Double Cycle Covers and the Petersen Graph

Paul A. Catlin

DEPARTMENT OF MATHEMATICS
WAYNE STATE UNIVERSITY
DETROIT, MICHIGAN

ABSTRACT

Let \(O(G) \) denote the set of odd-degree vertices of a graph \(G \). Let \(t \in \mathbb{N} \) and let \(\mathcal{G}_t \) denote the family of graphs \(G \) whose edge set has a partition

\[
E(G) = E_1 \cup E_2 \cup \cdots \cup E_t,
\]
such that \(O(G) = O(G[E_i]) \ (1 \leq i \leq t) \). This partition is associated with a double cycle cover of \(G \). We show that if a graph \(G \) is at most 5 edges short of being 4-edge-connected, then exactly one of these holds: \(G \in \mathcal{G}_3 \), \(G \) has at least one cut-edge, or \(G \) is contractible to the Petersen graph. We also improve a sufficient condition of Jaeger for \(G \in \mathcal{G}_{2p+1} \ (p \in \mathbb{N}) \).

1. INTRODUCTION

A **double cycle cover** of a graph \(G \) is a collection of cycles of \(G \) (multiplicities allowed) such that each edge of \(G \) is in exactly two cycles of the collection. The family of graphs with double cycle covers is closed under contraction, and a graph with a double cycle cover possesses no cut edge. In [6] and [7] a general reduction method was presented that can be applied in certain situations to determine whether a graph belongs to a given family of graphs that is closed under contraction. We use that reduction method to show that certain graphs have a particular type of double cycle cover.

Szekeres [21] and Seymour [20] conjectured that every graph with no cut edge has a double cycle cover. This is trivial for planar graphs: the collection of facial cycles forms a double cover of a planar graph. Jaeger [14] has written a survey article on this problem, and he notes that it is sufficient to prove the conjecture for 3-regular graphs. Goddyn [10] has shown that if a counterexample exists, then a smallest 3-regular counterexample has girth at least seven. Tarsi [22] proved the conjecture for graphs with a hamilton path. Alspach and Zhang [1] have recently proved this conjecture for 2-connected 3-regular graphs containing no subdivision of the Petersen graph (compare with Conjecture 1 below).
We use the terminology of Bondy and Murty [3], except that a graph is presumed to have no loops, and we regard K_1 as having infinite edge-connectivity. A contraction of G is a graph G' obtained from G by contracting a set (possibly empty) of edges and deleting all resulting loops. If H is a connected subgraph of G, then G/H denotes the graph obtained from G by contracting the edges of $E(G/[V(H)])$.

An elementary homomorphism of a graph G is a graph G' obtained from G by identifying two vertices in the same component and by deleting any resulting loops. Note: this is not the usual definition of homomorphisms. A homomorphism of G is a graph obtained from G by a sequence (possibly empty) of elementary homomorphisms.

Let \mathcal{F} be a family of graphs (also called a family). We say that \mathcal{F} is closed under contraction (respectively, closed under homomorphisms) if for any $G \in \mathcal{F}$, every contraction (respectively, homomorphism) of G is in \mathcal{F}. Let \mathcal{F}^R denote the family of graphs having no nontrivial connected subgraph in \mathcal{F}. Any graph in \mathcal{F}^R is called \mathcal{F}-reduced. For a family \mathcal{F} and a graph G, the graph G_0 is called an \mathcal{F}-reduction of G if $G_0 \in \mathcal{F}^R$ and G_0 is obtained from G by a sequence of contractions of subgraphs in \mathcal{F}. For example, if $\mathcal{F} = \{2\text{-edge-connected graphs}\}$ then $\mathcal{F}^R = \{\text{forests}\}$. Reductions are used, with (2) of Theorem 2, to determine which graphs lie in a given family.

Theorem 1 [7]. If a family \mathcal{F} is closed under homomorphisms, then every graph G has a unique \mathcal{F}-reduction.

If a family \mathcal{F} is closed under homomorphisms and if G is a graph, then let G/\mathcal{F} denote the unique \mathcal{F}-reduction of G.

For a family \mathcal{F}, we define the kernel of \mathcal{F} to be the family of connected graphs

$$\mathcal{F}^0 = \{H: \text{For every supergraph } G \text{ of } H, G \in \mathcal{F} \iff G/H \in \mathcal{F}\}. \quad (1)$$

2. PRIOR RESULTS ON KERNELS

The kernel of a family is often just $\{K_1\}$, an uninteresting case in which the reduction method says nothing. However, in this paper we will consider certain families with large kernels. The basic reduction theorem is this:

Theorem 2 [7]. Let \mathcal{F} and \mathcal{F} be families such that \mathcal{F} is closed under contraction and

$$\mathcal{F} \subseteq \mathcal{F}^0.$$

Let G be a graph and let G' be a \mathcal{F}-reduction of G. Then

$$G' \in \mathcal{F} \iff G \in \mathcal{F}. \quad (2)$$

If \mathcal{F} is also closed under homomorphisms, then the \mathcal{F}-reduction of G is unique.
Of course, (2) is a straightforward consequence of the definition of the kernel \(\mathcal{F}^0 \) and the fact that \(\mathcal{T} \subseteq \mathcal{F}^0 \). Only the last part of Theorem 2, which follows from Theorem 1, is nontrivial. The point of Theorem 2 is to simplify problems of characterizing graphs in \(\mathcal{F} \) by restricting the problem to graphs in \(\mathcal{F}_R \).

Define a family \(\mathcal{C} \) of connected graphs to be complete if \(\mathcal{C} \) satisfies these three axioms:

(C1) \(K_1 \in \mathcal{C} \);
(C2) \(\mathcal{C} \) is closed under contraction; and
(C3) \(H \subseteq G, H \in \mathcal{C}, G/H \in \mathcal{C} \Rightarrow G \in \mathcal{C} \).

Proofs of the following theorems may be found in the indicated sources. Theorems 4 and 5 are quite easy.

Theorem 3 [6]. For any family \(\mathcal{F} \) of graphs, closed under contraction, these are equivalent:

(a) \(\mathcal{F} \) is a complete family,
(b) \(\mathcal{F} = \mathcal{F}^0 \), and
(c) \(\mathcal{F} \) is the kernel of some family closed under contraction.

Theorem 4 [6]. For any family \(\mathcal{F} \), \(\mathcal{F}^0 \subseteq \mathcal{F} \Leftrightarrow K_1 \in \mathcal{F} \).

