Graph Homomorphisms into the Five-Cycle

PAUL A. CATLIN

Department of Mathematics, Wayne State University,
Detroit, Michigan 48202

Communicated by W. T. Tutte

Received February 20, 1984

We consider those edge-minimal graphs having no homomorphism into the five-cycle. We characterize constructively such graphs having the additional property that they contain no topological K_4 as a subgraph. © 1988 Academic Press, Inc.

1. INTRODUCTION

For simple graphs G and H, we consider the graph homomorphism

$$\theta : G \to H,$$

(1)

where θ maps $V(G)$ into $V(H)$ and where $xy \in E(G)$ implies $\theta(x) \theta(y) \in E(H)$. When H is a complete graph, the homomorphism θ is the usual coloring, and the chromatic number and achromatic number are special cases. (These numbers and homomorphisms are related by the Homomorphism Interpolation Theorem [7]. For a bound, see [3].)

When the homomorphism (1) exists, we shall call θ an H-coloring of G. If G has an H-coloring, then we call G H-colorable. If G has no H-coloring, but for all $e \in E(G)$, $G - e$ has an H-coloring, we say that G is H-critical. For example, a graph is K_{n-1}-critical in this sense if and only if it is chromatically n-critical in the usual sense (of [2], for example).

A graph F is uniquely H-colorable if for any H-colorings θ_1 and θ_2 of F there is an automorphism \varnothing of H such that $\varnothing \theta_1 = \theta_2$.

PROPOSITION 1. If G is H-critical, then G cannot be separated by a uniquely H-colorable subgraph F.

The proof is an imitation of the proof for the case $H = K_n$, i.e., for chromatically critical graphs. We omit the details.

An (x, y)-arc $A(x, y)$ of G is a maximal path in G whose ends are $x, \ y \in V(G)$ and whose interval vertices are divalent in G. Either x and y...
are not divalent, or \(x = y \) and the component of \(G \) containing \(x \) is a cycle. An \((x, y)\)-arc \(A(x, y) \) having \(n \) edges will be denoted \(A_n(x, y) \). If \(A_n(x, y) \) is an arc of \(G \), then \(G - A_n(x, y) \) will denote the subgraph of \(G \) obtained by removing all edges and internal vertices of \(A_n(x, y) \).

Proposition 2. If \(G \) is \(C_{2k+1} \)-critical, then no arc of \(G \) has more than \(2k - 1 \) edges.

Since the proof is routine, we omit it. We shall refer to both propositions in the next section.

We define an odd-\(TK_4 \) to be a \(TK_4 \) which, when embedded in the plane, has all four faces of odd girth. An odd-\(K_3^3 \) is defined to be any graph consisting of three edge-disjoint odd cycles \(C, C', C'' \), and three arcs

\[
\begin{align*}
A(u, u') & \quad (u \in V(C), \quad u' \in V(C')), \\
A(v', v'') & \quad (v' \in V(C'), \quad v'' \in V(C'')), \\
A(w'', w) & \quad (w'' \in V(C''), \quad w \in V(C)),
\end{align*}
\]

whose internal vertices have degree 2. (The graph \(R \) of Fig. 1 is an example of an odd-\(K_3^3 \) in which all three arcs have length 0.)

Dirac [5] proved that if a graph has no \(C_3 \)-coloring, then it has a \(TK_4 \). We [4] showed that the \(TK_4 \) in the conclusion of Dirac's theorem could be chosen to be an odd-\(TK_4 \). Gerards [6], in strengthening a result of [1], proved the following result:

Theorem 1. Let \(G \) be a graph with odd girth \(2k + 1 \). Either \(G \) has a \(C_{2k+1} \)-coloring, or \(G \) contains an odd-\(TK_4 \) or an odd-\(K_3^3 \).

In this paper, we shall characterize constructively the graphs with no \(C_3 \)-coloring and no \(TK_4 \) subgraph.

