Homework 2. Due day: 9/15/06

(2.1) Let G be a graph with $E(G) \neq \emptyset$. A subset $X \subseteq E(G)$ is a bicircuit if the edge induced subgraph X is connected with $|X| = |V(X)| + 1$ and with minimum degree $\delta(X) \geq 2$. A connected component L of G is an acyclic component of G if $|E(L)| = |V(L)| - 1$. Let $\omega(G)$ denote the number of acyclic components of G.

(i) Let $C_B(G)$ denote the collection of all bicircuits of G. Show that $C_B(G)$ satisfies the circuit axioms and so there is a matroid $B(G)$ on $E(G)$ with $C(B(G)) = C_B(G)$, called the bicircular matroid of G.

(ii) Let r denote the rank function of $B(G)$. Show that $\forall X \subseteq E(G)$, $r(X) = |V(X)| - \omega_n(X)$.

Proof: (i) (C1). Since when $X = \emptyset$, it is not true that $|X| = |V(X)| + 1$, $\emptyset \notin C_B(G)$.

To show (ii) and (iii), we need two lemmas.

Lemma 1 If G is a graph such that $|E(G)| \geq |V(G)| + 1$, then G must contain a bicircuit.

Proof: By contradiction, we assume that G is a countexample with $|V(G)|$ minimized. We assume that G is connected, otherwise we argue componentwise. Since G is connected, G has a spanning tree T. Note that $|E(G)| - 1 \geq |V(G)| = |V(T)| = |E(T)| + 1$. There exists $e, e' \in E(G) - E(T)$. Let $H = T + \{e, e'\}$. Then $|E(H)| = |V(H)| + 1$. By the minimality of G, we must have $G = H$. If $\delta(G) \geq 2$, then G itself is a bicircuit. If G has a vertex v of degree 1, then by the minimality of G, $G - v$ has a bicircuit, and so G must contains a bicircuit, contrary to the assumption on G.

Lemma 2 Any bicircuit must be either a θ-graph, or a Figure 8 graph, or a dump-bell graph.

Proof: Let L be a bicircuit. Then L contains a spanning tree T with exactly two edges e, e' not in T, and so L has two circuits C_1 and C_2 as the fundamental circuits of e and e' with respect to T, respectively. If $C_1 \cap C_2$ contains an edge, (or if $C_1 \cap C_2$ contains exactly one vertex) then $L' = C_1 \cup C_2$ is a θ-graph (or a Figure 8 graph), with $|L'| = |V(L')| + 1$. As $|L| = |V(L)| + 1$, and as L is connected, for any vertex v in $L - L'$, v has exactly one path in L to L', and $\delta(L) = 1$, contrary to the definition of a bicircuit. Thus in this case L is a θ-graph or a Figure 8 graph. If C_1 and C_2 are vertex disjoint, then $|L'| = |V(L')|$, and as L is connected, there must be a path P in L joining C_1 to C_2. Let $L'' = C_1 \cup C_2 \cup P$, which is a dump-bell graph with $|L''| = |V(L'')| + 1$. With a similar argument as above, since L is connected with $\delta(L) \geq 2$, and since $|L| = |V(L)| + 1$, we conclude that $L = L''$ in this case, and so it is a dump-bell graph.

(C2). Let $L_1, L_2 \in C_B(G)$ such that $L_1 \neq L_2$ and $L_1 \subset L_2$. Since L_1 has two circuits (2-regular connected nontrivial graphs) C_1 and C_2, $C_1 \cap C_2$ may or may not be empty). Since $L_1 \subseteq L_2$, then C_1 and C_2 are also subgraphs of L_2. Let $e \in L_2 - L_1$, we must have $e \in (C_1 \cup C_2)$, and so the only possibility is when L_2 is the dump-bell shape bicircuit, and e lies in the path P joining the two circuits of the dumpbell. Since $L_1 \subseteq L_2$, C_1 and C_2 are also vertex disjoint circuits in L_1, and so as L_1 must be connected and as $L_1 \subseteq L_2$, P must also be a subgraph of L_1, and so $e \in P \subseteq L_1$, contrary to the fact that $e \in L_2 - L_1$.

