<tr>
<td>MHD</td>
<td>Manhattan Distance</td>
</tr>
<tr>
<td>MI</td>
<td>Mutual Information</td>
</tr>
<tr>
<td>MICCAI</td>
<td>Medical Image Computing and Computer Assisted Intervention</td>
</tr>
<tr>
<td>MIP</td>
<td>Maximum Intensity Projection</td>
</tr>
<tr>
<td>MIPAV</td>
<td>Medical Image Processing, Analysis, and Visualization</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MITK</td>
<td>Medical Imaging Interaction Toolkit</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Likelihood; MeVis Image Processing Library</td>
</tr>
<tr>
<td>MLO</td>
<td>Medio-Lateral Oblique</td>
</tr>
<tr>
<td>MOD</td>
<td>Magneto Optical Disk</td>
</tr>
<tr>
<td>MP</td>
<td>Morphological Processing</td>
</tr>
<tr>
<td>MPM</td>
<td>Maximization of the Posterior Marginals</td>
</tr>
<tr>
<td>MPPS</td>
<td>Modality Performed Procedure Step</td>
</tr>
<tr>
<td>MPU</td>
<td>Multi-Level Partition of Unity</td>
</tr>
<tr>
<td>MRA</td>
<td>Magnetic Resonance Angiography</td>
</tr>
<tr>
<td>MRF</td>
<td>Markov Random Field</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MRM</td>
<td>Magnetic Resonance Mammography</td>
</tr>
<tr>
<td>MRML</td>
<td>Medical Reality Markup Language; Multimedia Retrieval Markup Language</td>
</tr>
<tr>
<td>MRS</td>
<td>Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>MRSI</td>
<td>Magnetic Resonance Spectroscopy Imaging</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Sclerosis</td>
</tr>
<tr>
<td>MSW</td>
<td>Multi-Scale Watershed</td>
</tr>
<tr>
<td>MTTF</td>
<td>Modulation Transfer Function</td>
</tr>
<tr>
<td>MV</td>
<td>Mitral Valve</td>
</tr>
<tr>
<td>NA-MIC</td>
<td>National Alliance for Medical Image Computing</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NCBC</td>
<td>National Centers for Biomedical Computing</td>
</tr>
<tr>
<td>NCC</td>
<td>Normalized Cross Correlation</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart Lung and Blood Institute</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NIREP</td>
<td>Non-Rigid Image Registration Evaluation Project</td>
</tr>
<tr>
<td>NLM</td>
<td>National Library of Medicine</td>
</tr>
<tr>
<td>NM</td>
<td>Nodular Melanoma</td>
</tr>
<tr>
<td>NMF</td>
<td>Non-Negative Matrix Factorization</td>
</tr>
<tr>
<td>NMI</td>
<td>Normalised Mutual Information</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NN</td>
<td>Nearest Neighbor</td>
</tr>
<tr>
<td>NNT</td>
<td>Number Needed to Treat</td>
</tr>
<tr>
<td>NRRD</td>
<td>Nearly Raw Raster Data</td>
</tr>
<tr>
<td>NURBS</td>
<td>Non-Uniform Rational B-Spline</td>
</tr>
<tr>
<td>OA</td>
<td>Osteo arthritis</td>
</tr>
<tr>
<td>OAI</td>
<td>Osteo arthritis Initiative</td>
</tr>
<tr>
<td>OCT</td>
<td>Optical Coherence Tomography</td>
</tr>
<tr>
<td>ODF</td>
<td>Orientation Distribution Function</td>
</tr>
<tr>
<td>OFFIS</td>
<td>Institute for Information Technology</td>
</tr>
<tr>
<td>OOI</td>
<td>Object Of Interest; Organ Of Interest</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstructive Sleep Apnea</td>
</tr>
<tr>
<td>OSGi</td>
<td>Open Services Gateway Initiative</td>
</tr>
<tr>
<td>OSI</td>
<td>Open System Interconnection</td>
</tr>
<tr>
<td>OTS</td>
<td>Off-The-Shelf</td>
</tr>
<tr>
<td>PA</td>
<td>Postero-Anterior</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving and Communication System</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PCS</td>
<td>Profile Connection Space</td>
</tr>
<tr>
<td>PCSP</td>
<td>Pseudo-Color Softcopy Presentation States</td>
</tr>
<tr>
<td>PD</td>
<td>Pharmacodynamic</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial Differential Equation</td>
</tr>
<tr>
<td>PDM</td>
<td>Point Distribution Model</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetic</td>
</tr>
<tr>
<td>PMT</td>
<td>Photo-Multiplier Tube</td>
</tr>
<tr>
<td>POC</td>
<td>Proof Of Concept</td>
</tr>
<tr>
<td>POM</td>
<td>Proof Of Mechanism</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>pQCT</td>
<td>Peripheral Quantitative Computed Tomography</td>
</tr>
<tr>
<td>PSF</td>
<td>Point Spread Function</td>
</tr>
<tr>
<td>PSL</td>
<td>Pigmented Skin Lesion</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>PSP</td>
<td>Photostimulable Phosphor</td>
</tr>
<tr>
<td>PWF</td>
<td>Post-Processing Work Flow</td>
</tr>
<tr>
<td>Q/R</td>
<td>Query/Retrieve</td>
</tr>
<tr>
<td>QBE</td>
<td>Query By Example, Query By Image Example</td>