2. The Main Results

The branch graph \(B(G) \) of a graph \(G \) (\(G \) not a cycle) is the multigraph obtained from \(G \) by replacing every arc by an edge joining its ends. A graph is nodally 3-connected if its branch graph is 3-connected (this is equivalent to Tutte's definition [8]). For an induced subgraph \(H \) of \(G \), the vertices of attachment of \(H \) in \(G \) are those vertices of \(H \) incident with at least one edge of \(E(G) - E(H) \).

We use \(d(u, v) \) to denote the distance in \(C_5 \) between \(u, v \in V(C_5) \). For \(x, y \in V(H) \), define

\[
D(x, y, H) = \{ d(\theta(x), \theta(y)) \mid \text{\(\theta \) is a \(C_5 \)-coloring of \(H \)} \}.
\]
Of course, \(\theta \) runs over all \(C_5 \)-colorings of \(H \). Thus,

\[
D(x, y, H) \subseteq \{0, 1, 2\}.
\]

Given two copies \(C, C' \) of \(C_5 \), with distinguished vertices \(x, z \in V(C) \) at distance 2 in \(C \), and with distinguished vertices \(y, z' \in V(C') \) at distance 2 in \(C' \), we denote by \(R_{xy} \) the nine-vertex graph obtained from \(C \cup C' \) by identifying \(z = z' \). See Fig. 1.

We shall denote by \(H + A_n(x, y) \) the graph obtained by adding to \(H \) an \((x, y)\)-arc \(A_n(x, y) \) having \(n \) edges, where \(x, y \in V(H) \). Denote (see Figs. 1 and 2)

\[
R'(x, y) = R_{xy} + A_2(x, y),
\]

\[
R''(x, y) = R_{xy} + A_3(x, y),
\]

and

\[
R_0(x, v) = R_{xy} + A_3(y, y), \quad v \in V(A_5(y, y)), \quad d(v, y) = 2.
\]

Thus, \(R_0(x, v) \) consists of three blocks, each a 5-cycle, and \(x, y, v \) are distinguished vertices, with \(y \) as a cutvertex.

An incremental subgraph \(H \) of a graph \(G \) is an induced subgraph \(H \) either isomorphic to \(R'(x, y) \) or \(R''(x, y) \) and with vertices of attachment \(\{x, y\} \) in \(G \), or isomorphic to \(R_0(x, v) \), with vertices of attachment \(\{x, v\} \) in \(G \), where \(v \in V(A_5(y, y)) \subseteq V(R_0(x, v)) \) is at distance 2 from \(y \).

Theorem 2. If \(G \) is a \(C_5 \)-critical graph with no \(TK_4 \) subgraph, and if \(G \) is neither \(K_3 \) nor \(R \), then \(G \) contains two edge-disjoint incremental subgraphs.
Proof. Throughout this proof, \(G \) will denote a \(C_5 \)-critical graph, neither \(K_3 \) nor \(R \), and without a \(TK_4 \).

Suppose that \(G \) is nodally 3-connected. Then the underlying branch graph \(B(G) \) is 3-connected. Therefore, there are vertices \(x, y \) of degree at least 3 in \(G \), and there are three internally disjoint \((x, y) \)-paths \(P_1, P_2, P_3 \) in \(G \), by Menger's theorem. Also, \(B(G)-\{x, y\} \) is connected, and hence some path \(P_4 \) in \(G \) joins internal vertices of two of \(P_1, P_2, P_3 \). Then \(P_1 \cup P_2 \cup P_3 \cup P_4 \) is a \(TK_4 \) subgraph of \(G \).

Hence, by Proposition 1, we can assume that \(G \) has connectivity and nodal connectivity 2. We shall also suppose inductively, for the remainder of the proof, that for any \(C_5 \)-critical graph \(G' \notin \{K_3, R\} \), with \(|V(G')| < |V(G)| \), where \(G' \) has no \(TK_4 \), there are two edge-disjoint incremental subgraphs in \(G' \). As a basis for induction, note that if \(|V(G)| \leq 5 \), then the induction hypothesis holds vacuously.

