Cycle covering of plane triangulations

Hong-Jian Lai
University of West Virginia
Morgantown, WV 26506

Hongyu Lai
Wayne State University
Detroit, MI 48202

Abstract. Bondy conjectures that if G is a 2-edge-connected simple graph with n vertices, then at most $(2n - 1)/3$ cycles in G will cover G. In this note, we show that if G is a plane triangulation with $n \geq 6$ vertices, then at most $(2n - 3)/3$ cycles in G will cover G.

1. Introduction

We follow the notation of Bondy and Murty [BM], except where noted otherwise. An edge e of a graph G is called a multiple edge if $G - e$ has an edge f having the same ends as e, and in this case we say that e is an extra edge of $G - e$ parallel to the edge f. Graphs may have multiple edges but loops are prohibited. Let G be a graph. For $X \subseteq E(G)$, the contraction G/X is the graph obtained from G by identifying the ends of each edge in X and then deleting the resulting loops. A collection C of cycles in G is called a cycle cover (CC) of G, if every edge of G lies in at least one cycle in C. It is obvious that G has a CC if and only if G is 2-edge-connected. For a graph with $\kappa'(G) \geq 2$, define

$$cc(G) = \min\{|C| : C \text{ is a CC of } G\}.$$

In [B], Bondy raised the following conjecture.

Conjecture SCC: If G is a simple 2-edge-connected graph with n vertices, then

$$cc(G) \leq \frac{2n - 1}{3}.$$

If C is a collection of cycles of G and if every edge in G lies in exactly 2 members of C, then C is called a cycle double cover (CDC) of G. The eminent cycle double cover conjecture, due to Seymour [S1] and Szekeres [S2], says that every 2-edge-connected graph admits a CDC. The following conjecture is also posted by Bondy in [B].

Conjecture SCDC: If G is a simple 2-edge-connected graph with n vertices, then G admits a CDC with at most $n - 1$ cycles.
Lemma 2.1 follows. Hence we may assume that $C_1^i \neq C_2^j$ and \{e_j\}. Thus

$$C_1^i \cup (C_2 - \{C_1^i, C_2^j\}) \cup \{C_2^j \cup C_1^i, C_2^j \cup C_2^i\}$$

Lemma 2.1 follows again.

Γ of G. The vertices of attachment of H in G, denoted by x in $V(H)$ that are incident with some edges in $E(G)$ — denotes a graph obtained from H by adding an extra edge of H.

We that $H = \Gamma_1$ or $H = \Gamma_1^+$ (see Figure 1) with an extra to an edge in $E(\Gamma_1) - \{v_1 v_2, v_2 v_3, v_3 v_1\}$, such that H is $A_G(H) \subseteq \{v_1, v_2, v_3\}$. Let e_1 be an extra edge parallel to $v_2 v_3$. Let $V_H = V(H) - \{v_1, v_2, v_3\}$.

(1) let $G' = (G - V_H) + e_2$ and we have

$$cc(G) \leq cc(G') + 1. \quad (2)$$

(2) let $G'' = (G - V_H) + \{e_1, e_2\}$ and we have

$$cc(G) \leq cc(G'') + 1. \quad (3)$$

(i) first. Let C be a CC of G', and let $G \in C$ be a cycle con-

$-e_2 + (v_2 v_5, v_5 v_4, v_4 v_6, v_6 v_3, v_3 v_2).$ and $F = v_2 v_4, v_1 v_6 v_5 v_3 v_2.$

Γ', F'} is a CC of G and so (2) holds.

Similar and uses the fact that we can always assume that e_1 cycles of any CC of G''.

We that $H = \Gamma_i$ or $H = \Gamma_i^+$ (see Figures 1 and 2) with an extra to an edge of $E(\Gamma_i) - \{v_1 v_2, v_2 v_3, v_3 v_1\}$, $(2 \leq i \leq 4)$,

graph of G with $A_G(H) \subseteq \{v_1, v_2, v_3\}$. Let e_i be an extra $e_i, e_1, (1 \leq i \leq 2)$, and let $V_H = V(H) - \{v_1, v_2, v_3\}$.