Theorem 5 [6]. For any family \(\mathcal{F} \), \(\mathcal{F} \cap \mathcal{F}_R \subseteq \{K_1\} \).

Theorem 6 [7]. Any complete family is closed under homomorphisms.

3. PRIOR RESULTS ON EDGE-CONNECTIVITY

Let \(\tau(G) \) be the maximum number of edge-disjoint spanning trees in \(G \). The following theorem improves a result of Kundu [15] and Gusfield [11]. For \(k = 2 \), Zhan [24] proves the “\(\Rightarrow \)” case of this result:

Theorem 7 [6]. Let \(G \) be a nontrivial graph, let \(k \) be an integer at most \(|E(G)| \), and let \(\mathcal{C}_k \) be the collection of \(k \)-element subsets of \(E(G) \). Then

\[
\kappa'(G) \geq 2k \Leftrightarrow \forall E' \in \mathcal{C}_k, \tau(G - E') \geq k.
\]

Let \(uv \) and \(vw \) be two edges of a graph \(G \) with \(u \neq w \). Define the graph \(G(uv, vw) \) to be obtained from \(G - \{uv, vw\} \) by adding a new edge \(uw \). We say that \(\{uv, vw\} \) has been lifted to change \(G \) into \(G(uv, vw) \).

Let \(uv \) and \(vw \) be two edges of a graph \(G \), and suppose that \(d(v) = 2 \). If \(v \) and the two incident edges \(\{uv, vw\} \) are deleted from \(G \) and replaced by the new edge \(uw \), then we say that \(v \) has been dissolved.

For the vertices \(x, y \in V(G) \), let \(\kappa'_G(x, y) \) be the minimum cardinality of a set \(E \subseteq E(G) \) such that \(x \) and \(y \) are in different components of \(G - E \).
Theorem 8 (Mader’s Lifting Theorem [17]). Let \(G \) be a graph and suppose \(v \in V(G) \) has \(d(v) \geq 4 \), is not a cutvertex, and has at least two neighbors. Then there are edges \(e', e'' \) incident with \(v \) such that \(G' = G(e', e'') \) satisfies
\[
\kappa'_{G'}(x, y) = \kappa'_G(x, y) \quad \forall \ x, y \in V(G) - v.
\]

4. EXAMPLES

The following examples will be used throughout the paper. For a family \(\mathcal{F} \) and an integer \(k \in \mathbb{N} \cup \{0\} \), we say that a graph \(G \) is at most \(k \) edges short of being in \(\mathcal{F} \) if \(\mathcal{F} \) has a graph \(G' \) such that \(G \) can be obtained from \(G' \) by deleting at most \(k \) edges.

Let \(t \in \mathbb{N} \). Denote
\[
\mathcal{F}_{t,0} = \{G: \tau(G) \geq t\}
\]
and
\[
\mathcal{F}(t,0) = \{G: \kappa'(G) \geq t\}.
\]

For \(k, t \in \mathbb{N} \), denote
\[
\mathcal{F}_{t,k} = \{G: G \text{ is at most } k \text{ edges short of being in } \mathcal{F}_{t,0}\};
\]
\[
\mathcal{F}(t,k) = \{G: G \text{ is at most } k \text{ edges short of being in } \mathcal{F}(t,0)\}.
\]

We proved [6] that \(\mathcal{F}_{t,0} \) equals the kernel \(\mathcal{F}_{t,k}^0 \) of \(\mathcal{F}_{t,k} \), for any \(k \) and \(t \), and that \(\mathcal{F}^0(t,k) = \mathcal{F}(t,0) \). Hong-Jian Lai [17] proved for any complete family \(\mathcal{C} \), if \(\mathcal{C}(k) \) is the family of graphs \(k \) edges short of being in \(\mathcal{C} \), then \(\mathcal{C}^0(k) = \mathcal{C} \).

For any graph \(H \), let \(O(H) \) denote the set of odd-degree vertices of \(H \). Let \(G \) be a graph and let \(V \subseteq V(G) \). We define a \(V \)-join to be a subset \(E \subseteq E(G) \) such that
\[
O(G[E]) = V.
\]

Define \(\mathcal{FL} \) to be the family of graphs having a spanning closed trail. We call \(\mathcal{FL} \) the family of supereulerian graphs. We regard \(K_1 \in \mathcal{FL} \). Define \(\mathcal{CL} \) to be the family of graphs \(G \) such that for any even subset \(V \subseteq V(G) \), \(G \) has a V-join \(E \) such that \(G - E \) is connected. In [4] we proved that \(\mathcal{CL} \) is contained in \(\mathcal{FL}^0 \), the kernel of \(\mathcal{FL} \), and we proved

Lemma 1. The family \(\mathcal{CL} \) is complete. \(\blacksquare \)
Theorem 9 [4]. If H is a nontrivial subgraph of a \mathcal{CL}-reduced graph G, then
\[|E(H)| \leq 2|V(H)| - 3, \]
with equality if and only if $H = K_2$. Also, $\mathcal{S}_{2,0} \subseteq \mathcal{CL}$.

Theorem 9 is part (iv) of Theorem 8 of [4].

For $t \in \mathbb{N}$, let \mathcal{S}_t denote the family of graphs G whose edge set has a partition
\[E(G) = E_1 \cup E_2 \cup \cdots \cup E_t, \]
such that each E_i $(1 \leq i \leq t)$ is an $O(G)$-join of G. By Theorems 7, 9, and 4, and by a result in [8] that $\mathcal{CL} \subseteq \mathcal{S}_3$, we have
\[\mathcal{S}(4,0) \subseteq \mathcal{S}_{2,0} \subseteq \mathcal{CL} \subseteq \mathcal{S}_0 \subseteq \mathcal{CL} \subseteq \mathcal{S}_3. \]

Lemma 2. The families \mathcal{S}_t, $\mathcal{S}(t,k)$ and $\mathcal{S}_{t,k}$ are closed under contraction.

Proof. This follows routinely from the respective definitions.

To obtain our main result, we shall improve the following result:

Theorem 10 (Jaeger [11]). For all $p \in \mathbb{N}$, $\mathcal{S}_{2p,0} \subseteq \mathcal{S}_{2p+1}$, i.e., if a graph G has $2p$ edge-disjoint spanning trees, then $G \in \mathcal{S}_{2p+1}$.