We shall prove some lemmas next. In these lemmas, unions and intersections are defined as in [2].

Lemma 1. If \(G_{xy} \) is a 2-connected subgraph of \(G \) with vertices of attachment \(\{x, y\} \) in \(G \), where \(G_{xy} \neq K_2 \), then \(G_{xy} \) can be decomposed into connected subgraphs \(H, H' \) such that

\[
H \cup H' = G_{xy}, \quad H \cap H' = \{x, y\}.
\]

Proof. Since \(G_{xy} \) is 2-connected with vertices of attachment \(\{x, y\} \) in \(G \), there are internally disjoint \((x, y) \)-paths \(P, P' \) in \(G_{xy} \). Since \(G \) is 2-connected, \(G - E(G_{xy}) \) has an \((x, y)\)-path \(P_0 \). If a path \(P'' \) in \(G_{xy} - \{x, y\} \) joins an internal vertex of \(P \) to an internal vertex of \(P' \), then \(P_0 \cup P \cup P' \cup P'' \) is a \(TK_4 \) in \(G \), contrary to the hypothesis of the theorem. Hence, no such path \(P'' \) exists, and so \(\{x, y\} \) separates \(G_{xy} \), and subgraphs \(H \) and \(H' \) exist as described, where \(P \subseteq H, P' \subseteq H' \).

Lemma 2. An acyclic subgraph of \(G \) with only two vertices of attachment \(\{u, v\} \) in \(G \) is a \((u, v)\)-path.

Proof. An acyclic subgraph \(H \) of \(G \) is a tree. Since \(G \) has no cutvertex (by Proposition 1), each vertex of degree 1 in \(H \) is a vertex of attachment in \(G \). Since \(H \) has only two vertices of attachment \((u \text{ and } v) \) in \(G \), \(H \) must be a \((u, v)\)-path.

Lemma 3. There exist \(x, y \in V(G) \) and connected subgraphs \(H_1 \) and \(H_2 \) of \(G \), such that

\[
G = H_1 \cup H_2, \quad \{x, y\} = H_1 \cap H_2, \quad (2)
\]
and such that

\[H_1 \text{ and } H_2 \text{ each contain at least one cycle.} \] (3)

Proof. Since the nodal connectivity of \(G \) is 2, and since \(G \) is not a cycle, the underlying branch graph \(B(G) \) has a separating set \(\{x, y\} \). Therefore, connected subgraphs \(H_1 \) and \(H_2 \), satisfying (2), exist, where \(H_1 \) and \(H_2 \) both have vertices of degree at least 3 and different from \(x \) and \(y \). If \(H_i \) has no cycle, then by Lemma 2, \(H_i \) is an \((x, y)\)-path, a contradiction. Therefore, \(H_1 \) and \(H_2 \) each contain a cycle. □

Since \(G \) is \(C_5 \)-critical, some graph \(H_i \ (i \in \{1, 2\}) \) of Lemma 3 satisfies \(|D(x, y, H_i)| = 1\), and so we lose no generality in assuming that

\[|D(x, y, H_1)| = 1 \] (4)

and

\[H_1 \text{ is maximal with respect to (2), (3), and (4).} \] (5)

Any ordered pair \((H_1, H_2)\) of induced subgraphs of \(G \) satisfying (5) (and hence (2), (3), and (4)) for some separating set \(\{x, y\} \) will be called a proper pair of subgraphs of \(G \).

Clearly, for \(i \in \{1, 2\} \), since \(G \) is 2-connected,

All cutvertices of \(H_i \) lie on a single \((x, y)\)-path. \hspace{1cm} (6)

Let \(H_0 \) be a 2-connected induced subgraph of \(G \) with vertices of attachment \(\{u, v\} \) in \(G \). If

\[D(u, v, H_0) = \{0\}, \]

then \(H_0 \) is called a zero-block.

Lemma 4. If \((H_1, H_2)\) is a proper pair, then \(H_2 \) has no zero-block.