Let $G' = G - V_H$ and we have

$$cc(G) \leq cc(G') + 2. \quad (4)$$

$= \Gamma_i^i$. If e in not incident with v_1, then let $G'' = G - e$ is incident with v_1, then let $G'' = G - V_H + e_2$. In either

$$cc(G) \leq cc(G'') + 2.$$
Proof: We consider the following cases.

Case 1: \(i = 2 \).

Let \(C \) be a CC of \(G' \) and let \(C \) be a cycle in \(C \) that contains \(v_1, v_3 \). Let \(C' = C - v_1 v_3 + \{ v_1 v_4, v_4 v_5, v_5 v_6, v_6 v_7, v_7 v_8, v_8 v_1 \} \), let \(F_1 = v_1 v_3 v_5 v_7 v_1 \) and \(F_2 = v_1 v_2 v_4 v_6 v_1 \). Then \((C - \{ C \}) \cup \{ C', F_1, F_2 \} \) is a CC of \(G \) and so (4) holds.

The proof for (5) is similar and uses the fact that we can assume that \(e_1 \) and \(v_1 v_3 \) are in distinct cycles of any CC of \(G' \).

Case 2: \(i = 3 \).

Let \(C \) be a CC of \(G' \) and let \(C_1, C_2 \) be cycles in \(C \) that contain \(v_1, v_3 \) and \(v_2, v_3 \), respectively. (It may happen that \(C_1 = C_2 \).) Let \(C'_1 = C_1 - \{ v_1 v_3 \} + \{ v_1 v_4, v_4 v_5, v_5 v_6, v_6 v_7 \} \), \(C'_2 = C_2 - \{ v_2 v_3 \} + \{ v_2 v_5, v_5 v_7, v_7 v_9, v_9 v_1 \} \), if \(C_1 = C_2 \), then \(C'_1 = C'_2 \) is obtained by replacing \(v_1, v_3 \) by the above two paths, respectively, and let \(F_1 = v_1 v_3 v_5 v_7 v_9 v_1 \) and \(F_2 = v_1 v_2 v_4 v_6 v_1 \). Thus \((C - \{ C_1, C_2 \}) \cup \{ C'_1, F_1, F_2 \} \) is a CC of \(G \), and so (4) holds.

Suppose that \(H \) is \(\Gamma_5^* \) and \(e \) is not incident with \(v_1 \). Let \(C' \) be a CC for \(G' \) and let \(C_1, C_2 \) be defined as above and let \(C \) be the cycle in \(C \) containing \(e_1 \).

If \(E(C_2) \neq \{ e_1, v_2 v_3 \} \), then \(C_e \neq C_2 \). Since \(e \) is not incident with \(v_1 \), there is a \((v_2, v_3)\)-path \(P \in \Gamma_1 \) containing \(e \) such that the internal vertices of \(P \) are in \(V_H \). Thus we can define \(C'_e \) to be \(C_e - e_1 \) plus the \((v_2, v_3)\)-path \(P \), and define \(C'_1, C'_2, F_1, F_2 \) as above. It follows that \((C - \{ C_1, C_2 \}) \cup \{ C'_1, C'_2, F_1, F_2 \} \) is a CC of \(G \) and so (5) holds.

Thus we assume that \(E(C_2) = E(C_e) = \{ e_1, v_2 v_3 \} \). Without loss of generality, we assume that \(P \) is not parallel to \(v_5 v_7 \). Let \(F_1 = v_1 v_4 v_6 v_7 v_2 v_5 v_1 \), \(F_2 = v_1 v_3 v_5 v_7 v_9 v_1 \), and let \(F_3 \) be any cycle containing both \(v_5 v_7 \) and \(e_1 \). Thus \((C - \{ C_1, C_2 \}) \cup \{ C'_1, F_1, F_3, F_2 \} \) is a CC of \(G \), and so (5) holds.

The case when \(e \) is incident with \(v_1 \) can be shown similarly.

Case 3: \(i = 4 \).