For the graph H, if $O(H) = \emptyset$, then H is called an even graph. For $t \in \mathbb{N}$, let $E_1 \cup E_2 \cup \cdots \cup E_t$ be a partition of $E(G)$ into $O(G)$-joins, and define $E_{i+1} = E_i$. Then for $i \in \{1,2,\ldots,t\}$, $G[E_i \cup E_{i+1}]$ is an even subgraph of G. Thus, if $t = 3$ (i.e., if $G \in \mathcal{S}_3$) then three $O(G)$-joins $\{E_1, E_2, E_3\}$ induce a double cycle cover $G[E_1 \cup E_2], G[E_1 \cup E_3], G[E_2 \cup E_3]$ of G, consisting of three even subgraphs. Conversely, a double cycle cover of G consisting of three even subgraphs induces a partition of $E(G)$ into three $O(G)$-joins. Our main result is a condition sufficient for $G \in \mathcal{S}_3$.

Tutte [23] conjectured that if a 3-regular graph G is not in \mathcal{S}_3 (i.e., if $\chi'(G) = 4$ and G is 3-regular), then G has a subgraph contractible to the Petersen graph. Matthews [18] extended this conjecture by dropping the hypothesis of regularity:

Conjecture 1 [18,23]. If $G \notin \mathcal{S}_3$ then G has a cut-edge or G has a subgraph contractible to the Petersen graph.

Theorem 14 confirms Conjecture 1 whenever $G \in \mathcal{S}(4,5)$.

Celmins [9] and Preismann [19] conjectured that any graph G with no cut-edge contains a collection of at most five even subgraphs (multiplicities allowed) such that each edge of G is in exactly two of the even subgraphs. Since
an even graph is an edge-disjoint union of cycles (Euler’s Theorem), this is a refinement of the double cycle cover conjecture.

5. THE KERNEL OF \mathcal{F}_{2p+1}

Before proving the main result, we need to find a large subfamily of the kernel \mathcal{F}^O_3 of \mathcal{F}_3. In the process, we shall also improve Theorem 10, due to Jaeger [13], which gives a sufficient condition for $G \in \mathcal{F}_{2p+1}$, where $p \in \mathbb{N}$.

Let $k \in \mathbb{N}$. Denote by \mathcal{C}_{k+1} the family of graphs H with the property that for any k even subsets $V_1, V_2, \ldots, V_k \subseteq V(H)$, there are disjoint sets $E_1, E_2, \ldots, E_k \subseteq E(H)$ such that $O(H[E_i]) = V_i (i = 1, 2, \ldots, k)$, i.e., such that E_i is a V_i-join in H. The family of connected graphs is just \mathcal{C}_2.

Theorem 11. For any $k \in \mathbb{N}$, the family \mathcal{C}_{k+1} is complete.

Proof. Let $k \in \mathbb{N}$. It is trivial that $K_1 \in \mathcal{C}_{k+1}$, and it is routine to show that \mathcal{C}_{k+1} is closed under contraction. Thus, to prove that \mathcal{C}_{k+1} is complete, it remains to prove axiom (C3) for \mathcal{C}_{k+1}.

Let $H \in \mathcal{C}_{k+1}$. Suppose G is a supergraph of H such that $G/H \in \mathcal{C}_{k+1}$.

Now let X_1, X_2, \ldots, X_k be k even subsets of $V(G)$. Denote the vertex of G/H corresponding to H by v_H and define, for $i \in \{1, 2, \ldots, k\}$,

$$X_i/H = \begin{cases} X_i - V(H) & \text{if } |V(H) \cap X_i| \text{ is even;} \\ X_i \cup \{v_H\} - V(H) & \text{if } |V(H) \cap X_i| \text{ is odd.} \end{cases} \quad (5)$$

Since $G/H \in \mathcal{C}_{k+1}$, there are k disjoint sets $F_1, F_2, \ldots, F_k \subseteq E(G) - E(H)$ such that

$$O((G/H)[F_i]) = X_i/H \quad (1 \leq i \leq k) \quad (6)$$

Since $H \in \mathcal{C}_{k+1}$ there are disjoint sets $E_1, E_2, \ldots, E_k \subseteq E(H)$ such that

$$O(H[E_i]) = (O(G[F_i]) \cap V(H)) \Delta (V(H) \cap X_i), \quad (7)$$

where Δ denotes the symmetric difference. By (7),

$$O(G[E_i \cup F_i]) \cap V(H) = (O(G[E_i]) \Delta O(G[F_i])) \cap V(H)$$

$$= (O(H[E_i]) \Delta O(G[F_i])) \cap V(H) \quad (8)$$

$$= V(H) \cap X_i.$$

By $O(G[E_i]) \subseteq V(H)$, by (6), and by (5),
\[O(G[E_i \cup F_i]) - V(H) = O(G[E_i]) \Delta O(G[F_i]) - V(H) \]
\[= O(G[F_i]) - V(H) \]
\[= O((G/H)[F_i]) - v_H \]
\[= x_i / H - v_H = x_i - V(H). \]

By (8) and (9),
\[O(G[E_i \cup F_i]) = x_i \quad (1 \leq i \leq k), \]
and since \(X_1, X_2, \ldots, X_k\) are arbitrary even subsets of \(V(G), \ G \in \mathcal{C}_{k+1}.\) Therefore, \(\mathcal{C}_{k+1}\) is complete. □

Theorem 12. For any \(p \in \mathbb{N}, \ \mathcal{C}_{2p+1} \subseteq \mathcal{Q}_{2p+1}.

Proof. Let \(p \in \mathbb{N}.\) Let \(H \in \mathcal{C}_{2p+1}\) and let \(G\) be a supergraph of \(H.\) It is routine to prove that if \(G \in \mathcal{Q}_{2p+1}\) then \(G/H \in \mathcal{Q}_{2p+1}.\) Thus, to prove \(H \in \mathcal{Q}_{2p+1},\)
we must assume that \(G/H \in \mathcal{Q}_{2p+1}\) and prove that \(G \in \mathcal{Q}_{2p+1}.