Proof. Suppose that \(H_{uv} \) is a zero-block of \(H_2 \). By the definition of a zero-block,

\[D(u, v, H_{uv}) = \{0\}. \] (7)

By Lemma 1, \(H_{uv} \) has subgraphs \(H, H' \) such that

\[H_{uv} = H \cup H', \quad \{u, v\} = H \cap H'. \]

Since \(G \) is \(C_5 \)-critical, (7) implies

\[D(u, v, G - (H_{uv} - \{u, v\})) \subseteq \{1, 2\}, \]
and the values of $D(u, v, G - (H - \{u, v\}))$ and $D(u, v, G - (H' - \{u, v\}))$ are $\{1\}$ and $\{2\}$ in some order. Hence, H or H' could have been chosen in place of H_2 in (2) and (3), unless both H and H' are acyclic. This contradicts the maximality of H_1 in (4) and (5), except when both H and H' are acyclic. In the latter case, by Lemma 2, they are (u, v)-paths, and thus H_{uv} is a cycle. But then (7) is false, a contradiction.

Lemma 5. If (H_1, H_2) is a proper pair, then H_2 has a cutvertex.

Proof. Suppose, by way of contradiction, that H_2 is 2-connected. By (3), $H_2 \neq K_2$. By Lemma 1, there are subgraphs H, H' of H_2, such that

$$H_2 = H \cup H', \quad \{x, y\} = H \cap H'.$$

Since G is C_5-critical and $D(x, y, H_1)$ is a singleton (by (4)), we have identical singletons

$$D(x, y, H_1 \cup H) = D(x, y, H_1 \cup H').$$

But this implies that G has a C_5-coloring, a contradiction. Therefore, H_2 has at least one cutvertex.

Lemma 6. If (H_1, H_2) is a proper pair, then $H_2 = R_{xy}$, and $D(x, y, H_1) = \{2\}$.

Proof. Let H_x (resp., H_y) be the block of H_2 containing x (resp., y). By Lemma 5, $H_x \neq H_y$. Let $\{x, x'\}$ (resp., $\{y, y'\}$) be the vertices of attachment of H_x (resp., of H_y) in G.

If

$$|D(x, x', H_x)| = |D(y, y', H_y)| = 2,$$

then G has a C_5-coloring, a contradiction. Hence, there is no loss of generality in our supposing that

$$D(x, x', H_x) = \{t\}, \quad (8)$$

and Lemma 4 implies $t \in \{1, 2\}$. By (4), $|D(x, y, H_1)| = 1$.

Case 1. Suppose $D(x, y, H_1) = \{0\}$. Define $H'_1 = H_1 \cup H_x$, and note that (8) implies

$$D(x, y, H_1 \cup H_x) = \{t\}.$$

By the maximality of H_1 in (5), the induced subgraph $H'_2 = H_2 - (H_x - x')$ is acyclic with vertices of attachment $\{x', y\}$, and so by Lemma 2, H'_2 is an (x', y)-path P. Let $yz \in E(P)$ be the edge incident with y. Then
$D(x, z, H_1 \cup yz) = \{1\}$, and the graph induced by $H_1 \cup yz$ contradicts the maximality of H_1 in (5).

Case 2. Suppose $D(x, y, H_1)$ is $\{1\}$ or $\{2\}$. By (6), the blocks of H_1 and the blocks of H_2 are arranged in cyclic order in G. By Lemma 4 and the condition of Case 2, if H_2 has two or more cutvertices (and hence at least three blocks), then G has a C_5-coloring. Hence, H_2 has a unique cutvertex $z = x' = y'$.