Let \(C \) be a CC of \(G' \) and let \(C_1, C_2 \) be cycles in \(C' \) containing \(v_1, v_3 \) and \(v_2, v_3 \), respectively. (Possibly \(C_1 = C_2 \).) Let \(C'_1 = C_1 - \{ v_1 v_3 \} + \{ v_1 v_4, v_4 v_5, v_5 v_6, v_6 v_7 \} \) and \(C'_2 = C_2 - \{ v_2 v_3 \} + \{ v_2 v_5, v_5 v_7, v_7 v_9, v_9 v_1 \} \), and let \(F_1 = v_1 v_3 v_5 v_7 v_9 v_1 \), and \(F_2 = v_1 v_2 v_4 v_6 v_1 \). Then \((C - \{ C_1, C_2 \}) \cup \{ C'_1, F_1, F_2 \} \) is a CC of \(G \) and so (4) holds.

The proof when \(H = \Gamma_5^* \) is similar to that for the Case of \(i = 3 \).

Lemma 2.4. Suppose that \(H = \Gamma_5 \) or \(H = \Gamma_5^* \) (see Figure 3) with an extra edge \(e \) that is parallel to an edge \(d \) that \(d \) is parallel to an edge \(e \) of \(G' \) such that \(H \) is a subgraph of \(G' \) with \(A_G(H) \subseteq \{ v_1, v_2, v_3 \} \). Let \(V_H = V(G') - \{ v_1, v_2, v_3 \} \) and let \(G' = G - V_H \). Then

\[
cc(G) \leq cc(G') + 3.
\]
\(\text{cc}(G) \leq \text{cc}(G_2) + 1. \) \hspace{1cm} (9)

\(L''_k \) (see Figure 6) and let \(e' \notin E(G) \) be an extra edge between \(H \) and \(H' \). If \(H = L_1 \) or \(H = L_1' \) with an extra edge \(e \) that is parallel to \(H \), then \(\text{cc}(G) \leq \text{cc}(G_2) + 2. \) \hspace{1cm} (10)

8. If \(H = L''_1 \) or \(H = L''_1' \) with an extra edge \(e \) parallel to \(H \), then \(\text{cc}(G) \leq \text{cc}(G_4) + 2. \) \hspace{1cm} (11)

5. \(x, z, y \) and \(L''_1 = L''_1' \). Suppose that \(H \in \{ L''_1, L''_1' \} \) with an extra edge \(e \) parallel to an edge in \(G \), and with \(A_G(H) \subseteq \{ x, y, z \} \). Then \(\text{cc}(G) \leq \text{cc}(G_2) + 2. \) \hspace{1cm} (12)

\(x_1 \) to \(x_4x_5 \) if \(e \) is parallel to \(x_1x_2 \) or \(x_2x_3 \) or \(x_3x_4 \) or \(x_4x_5 \); or where \(e' \) is parallel to \(x_1 \), or \(x_2 \), or \(x_3 \), or \(x_4 \). In any case, we have \(\text{cc}(G) \leq \text{cc}(G_2) + 1. \) \hspace{1cm} (9)

\(C \to \{ C_1, C_2 \} \) containing \(x_2x_4 \) and still denote the resulting collection by \(C \to \{ C_1, C_2 \} \), for convenience. Thus \((C \to \{ C_1, C_2 \}) \cup \{ C_2, C', F \} \) is a CC of \(G \) and so (9) must hold.

If \(C_1 \neq C_3 \), then let \(C'_1 = C_2 - x_2x_4 + x_2x_3x_4 \) and let \(C'_3 = C_3 - x_2x_3 + x_2x_3x_2, \) and let \(F' = x_1x_2x_2x_3x_4x_1x_1x_2x_3 \). Thus \((C \to \{ C_2, C_3 \}) \cup \{ C'_2, C'_3 \} \) is a CC of \(G \). Hence (9) must hold again.

When \(H = L_1 \), we can replace \(e' \) in the cycle containing \(e' \) by a path in \(H \) containing the multiple edge and so (9) holds again.

To show (iii), we let \(C \) be a CC of \(G \) and let \(C_1, C_2, C_3, C_4 \) be cycles that contain \(e, e', x_2x_4, x_2x_3, x_2x_4, \) and \(x_2x_3x_4 \) respectively.