Suppose
\[G/H \in \mathcal{Q}_{2p+1}. \]

Then we have a partition
\[E(G/H) = F_1 \cup F_2 \cup \cdots \cup F_{2p+1} \]
such that
\[O((G/H)[F_i]) = O(G/H) \quad (1 \leq i \leq 2p + 1). \]

Define
\[W_i = O(G[F_i]); \quad (1 \leq i \leq 2p + 1), \quad (10) \]
and set
\[V_i = W_i \Delta O(G) \quad (1 \leq i \leq 2p + 1). \quad (11) \]

Then
\[V_i \subseteq V(H), \]

since any vertex of \(V(G) - V(H)\) is in \(W_i = O(G[F_i])\) if and only if it is in \(O((G/H)[F_i]) = O(G/H).\)
Since $H \in \mathcal{C}_{2p+1}$, there is a partition

$$E(H) = E_1 \cup E_2 \cup \cdots \cup E_{2p+1}$$

such that E_i is a V_i-join in H ($1 \leq i \leq 2p$). Hence by (10) and (11),

$$O(G[E_i \cup F_i]) = O(G[F_i]) \Delta O(G[F_i]) = V_i \Delta W_i = O(G),$$

for $1 \leq i \leq 2p$, and it follows that $O(G[E_{2p+1} \cup F_{2p+1}]) = O(G)$.

Hence, $G \in \mathcal{S}_{2p+1}$. Since G is an arbitrary supergraph of H such that $G/H \in \mathcal{S}_{2p+1}$, we have $H \in \mathcal{S}_{2p+1}^O$, and Theorem 12 is proved. \hfill \square

Corollary 12A. For all $p \in \mathbb{N}$,

$$\mathcal{S}_{2p+1}^0 \subseteq \mathcal{C}_{2p+1} \subseteq \mathcal{S}_{2p+1}^1 \subseteq \mathcal{S}_{2p+1}.$$

Proof. Let $G \in \mathcal{S}_{2p+1}^0$. Then G has $2p$ edge-disjoint spanning trees, say T_1, T_2, \ldots, T_{2p}. Let V_1, V_2, \ldots, V_{2p} be $2p$ even subsets of $V(G)$. Each tree T_i contains a V_i-join ($1 \leq i \leq 2p$), and since these V_i-joins are edge-disjoint, $G \in \mathcal{C}_{2p+1}$. Hence $\mathcal{S}_{2p+1}^0 \subseteq \mathcal{C}_{2p+1}$, and by Theorems 12 and 4,

$$\mathcal{C}_{2p+1} \subseteq \mathcal{S}_{2p+1}^0 \subseteq \mathcal{S}_{2p+1}^1 \subseteq \mathcal{S}_{2p+1}.$$ \hfill \square

Jaeger [12] proved that $\mathcal{S}_4(4,0) \subset \mathcal{S}_2(2,0) \subset \mathcal{S}_2$, and in [4], [6], and [8] (combined), we improved that by proving (4). Corollary 12A is a similar improvement of an analogous result of Jaeger (Theorem 10).

Theorem 13. The kernel of \mathcal{S}_3 contains the four-cycle.

Proof. By Lemma 2, \mathcal{S}_3 is closed under contraction, and so it suffices to show that for a four-cycle H and for any supergraph G of H,

$$G/H \in \mathcal{S}_3 \Rightarrow G \in \mathcal{S}_3.$$

Let H be the four-cycle $wxyzw$, and suppose

$$G/H \in \mathcal{S}_3.$$

Then there is a partition

$$E(G/H) = F_1 \cup F_2 \cup F_3,$$

such that $O((G/H)[F_i]) = O(G/H)(1 \leq i \leq 3)$. Hence,

$$G/H - F_i$$

is an even graph ($1 \leq i \leq 3$).
Define
\[U_i = O(G - E(H) - F_i) \quad (1 \leq i \leq 3). \]

Hence, \(U_i \subseteq V(H) \). We have
\[O(G[F_i]) = U_i \Delta O(G) \quad (1 \leq i \leq 3), \tag{12} \]
and since \(|O(G - E(H) - F_i)| \) is even,
\[|U_i| \text{ is even} \quad (1 \leq i \leq 3). \tag{13} \]

Case 1. Suppose that \(H \) contains a \(U_1 \)-join \(E_1 \) and a \(U_2 \)-join \(E_2 \) such that \(E_1 \cap E_2 = \emptyset \). For \(i \in \{1, 2\} \), (12) gives
\[O(G[E_i \cup F_i]) = O(G[E_i]) \Delta O(G[F_i]) = U_i \Delta U_i \Delta O(G) = O(G). \]
It follows that \(O(G[E(G) - (E_1 \cup F_1) - (E_2 \cup F_2)]) = O(G) \), and so \(G \in \mathcal{F}_3 \).

Case 2. Suppose Case 1 does not apply. Check that neither \(U_1 \) nor \(U_2 \) can be empty; check that no \(U_i \) \((i = 1, 2)\) consists of two adjacent vertices of \(H \); and check that if \(U_1 \) and \(U_2 \) are equal even sets, then Case 1 applies. Hence by (13) and by symmetry on the four-cycle \(H = wxyzw \), we are left with two possibilities:
(a) \(U_1 = V(H) \) and \(U_2 = \{w, y\}; \)
(b) \(U_1 = \{x, z\} \) and \(U_2 = \{w, y\}. \)

Since \(G - E(H) - F_3 = G[F_1 \cup F_2] \), (12) gives
\[U_3 = O(G - E(H) - F_3) \]
\[= O(G[F_1 \cup F_2]) = O(G[F_i]) \Delta O(G[F_i]) \]
\[= U_1 \Delta U_2. \tag{14} \]
If (b) holds, then (14) would imply \(U_3 = V(H) \), and by a change of subscripts, this is equivalent to (a). Thus, without loss of generality, we assume that (a) holds and hence by (14) that
\[U_3 = \{x, z\}. \]

By (12) and (a), \(O(G - F_i) = U_1 = V(H) \). Since each component of \(G - E(H) - F_i \) has evenly many odd-degree vertices, all in \(V(H) \), the component \(G_w \) (say) of \(G - E(H) - F_i \) containing \(w \) contains one or three members of \(\{x, y, z\}. \)

Subcase 2A. Suppose \(y \in V(G_w) \). Then there is a \((w, y)\)-path \(P \) (say) in \(G_w \subseteq G - E(H) - F_1 \). Thus, by (12),

\[
O(G[F_1 \Delta \{wx, yz\}]) = O(G[F_1]) \Delta \{w, x, y, z\} \\
= U_1 \Delta O(G) \Delta V(H) = O(G) ;
\]

\[
O(G[F_2 \Delta E(P)]) = O(G[F_2]) \Delta \{w, y\} \\
= U_2 \Delta O(G) \Delta \{w, y\} = O(G) ;
\]

\[
O(G[F_3 \Delta E(P) \Delta \{wz, xy\}]) = O(G[F_3]) \Delta \{w, y\} \Delta \{w, x, y, z\} \\
= U_3 \Delta O(G) \Delta \{x, z\} = O(G).
\]

Also,

\[
(F_1 \Delta \{wx, yz\}) \cup (F_2 \Delta E(P)) \cup (F_3 \Delta E(P) \Delta \{wz, xy\})
\]

is a partition of \(E(G) \), and hence it is an \(O(G) \)-join of \(G \).