Since G has no C_5-coloring, there is no triple $a_1, a_x, a_y \in \{1, 2\}$ with

$$a_1 \in D(x, y, H_1), \quad a_x \in D(x, z, H_x), \quad a_y \in D(y, z, H_y)$$

such that for some choice of plus and minus signs, chosen independently,

$$a_1 \pm a_x \pm a_y \equiv 0 \pmod{5}. \quad (9)$$

The absence of zero-blocks implies $0 \notin \{a_1, a_x, a_y\}$. If any of $D(x, y, H_1), D(x, z, H_x), D(y, z, H_y)$ has more than one member, then (9) has a solution, a contradiction. If all three sets have exactly one member, then since (9) has no solution, all are $\{1\}$ or all are $\{2\}$.

Suppose that for some $k \in \{1, 2\}$, we have $k = a_1, k = a_x, k = a_y$. Then

$$D(x, z, H_1 \cup H_y) = \{0, 3 - k\}. \quad (10)$$

By Lemma 1, the block H_x can be decomposed into connected subgraphs H, H', where

$$H_x = H \cup H', \quad \{x, z\} = H \cap H'.$$

Since G is C_5-critical, it follows from (10) that $D(x, z, H_1 \cup H_y \cup H)$ and $D(x, z, H_1 \cup H_y \cup H')$ are $\{0\}$ and $\{3 - k\}$ in some order.

If H' contains a cycle, then $H_1 \cup H_y \cup H$ would violate the maximality of H_1 in (5), since H' could replace H_2 in (3). Therefore, H' is acyclic. Likewise, H is acyclic. By Lemma 2, both H and H' are (x, z)-paths. Since G is C_5-critical, the lengths of H and H' are less than four, by Proposition 2, and they are unequal. By Proposition 1, x and z are not adjacent. Hence, one of H, H' has length 2 and the other has length 3, and so H_x is a 5-cycle, and $k = 2$.

A similar argument shows that H_y is a 5-cycle, with (x, z)-arcs of lengths 2 and 3. Therefore, $H_2 = H_x \cup H_y = R_{xy}$, and $D(x, y, H_1)$ must be $\{2\}$. Lemma 6 is proved.

Lemma 7. If (H_1, H_2) is a proper pair of subgraphs of G, and if H_1 is 2-connected, then either Theorem 2 holds for G or there are subgraphs H, H' of H_1 such that

$$H_1 = H \cup H', \quad \{x, y\} = H \cap H', \quad H = A_2(x, y),$$

where $\{x, y\}$ is the set of vertices of attachment of H, of H', and H_2 in G.
Proof. By Lemma 1, since \(H_1 \) is 2-connected, there are subgraphs \(H, H' \) such that
\[
H_1 = H \cup H', \quad \{x, y\} = H \cap H'.
\]
Since \(G \) is \(C_5 \)-critical, the three sets \(D(x, y, H_2), D(x, y, H), \) and \(D(x, y, H') \) are distinct subsets of \(\{0, 1, 2\} \) such that none of the three sets contains another one of the three sets. By Lemma 6,
\[
D(x, y, H_2) = \{0, 1\},
\]
and so we lose no generality in supposing
\[
D(x, y, H) = \{0, 2\}, \quad D(x, y, H') = \{1, 2\}.
\]
Therefore, \(H + A_1(x, y) \) is \(C_5 \)-critical and has no \(TK_4 \), and by the induction hypothesis, either \(H + A_1(x, y) = K_3 \), whence \(H = A_2(x, y) \), as required by Lemma 7, or \(H \) contains an incremental subgraph \(F \) of \(G \). It remains to exclude the latter case.

Suppose that \(H \) has an incremental subgraph \(F \). Let \(G' \) denote the graph obtained from \(G \) upon the replacement of \(H \) by \(A_2(x, y) \). Since \(G \) is \(C_5 \)-critical and \(D(x, y, H) = D(x, y, A_2(x, y)) \), the smaller graph \(G' \) is \(C_5 \)-critical. By the induction hypothesis, \(G' \) has two edge-disjoint incremental subgraphs, or \(G' = R \). In the former case, \(G' - (A_2(x, y) - x - y) \) has an incremental subgraph \(F' \), and so \(F \) and \(F' \) are two edge-disjoint incremental subgraphs of \(G \). In the latter case, since \(G' \) includes both \(H_2 = R_{xy} \) (by Lemma 6) and \(A_2(x, y) \), we must have \(H' = A_3(x, y) \). Hence, \(H' \cup H_2 = R''(x, y) \) is an incremental subraph \(F' \) of \(G \) that is edge-disjoint from \(F \). Thus, if \(H \) has an incremental subgraph \(F \), then the theorem holds.