Assume that \(H = L''_1 \) or \(L''_1' \). Then \(C_4 \neq C_3 \) and \(C_4 \neq C_2 \). Let \(C_1 = C_1 - x_2x_4 + x_2x_3x_4, C'_2 = C_2 - x_2x_3 + x_2x_3x_2, \) and \(C'_4 = C_4 - x_2x_3x_4 + x_2x_3x_1, \) and let \(F' = \) a cycle containing \(x_2x_4 \) and the multiple edge (if it exists). Thus \((C \to \{ C_1, C_2, C_3, C_4 \}) \cup \{ C'_2, C'_3, F' \} \) is a CC of \(G \) and so (10) holds also.

The proof for the case when \(H \in \{ L''_1, L''_1', L''_2, L''_2' \} \) is similar to that for \(H \in \{ L''_1, L''_2 \} \) and the proof for (iv) is similar to that for (iii). Thus they are omitted.

We shall show (v) for \(H \in \{ L''_1, L''_2 \} \). The proof for \(H \in \{ L''_1, L''_2' \} \) is similar. Let \(v \) denote the vertex in \(G \) to which \(x_2x_4 \) is contracted. Let \(C \) be a CC of \(G' \) and let \(C_4, C_3 \) be cycles in \(C \) containing \(e' \) and \(x_2x_4 \), respectively. (If \(H = L''_1 \), then just take \(C_3 \)).

If \(C_n = C_3 \), then let \(F' = x_1x_2x_3x_4x_2x_3x_4x_1x_2x_3x_4x_2 \) and let \(F'' \) be a cycle that contains the multiple edge \(e \). Thus \((C \to \{ C_3 \}) \cup \{ F', F'' \} \) is a CC of \(G \) and so (12) holds.

Thus we assume that \(C_n \neq C_3 \). Let \(C_1 = G(E(C_1) - x_2x_4) \). Thus either \(C_1 \neq C_3 \) or \(C_1 \neq C_4 \) is a cycle in \(G \). Note that any cycle in \(C \to \{ C_4 \} \) can easily be adjusted to cycles in \(G \) (still denoted by \(C \to \{ C_4 \} \), for convenience).

Let \(F_1 = x_1x_2x_3x_4x_3x_4x_2x_3x_4x_3x_4x_2, \) and let \(C_1 \) be obtained from \(C_1 \) by replacing \(e' \) by \(e \) (\(x_2x_3x_2, x_4x_3, x_3x_4, x_4x_2 \)). Then \(C_1 \) is a cycle in \(G \), then let \(C_1' = C_1 + x_2x_3x_2x_3 \) and let \(C_1' \) be a cycle in \(G \), then let \(C_1'' = C_1' + x_2x_3x_2x_3 \). Thus in any case, \((C \to \{ C_3, C_n \}) \cup \{ C_1', C_2', F_1 \} \) is a CC of \(G \) and so (12) holds.

Let \(C \) be a cycle of a plane graph \(G \). Define \(\text{Int}(C) \) to be the vertices of \(C \) inside (exclusively) \(G \). Define \(\text{Ext}(C) \) similarly. The cycle \(C \) is trivial if \(\text{Int}(C) = \emptyset \) and is acyclic if the underlying simple graph of \(G[\text{Int}(C)] \) is acyclic.

A k-face of a plane graph \(G \) is a face of degree \(k \). Define \(L(n) \) as the graph in Figure 5.

Lemma 2.7. Let \(G \) be a plane triangulation with \(\mu(G) = 1 \) and with \(n = |V(G)| \geq 3 \). If the exterior face of \(G \) is a 2-cycle, and if \(C \) is acyclic, then
Proof: Let v_1, v_2 be the two vertices in $V(C)$ and let e_1, e_2 be the two edges in $E(C)$. Since $\mu(G) \leq 1$, and since G is a plane triangulation, e_1 must lie in a 3-face C inside G. Let v_3 be the vertex in $V(C_{i}) - \{v_1, v_2\}$. If v_3 has degree at least 4, then since G is a triangulation, v_3 and two of its neighbors other than v_1, v_2 would form a 3-cycle inside G, contrary to the assumption that G is acyclic. If v_3 has degree 2, then we have $n = 3$ and $G = L(3)$. Hence v_3 has degree 3, and so $G - v_3$ is also a plane triangulation with C as an acyclic exterior face. Thus by induction, $G - v_3 = L(n - 1)$ and so $G = L(n)$.