Subcase 2B. Suppose \(x \in V(G_w) \) (by symmetry, this is similar to the case \(z \in V(G_w) \)). Then there is a \((w, x)\)-path \(P \) (say) in \(G_w \subseteq G - E(H) - F_1 \). By (12), as in Subcase 2A,

\[
O(G[F_1 \Delta \{wx, yz\}]) = O(G) ;
\]

\[
O(G[F_2 \Delta E(P) \Delta \{xy\}]) = O(G[F_2]) \Delta \{w, y\} = O(G) ;
\]

\[
O(G[F_3 \Delta E(P) \Delta \{wz\}]) = O(G[F_3]) \Delta \{x, z\} = O(G).
\]

As before, we have an \(O(G) \)-join in \(G \), formed by the partition

\[
(F_1 \Delta \{wx, yz\}) \cup (F_2 \Delta E(P) \Delta \{xy\}) \cup (F_3 \Delta E(P) \Delta \{wz\}) .
\]

In both subcases, we have \(G \in \mathcal{F}_3 \), as desired.
Therefore, \(H \in \mathcal{F}_3^O \). ●

Corollary 13A. Both \(\mathcal{CL} \subseteq \mathcal{F}_3 \) and

\[
\mathcal{C}_3 \cup \{C_4\} \subseteq \mathcal{F}_3^O \subseteq \mathcal{F}_3 .
\]

Proof. Suppose that \(G \in \mathcal{CL} \) and let \(V_1 \) and \(V_2 \) be even subsets of \(V(G) \).
Since \(G \in \mathcal{CL} \), there is a \(V_1 \)-join \(E_1 \) in \(G \) such that \(G - E_1 \) is connected. But \(G - E_1 \) thus has a \(V_2 \)-join, and so \(G \in \mathcal{C}_3 \). Therefore, \(\mathcal{CL} \subseteq \mathcal{C}_3 \). The latter part of Corollary 13A comes from Theorems 12 and 13. ●

It can be shown that each containment in Corollary 13A is strict. For example, \(Q_3 - v \) (the cube minus a vertex) is in \(\mathcal{C}_3 \) but not in \(\mathcal{CL} \).
6. THE MAIN RESULT

Theorem 14. Let G be a graph. If G is at most 5 edges short of being 4-edge-connected, then exactly one of the following holds:

(a) $G \in \mathcal{F}_3$;
(b) G has at least one cut-edge;
(c) The $(\mathcal{EL} \cup \{C_4\})$-reduction of G is the Petersen graph (G is contractible to the Petersen graph).

Proof. It is easy to check that the conclusions are mutually exclusive, since the Petersen graph is not in \mathcal{F}_3.

By Corollary 13A, $\mathcal{EL} \cup \{C_4\} \subset \mathcal{F}_3^0$. Hence, we can define

$$\mathcal{T} = \mathcal{EL} \cup \{C_4\},$$

knowing that $\mathcal{T} \subseteq \mathcal{F}_3^0$ in Theorem 2. By Lemma 1, \mathcal{EL} is complete, and so by Theorem 6, \mathcal{EL} is closed under homomorphisms. Since every elementary homomorphism of C_4 is in \mathcal{EL}, \mathcal{T} is thus closed under homomorphisms. By Lemma 2, \mathcal{F}_3 is closed under contractions, and so \mathcal{T} and \mathcal{F}_3 satisfy the hypothesis of Theorem 2. Hence, the \mathcal{T}-reduction of any graph G is unique, and by (2),

$$G \in \mathcal{F}_3 \iff G/\mathcal{T} \in \mathcal{F}_3.$$

By way of contradiction, suppose that Theorem 14 is false, and let G be a counterexample with the fewest edges possible. Thus, we suppose that

$$G \in \mathcal{F}(4, 5)$$

and that (a), (b), and (c) of Theorem 14 are false. By Lemma 2, $\mathcal{F}(4, 5)$ and \mathcal{F}_3 are closed under contraction, and so if G is a counterexample, then so is G/\mathcal{T}. By the minimality of G, therefore,

$$G \text{ is } \mathcal{T}\text{-reduced}. \tag{15}$$

This means that

$$G \text{ has no subgraph in } \mathcal{EL} \cup \{C_4\}. \tag{16}$$

Also, (a), (b), and (c) of Theorem 14 are false, i.e.,

$$G \notin \mathcal{F}_3 \text{ and } G \notin \{\text{Petersen graph}\} \tag{17}$$

and $\kappa'(G) \neq 1$. If $\kappa'(G) \geq 4$ then $G \in \mathcal{F}(4, 0) \subseteq \mathcal{F}_{2, 0} \subseteq \mathcal{EL}$, by (4). But since (16) says $G \in \mathcal{EL}^r$, Theorem 5 gives $G = K_1$, and so $G \in \mathcal{F}_3$, contrary
to (17). If G is disconnected, then each component is in $\mathcal{S}(4, 5)$ and thus satisfies a conclusion of Theorem 14, by the minimality of G. But then G satisfies Theorem 14, too. Hence,

$$\kappa'(G) \in \{2, 3\}. \quad (18)$$

Lemma 3. Let G be a graph, let $v \in V(G)$, and let e' and e'' be distinct edges incident with v. If $G(e', e'') \in \mathcal{S}_3$, then $G \in \mathcal{S}_3$. \hfill \blacksquare

This lemma is routine and its proof is omitted. (Recall that $G(e', e'')$ is the graph obtained from G when e' and e'' are lifted.)

Lemma 4. If G is a \mathcal{T}-reduced graph with $\delta(G) \geq 3$, then the order of G is at least $1 + 3\Delta(G)$. If also $\Delta(G) = 3$ and if G has order at most 10, then G is the Petersen graph.