Lemma 8. If \(H_0 \) is a zero-block of \(G \), with
\[
|V(H_0)| \leq |V(G)| - 3,
\]
then \(H_0 \) contains an incremental subgraph.

Proof. Let \(u, v \in V(H_0) \) be the vertices of attachment of \(H_0 \). Since \(H_0 \) is a zero-block and \(G \) is \(C_5 \)-critical with no \(TK_4 \), \(H_0 + A_3(u, v) \) is also \(C_5 \)-critical with no \(TK_4 \). Since \(|V(H_0)| \leq |V(G)| - 3 \), the induction hypothesis applies to \(H_0 + A_3(u, v) \), and so \(H_0 \) contains an incremental subgraph.

Proof of Theorem 2 (continued). By (5), there is a proper pair \((H_1, H_2) \) of incremental subgraphs of \(G \), and by Lemma 6,
\[
G = H_1 \cup H_2, \quad \{x, y\} = H_1 \cap H_2,
\]
and $H_2 = R_{xy}$ is a pair of 5-cycles with exactly one vertex z in common, where $xz, yz \notin E(G)$.

Case 1. Suppose that H_1 is 2-connected. By Lemma 7, there are subgraphs H, H' of H_1 such that

$$H_1 = H \cup H', \quad \{x, y\} = H \cap H', \quad H = A_2(x, y).$$

Let t be the number of cutvertices of H', and denote $x = z_0, y = z_{t+1}$. By (6), we can let z_1, z_2, \ldots, z_t denote the t cutvertices of H' as they occur along an (x, y)-path in H'.

Since $H = A_2(x, y)$ and since $H_2 = R_{xy}$, the subgraph $F = H \cup H_2$ is an incremental subgraph $R'(x, y)$ in G.

We denote by B_0, B_1, \ldots, B_t the $t+1$ blocks of H', where

$$z_i, z_{i+1} \in V(B_i), \quad (0 \leq i \leq t).$$

If H' is acyclic, then by Lemma 2, H' is an (x, y)-path and since G is C_5-critical and $D(x, y, H \cup H_2) = \{0\}$, we must have $H' = A_3(x, y)$ and hence $G = R$, contrary to our assumption. Therefore, H' contains a cycle, and since $D(x, y, H \cup H_2) = \{0\}$, we have a proper pair (H_3, H_4) satisfying

$$H \cup H_2 \subseteq H_3, \quad H_4 \subseteq H', \quad H_3 \cup H_4 = G, \quad H_3 \cap H_4 = \{z_j, z_k\},$$

for some j and k with $j < k$. By Lemma 6,

$$H_4 = B_j \cup B_{j+1} = R_{uv}, \quad \text{for} \quad u = z_j, v = z_{j+2} = z_k,$$

and $D(u, v, H_3) = \{2\}$. Therefore, $t \geq 2$, and B_i is a 5-cycle for some i such that $1 \leq i \leq t-1$, and so the proper pair (H_3, H_4) may be chosen so that either

$$H \cup H_2 \cup B_0 \subseteq H_3 \quad \text{or} \quad H \cup H_2 \cup B_t \subseteq H_3,$$

without violating the requirement (3) that H_4 contain a cycle. If for some h ($0 \leq h \leq t$), B_h is a zero-block, then by Lemma 8 and the existence of F, G has two edge-disjoint incremental subgraphs. Hence, we may assume that no B_h is a zero-block. Consequently, $H_3 = H \cup H_2 \cup B_0$ and $H_3 = H \cup H_2 \cup B_t$ are two possible values of H_3 satisfying (5). By Lemma 6, $H_4 = R_{uv}$, where $\{u, v\}$ is $\{z_0, z_2\}$ or $\{z_{t-1}, z_{t+1}\}$, and $t = 2$, since G is C_5-critical. Hence, $H' = R_0(x, y)$ and F are two incremental subgraphs of G.