Lemma 2.8. Let G be a simple plane triangulation. If the exterior face of G is a 3-cycle C and if C is acyclic, then either G contains a subgraph $H \in \{L_6, \Gamma_2\}$ (using the notation in Figure 4) with $Ac(H) \subseteq \{x_1, x_2, x_3, x_4\}$ or $G = \Gamma(n)$, where $n = |V(G)|$.

Proof: Suppose $G = v_1, v_2, v_3, v_4$. Since G is a plane triangulation, v_2, v_3 lies in a 3-face $C = v_2, v_3, v_2$ with $v \in Int(C)$. Let $v_2 = u_1, u_2, \ldots, u_m = v_3$ be the neighbors of v in G such that they are ordered clockwise by the planar embedding of G.

Since G is a simple plane triangulation, $v_2, v_3, v_2, v_3, v_2, \ldots$, must be 3-faces. Since C is an acyclic, either $m = 3$, or $4 \leq m \leq 5$ and $v_3 = v_1$.

If $m = 5$ and $u_1 = v_2$, then G contains a subgraph $H = \Gamma_6$ with $x_1 = v_2, x_2 = v_3, x_3 = v_1, x_4 = v_2$. If $m = 4$ and $u_3 = v_4$, then, since u_1, u_2, u_3, u_4 is a 3-face, $G = \Gamma_4$. Hence we may assume that $m = 3$. If $u_2 = v_1$, then $G = \Gamma_4$. Thus we assume that $x_2 \neq x_1$, and so $G - v$ is also a plane triangulation with C as the exterior face. By induction, Lemma 2.8 holds.

Lemma 2.9. Suppose that G is a plane graph, and that G has a nontrivial 2-cycle C with $V(C) = \{v_1, v_2, v_3\}$ and $E(C) = \{e_1, e_2\}$. Let $H = G - ExtC$.

(i) If $H = L(3)^+$ such that the extra edge e is parallel to v_1, v_3, then letting $G' = G / v_3, v_2$, we have $cc(G) \leq cc(G')$.

(ii) If $H = L(4)$, then letting $G' = G - IntC$, we have $cc(G) \leq cc(G') + 1$.

(iii) If $H = L(4)^+$ such that the extra edge e is not parallel to any of $\{e_1, e_2\}$, then letting e' be an extra edge parallel to e_1 and let $G'' = G - IntC + e'$, we have $cc(G) \leq cc(G'') + 1$.

(iv) If H is isomorphic to $\Gamma(5)^+$, such that the exterior face of H is C, then letting $G' = G - IntC$, we have $cc(G) \leq cc(G') + 2$.

Proof: (i) of Lemma 2.9 is trivial. We now show (ii). Let C be a CC of G' and let C_1 be a cycle in C containing e_1. Define $C'_1 = C_1 - e_1 + \{v_1, v_4, v_5, v_6\}$ and $F = G[C'_1 - v_6]$. Thus $C' = \{C_1, F\}$ is a CC of G and so (ii) of Lemma 2.9 holds.

Now we show (iii). Let C be a CC of G'. Note that $\{e_1\} = \{e_1, e_2, e'\}$ in G' this time. We may assume that e_1 and e' are in distinct cycles C_1 and C_2.

respectively. Define C'_1 and F as above. Since e is not parallel to e_1, there is a (v_1, v_2)-path P in $H - \{e_1, e_2\}$ containing e. Define $C'_e = C_e - e' + P$. Thus $C = \{C_1, C_2, C'_e\}$ is a CC of G.

Now we show (iv). Let C be a CC of G' and let C_1 be a cycle in C containing e_1, $1 \leq i \leq 2$. Note that no matter where e_1, e_2 lie in H, $H - \{e_1, e_2\}$ has a spanning cycle and so $H - \{e_1, e_2\}$ has two internally disjoint (v_1, v_2)-paths P_1 and P_2. Let $C_i = C_i - e_i + P_i$. $(1 \leq i \leq 2)$. (When $C_1 = C_2 = C$, let $C_i = P_i$.) Thus it is easy to see that the edges in $H - E(P_1) \cup E(P_2)$ can be covered by two cycles in H and so (iv) follows.