(C3) Let $L_1, L_2 \in C_B(G)$ with $L_1 \neq L_2$ but $e \in L_1 \cap L_2$. Let C_1, C_2 denote the two circuits of L_1 and C_1', C_2' denote the two circuits of L_2.

If $e \in C_1' \cap C_2'$, then $L' = C_1' \cup C_2' - e$ is a connected graph which contains at least one circuit (by the fact that circuits of a graph satisfy (C3)), and so $|L'| \geq |V(L')|$. Since L_1 is connected, $H = L' \cup (L_1 - C_1')$ is also connected with $|H| \geq |V(H)| + 1$ (as at least one vertex is counted in both $|V(L')|$ and in $|V(L_1 - C_1')|$), and so by Lemma 1, H contains a bicircuit L_3. Note that $H \subseteq (C_1' \cup C_2' - e) \cup (L_1 - C_1') \subseteq L_1 \cup L_2 - e$, (C3) is proved in this case.

The proofs for the other cases (by symmetry, these are either $e \in C_1' \cap (L_2 - (C_1' \cup C_2'))$ or $e \in (L_1 - (C_1' \cup C_2')) \cap (L_2 - (C_1' \cup C_2'))$) are similar.
Lemma 2, any acyclic components cannot contain a bicircuit, and so

(ii) Let \(X_1, X_2, \ldots, X_n \) be acyclic components of \(X \) and \(X_{n+1}, \ldots, X_m \) are cyclic components of \(X \). By Lemma 2, any acyclic components cannot contain a bicircuit, and so \(r(X_i) = |X_i| = |V(X_i)| - 1 \). Again by Lemma 2, if \(X_j \) is a cyclic component, then \(X_j \) contains a spanning tree plus an edge, which, by Lemma 1, is a maximally independent set in \(B(G) \). Thus in this case, \(r(X_j) = |V(X_j)| \). Summing up along the components,

\[
r(X) = \sum_{i=1}^{m} r(X_i) = \sum_{i=1}^{m} |V(X_i)| - a = |V(X)| - \omega_d(X).
\]

(2.2) Let \(M \) be a matroid with rank function \(r \) and closure operator \(cl \). \(\forall X, Y \subseteq E(M) \), each of the following holds.

(i) If \(X \subseteq cl(Y) \subseteq cl(X) \), then \(cl(X) = cl(Y) \).

(ii) If \(cl(X) = cl(Y) \), then \(r(X) = r(Y) \).

(iii) \(r(X \cup Y) = r(X \cup cl(Y)) = r(cl(X \cup Y)) = r(cl(X) \cup Y) \).

Proof: (i) By (CL2) and since \(X \subseteq cl(Y) \subseteq cl(X) \), we have \(cl(X) \subseteq cl(cl(Y)) \subseteq cl(X) \). By (CL3), both \(cl(cl(X)) = cl(X) \) and \(cl(cl(Y)) = cl(Y) \); and so \(cl(X) \subseteq cl(Y) \subseteq cl(X) \). Thus equality must hold.

(ii) Let \(B_X \in B(M[X]) \). Then \(r(X) = |B_X| = r(B_X) \). Note that \(B_X \subseteq X \subseteq cl(X) \). We can augment \(B_X \) to a basis \(B \in B(M) \). Note that \(r(W) = r(cl(W)) \), \(\forall W \subseteq E \) (shown in class), \(r(X) = |B_X| \leq |B| = r(cl(Y)) = r(cl(X)) = r(X) \), and so \(r(X) = r(cl(Y)) = r(Y) \).

(iii) Note that for any \(W \subseteq E \), \(r(W) = r(cl(W)) \), and so we already have \(r(X \cup Y) = r(cl(X \cup Y)) \).