Case 2. Suppose that H_1 is not 2-connected. Thus, H_1 has at least one cutvertex $v \notin \{x, y\}$. By (6), all cutvertices of H_1 must lie on a single (x, y)-path in H_1.
If H_1 has at least two zero-blocks, then by Lemma 8, G has two incremental subgraphs. Hence, we can assume that H_1 has at most one zero-block. By (4), at most one block of H_1 is not a zero-block. It follows that H_1 has just a single cutvertex v, and so we shall denote by H_{ux} and H_{vy} the two blocks of H_1, where v and x are the two vertices of attachment of H_{ux} in G, and v and y are the two vertices of attachment of H_{vy} in G. Without loss of generality,

$$D(v, y, H_{vy}) = \{0\}, \quad (11)$$

and so by Lemma 6 and (11),

$$D(v, x, H_{ux}) = D(x, y, H_{ux} \cup H_{vy}) = D(x, y, H_1) = \{2\}.$$

By Lemma 8 and (11), H_{vy} has an incremental subgraph F_1.

Denote by H_5 the graph obtained from H_{ux} by adding R_{ux} and identifying both vertices named v and identifying both named x. Note that H_5 is C_5-critical and H_5 has no TK_4 subgraph. Also, $H_5 \neq K_3$.

If $H_5 = R$, then $H_{ux} = C_5$, and so $F_2 = H_{ux} \cup H_2 = R_0(v, y)$ is an incremental subgraph of G. Then F_1 and F_2 are incremental subgraphs.

Suppose, instead, that $H_5 \neq R$. By the induction hypothesis, H_5 has two edge-disjoint incremental subgraphs, say F_3 and F_4. If either one, say F_3, is contained in H_{ux}, then F_1 and F_3 are two edge-disjoint incremental subgraphs of G. If neither F_3 nor F_4 is contained in H_{ux}, then F_3 and F_4 are R_0-type incremental subgraphs of H_5, but since H_{ux} is one block, this is a contradiction.

Therefore, G has two incremental subgraphs, and the induction is complete. Theorem 2 is proved.

Theorem 3. The graph G is C_5-critical and has no TK_4 if and only if G is obtained from K_3 by repeated applications of the following three operations:

1. The replacement of an arc $A_3(x, v)$ by $R_0(x, v)$ (where x, v of the graph are identified with the corresponding distinguished vertices x, v of $R_0(x, v)$).

2. The replacement of an edge xy by $R''(x, y)$.

3. The replacement of vertex u by nonadjacent vertices x, y, the joining of every neighbor of u to exactly one of x, y, and the addition of $R'(x, y)$ such that no TK_4 subgraph is created.

In operations 2 and 3, the distinguished vertices x, y of $R''(x, y)$ or $R'(x, y)$ are identified with the corresponding vertices with the same label in the graph.
EXAMPLE. The graph \(R \) can be obtained from \(K_3 \) by a single application of any one of these three operations. See Fig. 1 and 2.

Proof of Theorem 3. By Theorem 2, if \(G \) is \(C_5 \)-critical and has no \(TK_4 \) subgraph, then \(G \) has an incremental subgraph \(R_0(x, v) \), \(R'(x, y) \), or \(R''(x, y) \). By reversing one of the operations of Theorem 3 on this incremental subgraph, we obtain another \(TK_4 \)-free \(C_5 \)-critical graph \(G' \) with 9 fewer vertices and 12 fewer edges. By Theorem 2, \(G \) can be thus reduced to \(R \) and \(K_3 \), and so inductively we have

\[
|V(G)| \equiv 3 \quad (\mod 9) \tag{12}
\]

and

\[
3 |E(G)| + 3 = 4 |V(G)|. \tag{13}
\]

Conversely, let \(G' \) be a \(C_5 \)-critical graph with no \(TK_4 \) subgraph. Then \(G' \) satisfies (12) and (13). Moreover, one can prove inductively that \(D(x, y, G' - xy) = \{0, 2\} \) for all edges \(xy \) of \(G' \). Let \(G \) be a graph obtained from \(G' \) by one of the three operations of the theorem. Clearly, \(G \) has no \(TK_4 \), and so it remains to show that \(G \) is \(C_5 \)-critical.