Define plane graphs $\Gamma^4, \Gamma^5, \Gamma^6$ as the graphs in Figure 6.

Lemma 2.10. Let G be a plane triangulation with $\mu(G) \leq 1$ and with $4 \leq |V(G)| \leq 5$. If the exterior face of G is a 3-face, then G is isomorphic to one graph in $\{\Gamma_4, \Gamma_5, \Gamma_6, L(6)^+, \Gamma_6\}$.

Proof: The proof is straightforward.

For each i, $(1 \leq i \leq 5)$, define Γ_i' to be the simple plane triangulation obtained from Γ_i by adding a new vertex v_0 in the exterior face of Γ_i and by joining v_0 to each of v_1, v_2, v_3 with a new edge, respectively.

Lemma 2.11: If G is isomorphic to one of the graphs below,

$$\{\Gamma_i, \Gamma_i', \Gamma_i^+, (\Gamma_i')^+, (1 \leq i \leq 5), \Gamma(6), \Gamma(6)^+, L(6), L(6)^+, \Gamma_6, \Gamma_6^+, \Gamma_6\}$$

Then $cc(G) \leq \frac{|V(G)| - 3}{3} + \frac{\mu(G)}{2}$.

Proof: The proof is routine and so is omitted.

3. The Proof of Theorem 1.2

We argue by contradiction and assume that G is a counterexample to Theorem 1.2 such that $|V(G)| + \mu(G)$ is as small as possible, and subject to (14), $|E(G)|$ is minimized.

If G has two 2-faces, then we pick two distinct edges, e, e' (say), from each of these 2-faces. Thus $\mu(G) = \mu(G - \{e, e', \}) + 2$ and so by (14) and (15), G is not a counterexample, contrary to (13). Hence we assume that G has at most one 2-face.
and Lemma 3.1, G must have two edges e_1 with $[e_1] \neq [e_2]$ such that, for $G'' = G - \{e_1', e_2\}$, G has a cycle containing both (15),

$$\frac{3}{2} + \frac{\mu(G) - 2}{2} + 1,$$

as is forbidden in G:

$H \subseteq \{v_1, v_2\}$,

$\{v_1, v_2, v_3\}$, $(1 \leq i \leq 5)$,

L_6, L_6', L_6'' with $A_G(H) \subseteq \{x_1, x_2, x_3\}$,

defined as in Lemma 2.2. If $|V(G')| = 4$. If $|V(G')| \geq 6$, then by (14) and

$$\frac{3}{2} + \frac{\mu(G)}{3} + 1,$$

section. Thus by $|V(G)| \geq 6$, we have one can easily check that G is not a

by using reduction lemmas in section

triangulation, the exterior face of G

≥ 6, G must have a nontrivial 3-cyclic, then in particular, the exterior

edge from the exterior 2-face is also

8, G must contain either Γ_6, Γ_6, or a cyclic 3-cycle. Let C_0 be a cyclic

(19)

C_0 is either trivial or acyclic. By

cycle in $G[\text{Int}C_0]$, then

(20)
so that the remaining edge in \(E(C) \), if there is any, is covered by \(u_4 u_2 u_5 u_3 u_6 u_1 \). Then \(\{ L' : L \in \mathcal{C} \} \cup \{ F \} \) is a CC of \(G \) and so \(\mu(G) \geq \max \{ (G) - \text{cc}(G_a) - 1 \} \geq \frac{2(n-2)-3}{3} + \frac{\mu(G)}{2} + 1 \), then by (14), (22) and (23),

\[
\mu(G) \leq \text{cc}(G_a) + 1 \leq \frac{2(n-2)-3}{3} + \frac{\mu(G)}{2} + 1,
\]

5, then since \(|V(C) \cap V(C_0)| = 0 \) and since \(u \) is a vertex of \(G \) in \(G_a \), it follows by Lemma 2.10 that \(G \in \{ \Gamma_1, \Gamma_1^+, \Gamma_{1'} \} \). In 2.11, \(G \) is not a counterexample, either.

3. The proofs for these subcases are similar to that when \(k = 0 \).

ne \(i \neq j \), \(E(C_i) \cap E(C_j) \neq \emptyset \).