Proof. Let G be a graph with $\delta(G) \geq 3$ and let v be a vertex with $d(v) = \Delta(G)$. Let $X_t = X_t(v)$ denote the set of vertices of G at distance t from v, where $t \geq 0$. Since G is \mathcal{T}-reduced, G has girth at least 5, by (16). Hence, each vertex of X_t is connected to v by a unique path of length t, when $t \in \{1, 2\}$. Therefore, $|X_1| = d(v) = \Delta(G)$, and $\delta(G) \geq 3$ implies $|X_2| \geq 2|X_1|$. Hence,

$$|V(G)| \geq |X_0| + |X_1| + |X_2| \geq 1 + 3|X_1| = 1 + 3\Delta(G).$$

Now suppose that $\Delta(G) = 3$ and that G has order at most 10. By the inequality above, G has order exactly 10, and since G has no cycle of length less than 5, it is routine to show that equality can only hold when $G[X_2]$ is a 6-cycle such that G is the Petersen graph. \hfill \blacksquare

Proof of Theorem 14, continued. By the hypothesis $G \in \mathcal{S}(4, 5)$, we have

$$|E(G)| \geq 2n - 5, \quad (19)$$

where n is the order of G.

Since $G \neq K_2$ and by (19) and Theorem 9,

$$4n - 10 \leq \sum_{v \in V(G)} d(v) \leq 4n - 8. \quad (20)$$

For $k \in \mathbb{N} \cup \{0\}$, define

$$V_k = \{v \in V(G) | d(v) = k\}.$$
We claim that

\[V_0 \cup V_1 \cup V_2 = \emptyset. \tag{21} \]

By (18), \(V_0 \cup V_1 = \emptyset \). Suppose \(v \in V_2 \) and let \(e \in E(G) \) be incident with \(v \). By Lemma 2, \(G \in \mathscr{S}(4,5) \) implies \(G/e \in \mathscr{S}(4,5) \). Thus, since \(G \) is a smallest counterexample, either \(G/e \in \mathscr{S}_3 \) (in which case \(G \in \mathscr{S}_3 \), a contradiction); or \(\kappa'(G/e) = 1 \) (whence \(\kappa'(G) = 1 \), a contradiction); or \(G/e \) is the Petersen graph (in which case \(G \notin \mathscr{S}(4,5) \), a contradiction). This proves (21).

Since (21) implies \(\delta(G) \geq 3 \) we have

\[\sum_{v \in V(G)} d(v) = 4n - 8 \Rightarrow |V_3| \geq 8 \tag{22} \]

and

\[\sum_{v \in V(G)} d(v) = 4n - 10 \Rightarrow |V_3| \geq 10. \tag{23} \]

By \(G \in \mathscr{S}(4,5) \),

\[|V_3| \leq 10. \tag{24} \]

Since \(G \in \mathscr{S}(4,5) \) by hypothesis, it is possible to add a set \(E_5 \) (say) of 5 edges to \(G \) such that \(\kappa'(G + E_5) \geq 4 \).

Let \(\partial E_5 \) denote the set of vertices of \(V(G) \) incident with an edge of \(E_5 \). Since \(\Sigma d(v) \) is even, (20) implies that \(\Sigma d(v) \in \{4n - 8, 4n - 10\} \), and so either (22) or (23) applies. Hence, by (22), (23), and (24),

\[8 \leq |V_3| \leq 10, \]

and since \(\kappa'(G + E_5) \geq 4 \), we must have \(V_3 \subseteq \partial E_5 \) and hence

\[|\partial E_3 \cap (V(G) - V_3)| = |\partial E_3| - |V_3| \leq 10 - 8 = 2. \tag{25} \]

We now give a proof (several pages long) that

\[V_4 - \partial E_5 = \emptyset. \tag{26} \]

By way of contradiction, suppose \(G \) has a vertex \(v \in V_4 - \partial E_5 \). Since \(G \) is a minimum counterexample to Theorem 14, \(v \) is not a cutvertex. Let \(\{e_1, e_2, e_3, e_4\} \) denote the set of four edges of \(E(G) \) incident with \(v \). It follows from (16) that \(G \) is simple, and so we can apply Theorem 8 at \(v \). Since \(\kappa'(G + E_5) \geq 4 \), Mader's Lifting Theorem (Theorem 8) asserts that \(E(G) \) has two edges \((e_1 \text{ and } e_3, \text{ say}) \)}
incident with \(v \) that can be lifted such that if \(G' \) denotes \(G(e_1, e_3) \) then

\[
\kappa'_{G+E_5}(x, y) = \kappa_{G+E_5}(x, y) \geq 4 \quad (\forall x, y \in V(G) - v).
\]

(27)

In \(G' \), \(d(v) = 2 \) and \(v \) is incident with \(e_2 \) and \(e_4 \). Let \(e_{13} \) denote the edge of \(G' \) created when \(e_1, e_3 \in E(G) \) are lifted. Denote by \(G_0 \) the graph obtained from \(G' \) by dissolving \(v \), and let \(e_{24} \) denote the edge of \(E(G_0) \) thus created to replace \(e_2 \) and \(e_4 \) and \(v \). Thus, \(e_{13}, e_{24} \in E(G_0) \).

By (27) and the definition of \(G_0 \), we have

\[
\kappa'(G_0 + E_5) \geq 4.
\]

Case A. Suppose \(\kappa'(G_0) \geq 2 \), i.e., \(G_0 \in \mathcal{S}(2, 0) \). Since \(G_0 \in \mathcal{S}(4, 5) \) and since \(G \) is a smallest counterexample in \(\mathcal{S}(4, 5) \cap \mathcal{S}(2, 0) \), either \(G_0 \in \mathcal{S}_3 \) or the \(\mathcal{T} \)-reduction of \(G_0 \) is the Petersen graph.

If \(G_0 \in \mathcal{S}_3 \) then \(G' \in \mathcal{S}_3 \), and by Lemma 3 (with \(e' = e_1 \) and \(e'' = e_3 \)), \(G \in \mathcal{S}_3 \), contrary to (17).