Let \(B_Y \in B(M[Y]) \). Then \(|B_Y| = r(Y) = r(cl(Y)) \), and so \(B_Y \in B(M) \). Augment \(B_Y \) to \(B' \in B(M[X \cup cl(Y)]) \). Then \(B' - B_Y \subseteq X - cl(Y) \), and so \(B' \in I(M[X \cup Y]) \). Thus \(r(X \cup Y) \leq r(X \cup cl(Y)) = |B'| \leq r(X \cup Y) \), and so \(r(X \cup Y) = r(X \cup cl(Y)) \).

Replacing \(X \) by \(cl(Y) \), and \(Y \) by \(X \) in \(r(X \cup Y) = r(X \cup cl(Y)) \), we obtain \(r(X \cup cl(Y)) = r(cl(X) \cup cl(Y)) \).

(2.3) Let \(M \) be a matroid, let \(B \in B(M) \) and \(B^* = E - B \).

(i) If \(e \in B \), then \(C^* = C_M(e, B^*) \) is the only circuit in \(C(M^*) \) satisfying \(C^* \cap (B - e) = \emptyset \).

(ii) Suppose that \(f \in B^* \) and \(e \in B \). Show that \(f \in C_M(e, B^*) \) if and only if \(e \in C_M(f, B) \).

Proof: (i) Let \(C^* = C^*(e, B^*) \) and assume that \(\exists C^*_1 \in C(M^*) \) such that \(C^*_1 \subseteq E - (B - e) = (E - B) \cup e \). Then \(e \in C^*_1 \) since \(E - B \in B(M^*) \). Therefore, \(e \in C^* \cap C^*_1 \). By (C3), \(\exists C^*_2 \in C(M^*) \) such that \(C^*_2 \subseteq (C^*_1 \cup C^*) \cap C^* \). \(C^*_2 \subseteq (C^*_1 \cup C^*) \cap (E - B), \) contrary to \(E - B \in B(M^*) \).

(ii) Suppose that \(f \in C_M(e, B^*) \). Note that \(B = E - B^* \). Then \((B^* \cup e - f) \in B(M^*) \) iff \((B \cup f) - e = (E - (B^* \cup e)) \) iff \(f \in B(M) \) iff \(e \in C_M(f, B) \).

(2.4) Let \(M = M_3[I_4|D] \), where

\[
D = \begin{bmatrix}
0 & 1 & 1 & -1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
-1 & 1 & 1 & 0
\end{bmatrix}.
\]

(i) Show that \(M \cong M^* \).

(ii) Is it true that \(M = M^{**} \)?

Proof: (i) Note that \(D^T = D \). Therefore, \(M^* = M_3[-D^T|I_4] = M_3[D|I_4] \) by multiplying each of the first 4 columns by \((-1)\). Thus column permutations gives \(M^* = M_3[D|I_4] \cong M_3[I_4|D] = M \), and so \(M \) is self-dual.

Let \(X = \{e_2, e_3, e_4, e_5\} \) denote the corresponding 4 columns of \([I_4|D]\). Then computing the determinants we see that \(X \) is dependent in \(M \). However, computing the corresponding determinant in \([D|I_4]\),
we conclude that X is independent in M^*, and so $M \neq M^*$, or M is not identically self-dual.

(2.5) Show that $AG(3, 2)$ is a self-dual matroid.

Proof: We can show that $AG(3, 2)$ is identically self-dual. It suffices to show every basis of $AG(3, 2)$ is also a cobasis and vice versa. Given a $B^* \in B(M^*)$, $B = E - B^* \in B(M)$, and so one can have a standard representation of M so that B corresponds to an identity matrix. Therefore, it suffices to show that the columns other than this identity matrix are linearly independent. Given a standard representation of $AG(3, 2)$:

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{bmatrix}, \quad \text{and then} \quad
\begin{vmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{vmatrix} = -1 \neq 0.