</tr>
<tr>
<td>QBI</td>
<td>Q-Ball Imaging</td>
</tr>
<tr>
<td>QBIC</td>
<td>Query By Image Content</td>
</tr>
<tr>
<td>QDE</td>
<td>Quantum Detection Efficiency</td>
</tr>
<tr>
<td>RA</td>
<td>Right Atrium</td>
</tr>
<tr>
<td>rCMRGlC</td>
<td>Regional Cerebral Metabolic Rate of Glucose</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFC</td>
<td>Relative Fuzzy Connectedness</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green, and Blue</td>
</tr>
<tr>
<td>RIRE</td>
<td>Retrospective Image Registration Evaluation</td>
</tr>
<tr>
<td>RIS</td>
<td>Radiology Information System</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>ROI</td>
<td>Region Of Interest</td>
</tr>
<tr>
<td>RPC</td>
<td>Rich Client Platform</td>
</tr>
<tr>
<td>RREP</td>
<td>Retrospective Registration Evaluation Project</td>
</tr>
<tr>
<td>RSNA</td>
<td>Radiological Society of North America</td>
</tr>
<tr>
<td>RV</td>
<td>Random Variable, Right Ventricle</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Class Provider</td>
</tr>
<tr>
<td>SCU</td>
<td>Service Class User</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>SER</td>
<td>Signal Enhancement Ratio</td>
</tr>
<tr>
<td>SFM</td>
<td>Screen-Film Mammography</td>
</tr>
<tr>
<td>SGLD</td>
<td>Spatial Gray Level Dependence</td>
</tr>
<tr>
<td>SIF</td>
<td>Single Image Finding</td>
</tr>
<tr>
<td>SIFT</td>
<td>Shift-Invariant Feature Transform</td>
</tr>
<tr>
<td>SIM</td>
<td>Scaling Index Method</td>
</tr>
<tr>
<td>SINR</td>
<td>Simple Image and Numeric Report</td>
</tr>
<tr>
<td>SiPM</td>
<td>Silicon Photomultiplier</td>
</tr>
<tr>
<td>SMART</td>
<td>System for the Mechanical Analysis and Retrieval of Text</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SOFA</td>
<td>Simulation Open Framework Architecture</td>
</tr>
<tr>
<td>SOP</td>
<td>Service Object Pair; Standard Operating Procedure</td>
</tr>
<tr>
<td>SOR</td>
<td>Successive Over-Relaxation</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Computed Tomography</td>
</tr>
<tr>
<td>SR</td>
<td>Structured Reporting; Super Resolution</td>
</tr>
<tr>
<td>SRN</td>
<td>Square Root of the Norm of Coefficients</td>
</tr>
<tr>
<td>SSD</td>
<td>Sum of Squared Differences</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SSM</td>
<td>Statistical Shape Model, Superficial Spreading Melanoma</td>
</tr>
<tr>
<td>STAPLE</td>
<td>Simultaneous Truth and Performance Level Estimation</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>TBM</td>
<td>Tensor-Based Morphometry</td>
</tr>
<tr>
<td>TCL</td>
<td>Tool Command Language</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TEE</td>
<td>Transesophageal Echocardiography</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
</tr>
<tr>
<td>TMG</td>
<td>Tensorial Morphological Gradient</td>
</tr>
<tr>
<td>TREC</td>
<td>Text Retrieval Conference</td>
</tr>
<tr>
<td>UofU</td>
<td>University of Utah</td>
</tr>
<tr>
<td>UCLA</td>
<td>University of California at Los Angeles</td>
</tr>
<tr>
<td>UID</td>
<td>Unique Identifier</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UPF</td>
<td>Universitat Pompeu Fabra</td>
</tr>
<tr>
<td>US</td>
<td>Ultrasonography, Ultrasound, United States</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USC</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>VBM</td>
<td>Voxel-Based Morphometry</td>
</tr>
<tr>
<td>VD</td>
<td>Volumetric Difference</td>
</tr>
<tr>
<td>VL</td>
<td>Virtual Machine</td>
</tr>
<tr>
<td>VME</td>
<td>Virtual Medical Entities</td>
</tr>
<tr>
<td>VOI</td>
<td>Volume Of Interest; Value Of Interest</td>
</tr>
<tr>
<td>VOLCANO</td>
<td>VOLume Change Analysis of NOdules</td>
</tr>
<tr>
<td>VPE</td>
<td>Visual Programming Environment</td>
</tr>
<tr>
<td>VR</td>
<td>Value Representation; Virtual Reality</td>
</tr>
<tr>
<td>VSD</td>
<td>Ventricular Septum Defect</td>
</tr>
<tr>
<td>VSG</td>
<td>Visualization Sciences Group</td>
</tr>
<tr>
<td>VTK</td>
<td>Visualization Toolkit</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>WS</td>
<td>Watershed</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Service Description Language</td>
</tr>
<tr>
<td>XA</td>
<td>X-ray Angiography</td>
</tr>
<tr>
<td>XIP</td>
<td>eXtensible Imaging Platform</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray Radio-Fluoroscopy</td>
</tr>
<tr>
<td>ZIB</td>
<td>Zuse Institute Berlin</td>
</tr>
</tbody>
</table>