Hence, \(G_0/\mathcal{T} \) is the Petersen graph. Since \(G_0 + E_5 \in \mathcal{S}(4, 0) \) and since \(\mathcal{S}(4, 0) \) is closed under contraction (by Lemma 2),

\[
(G_0 + E_5)/\mathcal{T} \in \mathcal{S}(4, 0),
\]

and so each vertex of the Petersen graph \(G_0/\mathcal{T} \) is incident with exactly one edge of \(E_5 \). Let \(H_1, H_2, \ldots, H_{10} \) denote the ten maximal subgraphs of \(G_0 \) that lie in \(\mathcal{T} \) and that are each contracted to obtain from \(G_0 \) the ten vertices of \(G_0/\mathcal{T} \). We have

\[
|V(H_i) \cap \partial E_5| = 1 \quad (1 \leq i \leq 10),
\]

(28)

and each \(H_i \) is incident with exactly three edges of \(G_0/\mathcal{T} \) that have exactly one end in \(V(H_i) \). Each \(H_i \) not containing \(e_{13} \) or \(e_{24} \) is a subgraph of \(G \), and thus is \(\mathcal{T} \)-reduced, by (15) and since all subgraphs of a reduced graph are reduced. By Theorem 5, \(\mathcal{T} \cap \mathcal{T}^r = \{K_1\} \), and so such a subgraph \(H_i \) (not containing \(e_{13} \) or \(e_{24} \)) is \(K_1 \).

Let \(E = E(G_0/\mathcal{T}) \). Then \(E \subseteq E(G_0) \).

Subcase A1. Suppose \(e_{13}, e_{24} \in E \). Then each \(H_i \) (\(1 \leq i \leq 10 \)) is a \(K_1 \), by our prior remarks, and so \(G_0 \) is the Petersen graph. By the construction of \(G_0 \) from \(G \), the graph \(G \) has order 11, and \(\delta(G) = 3 \), and \(G \) has a single vertex \(v \) of degree \(\Delta(G) = 4 \). But this violates Lemma 4, since \(G \) is \(\mathcal{T} \)-reduced.

Subcase A2. Suppose that some \(H_i \) (\(1 \leq i \leq 10 \)) contains exactly one member of \(\{e_{13}, e_{24}\} \), say \(E(H_i) \cap \{e_{13}, e_{24}\} = \{e_{13}\} \). Since the Petersen graph \(G_0/\mathcal{T} \) is 3-regular, there are exactly three edges of \(G_0 \) with just one end in \(V(H_i) \). By (28), \(|V(H_i) \cap \partial E_5| = 1 \), and so there are exactly four edges of \(G_0 + E_5 \) with exactly one end in \(V(H_i) \). By \(\kappa'(G_0 + E_5) \geq 4 \),

\[
\kappa'(G_0 + E_5) \geq 4.
\]
\[
\sum_{v \in V(H)} d_{G_0 + E_3}(v) \geq 4|V(H)|
\]

and so

\[
\sum_{v \in V(H')} d_{H'}(v) \geq 4|V(H')| - 4.
\]

Hence, \(|E(H_i)| \geq 2|V(H)| - 2\). Let \(H'_i\) denote the graph obtained from \(H_i\) by replacing \(e_{13}\) with \(\{e_1, e_3, v_{13}\}\) so that \(H'_i\) is the corresponding subgraph of \(G'\) and of \(G\) where \(v = v_{13}\). Then

\[
|E(H'_i)| \geq 2|V(H'_i)| - 3.
\]

But this violates Theorem 9, for since \(G\) is \(\mathcal{F}\)-reduced, so is its subgraph \(H'_i\).

Subcase A3. Suppose that some \(H_i (1 \leq i \leq 10)\), say \(H_i = H\), contains both \(e_{13}\) and \(e_{24}\). Since the Petersen graph \(G_0/\mathcal{F}\) is 3-regular, there are exactly three edges of \(G_0\) with exactly one end in \(E(H)\). By (28), \(|V(H) \cap \partial E_3| = 1\), and so there are exactly four edges of \(G_0 + E_3\) with exactly one end in \(V(H)\). Hence, \(\kappa'(G_0 + E_3) \geq 4\) gives

\[
\sum_{v \in V(H)} d_{G_0 + E_3}(v) \geq 4|V(H)|
\]

and so

\[
\sum_{v \in V(H)} d_{H}(v) \geq 4|V(H)| - 4.
\]

Thus, \(|E(H)| \geq 2|V(H)| - 2\). Let \(H''\) be the graph obtained from \(H\) by replacing \(\{e_{13}, e_{24}\}\) with \(\{e_1, e_3, e_4, v\}\), so that \(H''\) is the subgraph of \(G\) corresponding to \(H\). Then \(|E(H'')| \geq 2|V(H'')| - 2\). This violates Theorem 9, for \(H''\) is \(\mathcal{F}\)-reduced, since it is a subgraph of the \(\mathcal{F}\)-reduced graph \(G\).

These subcases exhaust the possibilities and always yield contradictions, and so Case A is complete.

Case B. Suppose \(\kappa'(G_0) < 2\). By (18), \(\kappa'(G) \in \{2, 3\}\).

First we dispose of the case \(\kappa'(G) = 2\). Let \(\{e, e'\}\) be a 2-edge-cutset of \(G\), and let \(G_1\) and \(G_2\) denote the components of \(G - \{e, e'\}\). Define \(n_i = |V(G_i)|\), for \(i = 1, 2\). By (21), \(\delta(G) \geq 3\), and so \(G_i \notin \{K_1, K_2\}\). Hence by Theorem 9,

\[
|E(G_i)| \leq 2n_i - 4 \quad (i = 1, 2).
\]
By this and (19),
\[2n - 5 \leq |E(G)| = |E(G_1)| + |E(G_2)| + |\{e, e'\}| \leq (2n_1 - 4) + (2n_2 - 4) + 2 = 2n - 6,\]
a contradiction. Therefore, we may assume \(\kappa'(G) = 3\).

Since \(\kappa'(G) = 3\) and \(\kappa'(G_0) < 2\), the derivation of \(G_0\) from \(G\) implies that \(G_0\) has a cut-edge \(e\) (that is not a cut-edge of \(G\)), and that one component of \(G_0 - e - \{e_{13}, e_{24}\}\) (say \(G_1\)) contains both ends of \(e_{13}\), while the other component of \(G_0 - e - \{e_{13}, e_{24}\}\) (say \(G_2\)) contains both ends of \(e_{24}\). (See Figure 1.) For \(i \in \{1, 2\}\), let \(G_i(v)\) denote \(G[V(G_i) \cup \{v\}]\). In \(G_i(v)\), \(v\) is incident with \(e_i\) and \(e_{i+2}\) only. By Lemma 2, \(\mathcal{F}(4, 5)\) is closed under contraction, and so
\[G/G_i(v) \in \mathcal{F}(4, 5) \quad (i = 1, 2)\]
and by the minimality of \(G\), both \(G/G_1(v)\) and \(G/G_2(v)\) satisfy a conclusion of Theorem 14.