(CJ \(\neq \emptyset \), for every \(i \neq j \), then \(u_4 = u_5 = u_6 \), contrary to Lemma 3.3. Hence we assume that

\[
E(C_3) \cap (E(C_1) \cup E(C_2)) = \emptyset \text{ and } u_4 = u_5.
\]

(25)

\(\neq \emptyset \) and \(\text{Int} C_2 \neq \emptyset \) or \(|\text{Int} C_3| \geq 1 \) and \(\text{Int} C_1 = \text{Int} C_2 = \emptyset \).

\(\cup \{ u_1, u_2, u_3, u_4 \} \} \) contains a subgraph isomorphic to \(\{ L_{16, L_{16}^+} \} \), contrary to Lemma 3.3. Thus we assume that

\[
\text{Int} C_1 = \emptyset.
\]

(26)

= 0 and \(|\text{Int} C_2| > 0 \). Then \(G \) has a forbidden subgraph \(H \) one of \(\{ L_6, L_6^+ \} \). This case can be excluded by applying (v) of

\[
\text{Int} C_2 = \text{Int} C_3 = \emptyset \text{ and } u_4 \in \text{Int} C_0.
\]

2.1 triangulation, there are \(u_7 \) and \(u_8 \) in \(V(G) \), such that \(C_4 = C_5 = u_7 u_8 u_4 u_3 \) are 3-cycles satisfying (21). Applying the previous 3-cycles \(C_4 \) and \(C_5 \), we conclude that \(\text{Int} C_4 = \text{Int} C_5 = \emptyset \).

\(\cup \{ u_1, u_2, u_3, u_4 \} \) and let \(G_5 = (G - \{ u_1 u_4, u_5 u_4, u_8 u_3 \})/E(H) \).

oof for (24), we can similarly show first that

\[
\mu(G_h) \leq \mu(G) \text{ and } \text{cc}(G) \leq \text{cc}(G_h) + 2,
\]

(27)

is not a counterexample, contrary to (13).

\(\text{Int} C_2 = \text{Int} C_3 = \emptyset \text{ and } u_4 \notin \text{Int} C_0. \)
Thus $u_4 \in V(C_0)$. It follows from Case 1 and Cases (2A) - (2C) that for any trivial 3-cycle $C' = z_1 z_2 z_3 z_4$ in $G \setminus \text{int}(C_0)$, there must be $z_4, z_5 \in V(C_0)$ such that $z_4 z_2 z_1 z_2 z_4 z_5 z_3 z_4 z_1 z_3 z_5 z_1$ are trivial 3-faces in M, with $z_1 = u_4$ $(1 \leq i \leq 4)$ and $z_5 = u_6$. Note that $C' = z_1 z_2 z_1 z_4 z_2 z_3 z_1$ must be a trivial 3-face since otherwise G contains a L_6, contrary to Lemma 3.3. Call $G(\{z_1, z_2, z_3, z_4, z_5\})$ an associated $\Gamma(5)$ with edge $z_4 z_5 \in E(C_0)$. For each edge in $E(C_0)$, there is at most one associated $\Gamma(5)$ with the given edge. Delete z_1, z_2 from the associated $\Gamma(5)$ with $z_4 z_5$, and do the same for other associated $\Gamma(5)$'s with other edges in $E(C_0)$, (if there are any). Then the resulting graph is again a triangulation in which C_0 is an acyclic 3-cycle, and so by Lemmas 7 and 8, either M contains a trivial 3-cycle that satisfies Case 1 or one of Cases (2A) - (2C), or G contains L_6 or $\Gamma(6)$, or $M - E(C_0)$ is isomorphic to the graph L_{11} in Figure 8.

Thus we may assume that $M - E(C_0) \cong L_{11}$. Let $G_e = G - \{z_8, z_9, z_{10}\}$. Then it is easy to see that

$$\text{cc}(G) \leq \text{cc}(G_e) + 2.$$ \hspace{1cm} (28)

Thus by (14) and since $|V(G_e)| \geq 7$, G must satisfy (1), contrary to (13).

Since every case leads to a contradiction, Theorem 1.2 is proved.

References