By (18) and since \(\mathcal{F}(2, 0)\) is closed under contraction (Lemma 2), neither \(G/G_1(v)\) nor \(G/G_2(v)\) has a cut-edge. We claim that neither has the Petersen graph as a \(\mathcal{T}\)-reduction, either.

Let \(i \in \{1, 2\}\). By way of contradiction, suppose that the \(\mathcal{T}\)-reduction of \(G/G_i(v)\) is the Petersen graph, and let \(E_{15}\) be the set of 15 edges of this Petersen graph. Then \(E_{15} \subseteq E(G)\) and \(G - E_{15}\) consists of 10 components, say \(H_1, H_2, \ldots, H_{10}\), one of which contains \(G_i(v)\). By (15) and since subgraphs of reduced graphs are reduced, Theorem 9 implies
\[|E(H_j)| \leq 2|V(H_j)| - 2 \quad (1 \leq j \leq 10), \quad (29)\]

![FIGURE 1. Three graphs of Case B.](image-url)
with equality if and only if \(H_j = K_1 \). Hence, by \((19)\) and \((29)\),

\[
2n - 5 \leq |E(G)| = |E_{15}| + \sum_{j=1}^{10} |E(H_j)|
\]

\[
\leq 15 + \sum_{j=1}^{10} (2|V(H_j)| - 2) = 2n - 5,
\]

and so equality holds in \((29)\) for \(1 \leq j \leq 10\). But then the component \(H_j \) containing the nontrivial subgraph \(G_i(v) \) is trivial, a contradiction.

Therefore, \(G/G_1(v) \) and \(G/G_2(v) \) must satisfy the first conclusion of Theorem 14: both are in \(\mathcal{F}_3 \) and both have 3-edge-colorings such that the union of any two color classes is an even graph. For \(i \in \{1, 2\} \), the vertex \(v \) has degree 3 in \(G/G_i(v) \), and so the three edges incident with \(v \) (namely, \(e_1, e_3, e \) and \(e_2, e_4, e \) in \(G/G_2(v) \) and \(G/G_1(v) \), respectively) have different colors. These two edge-colorings can be joined (so that \(e \) has the same color in both) to give a 3-edge-coloring of \(E(G) \) that proves \(G \in \mathcal{F}_3 \). This contradicts \((17)\). Case B is complete and \((26)\) is proved.

If \(G \) is 3-regular, then \((24)\) and Lemma 4 imply that \(G \) is the Petersen graph and thus violates \((17)\). Hence, \(\Delta(G) \geq 4 \). By \((21)\), \(\delta(G) \geq 3 \). Set

\[
W = \bigcup_{i=5}^{\infty} V_i.
\]

By \((20)\), \((21)\), and \((24)\), \(|W| \leq 2 \). By \((25)\) and \((26)\), \(|V_4| \leq 2 \). Since \(|V_3| \leq 10 \),

\[
|V(G)| = |V_3 \cup V_4| \leq 12, \text{ or } W \neq \emptyset \text{ and }
\]

\[
|V(G)| = |V_3 \cup V_4 \cup W| \leq 14,
\]

and either case contradicts Lemma 4, for \(G \) is \(\mathcal{T} \)-reduced with \(\delta(G) \geq 3 \) by \((15)\) and \((21)\).

Since every case leads to a contradiction, there is no smallest counterexample \(G \), and Theorem 14 is proved. ■

7. SOME CONJECTURES

Conjecture 2. If \(G \in \mathcal{F}_{2,2} \) then exactly one of the following holds:

(a) \(G \in \mathcal{C}_L \).
(b) The \(\mathcal{C}_L \)-reduction of \(G \) is either \(2K_1 \) or \(K_2 \) or \(K_{2,t} \) for some \(t \in \mathbb{N} \).

Conjecture 3. If \(G \in \mathcal{F}_{2,2} \) then exactly one of the following holds:

(a) \(G \in \mathcal{F}_3^0 \).
(b) The \(\mathcal{F}_3^0 \)-reduction of \(G \) is \(2K_1 \) or \(K_2 \) or \(K_{1,2} \).
Conjecture 3 would follow from Conjecture 2. Suppose \(G \in \mathcal{S}_{2,2} \) and suppose Conjecture 2 is true. If \(G \in \mathcal{CL} \), then (a) of Conjecture 3 holds, by Corollary 13A. Since \(\mathcal{CL} \subseteq \mathcal{S}_3^0 \) (Corollary 13A), the \(\mathcal{S}_3^0 \)-reduction of \(G \) is obtained from a \(\mathcal{CL} \)-reduction of \(G \), by contracting subgraphs in \(\mathcal{S}_3^0 \). If \(G/\mathcal{CL} \in \{2K_1, K_{2,1}, K_2\} \), then \(G/\mathcal{CL} \) is \(\mathcal{S}_3^0 \)-reduced, but if \(G/\mathcal{CL} = K_t \) (\(t \geq 2 \)), then from Theorem 13 we get \(G/\mathcal{CL} \in \mathcal{S}_3^0 \), whence \(G \in \mathcal{S}_3^0 \).

Conjecture 4. If \(G \in \mathcal{S}_{2,3} \), then exactly one of the following holds:

(a) \(G \in \mathcal{S}_3^0 \).

(b) \(G \) has at least one cut-edge.

(c) \(G \) is contractible to the Petersen graph.

It follows from Theorem 7 that \(\mathcal{S}(4,5) \subseteq \mathcal{S}_{2,3} \), and so the hypothesis of Conjecture 4 is weaker than the hypothesis of Theorem 14. By Theorem 4, \(\mathcal{S}_3^0 \subseteq \mathcal{S}_3 \), and since this containment is proper (large cycles are not in \(\mathcal{S}_3^0 \)), (a) of the conclusion of Conjecture 4 is stronger than (a) of Theorem 14.

The Blanuša snark [2] is a 3-regular graph of order 18 and girth 5 that does not satisfy any conclusion of Theorem 14. It is 9 edges short of being 4-edge-connected. We know of no graph at most 8 edges short of being 4-edge-connected that does not satisfy a conclusion of Theorem 14.

In [6], we conjectured that \(\mathcal{CL} = \mathcal{S}_3^0 \). By Theorem 13, the analogous conjecture \(\mathcal{C}_3 = \mathcal{S}_3^0 \) is false, because \(\mathcal{C}_3 \) does not contain the four-cycle.

References