Operation 1 replaces a subgraph \(A_3(x, v) \) satisfying

\[
D(x, v, A_3(x, v)) = \{1, 2\}
\]

with the subgraph \(R_0(x, v) \) having the property

\[
D(x, v, R_0(x, v)) = \{1, 2\},
\]

and since \(G' \) is \(C_5 \)-critical, so is \(G \). Operation 2 replaces the edge-subgraph \(xy \), satisfying

\[
D(x, y, xy) = \{1\},
\]

with the larger subgraph \(R''(x, y) \), such that

\[
D(x, y, R''(x, y)) = \{1\}.
\]

We claim that the graph \(G \) resulting from operation 2 is also \(C_5 \)-critical. By the above remark,

\[
D(x, y, G' - xy) = \{0, 2\},
\]

and for any proper spanning subgraph \(H \) of \(G' - xy \), \(1 \in D(x, y, H) \), and so \(G[E(H) \cup E(R''(x, y))] \) has a \(C_5 \)-coloring. Also, if \(e \in E(R''(x, y)) \), then \(G - e \) has a \(C_5 \)-coloring. Thus, \(G \) is \(C_5 \)-critical, as claimed.
Let G be obtained from a C_5-critical graph G' by operation 3. Let

$$G_{xy} = G - (R'(x, y) - \{x, y\}).$$

In Operation 3 we replace a vertex $u \in V(G')$, where $D(u, u, u) = \{0\}$, by attaching $R'(x, y)$ to G_{xy}, where

$$D(x, y, R'(x, y)) = \{0\},$$

and so the resulting graph G is not C_5-colorable. If $e \in E(G')$, then there is a C_5-coloring of $G' - e$, and it can be extended to a C_5-coloring of $G - e$. Hence, $E(G')$ is contained in a C_5-critical subgraph H of G. We must have

$$|V(G')| < |V(H)| \leq |V(G)|, \tag{14}$$

and

$$|E(G')| < |E(H)| \leq |E(G)|, \tag{15}$$

and since (12) and (13) force equalities in (14) and (15), we have $H = G$. Thus, G is C_5-critical, as claimed.

From (12) and (13), we get:

Corollary. If G is C_5-critical and has no TK_4 subgraph, then

$$3|E(G)| + 3 = 4|V(G)|,$$

and

$$|V(G)| \equiv 3 \quad (\text{mod } 9).$$

Theorem 4. If G is obtained from R by repeated applications of the three operations of Theorem 3, then G is R-colorable.

Proof by Induction. R is R-colorable.

Suppose that G' has an R-coloring $	heta'$, and that G is obtained from G' by a single application of one of the three operations of Theorem 3.

Define an R-coloring $	heta$ of G by setting $\theta = \theta'$ on $G' - A_3(x, z)$ (operation 1), $G' - xy$ (operation 2), or $G' - u$ (operation 3), respectively, depending upon which operation is used to obtain G from G'. It is easy to verify that θ can be extended to the incremental subgraph that is added to G' to form G, such that θ becomes a homomorphism of G onto R.

Next, we show that Theorem 2 is best-possible.

Theorem 5. There are infinitely many C_5-critical TK_4-free graphs with exactly two incremental subgraphs.
Proof. Let \(t \geq 1 \), and let \(H \) be the graph consisting of the edge-disjoint incremental subgraphs \(F_1 = R'(x_1, y_1) \) and \(F_2 = R_0(x, y) \), and, if \(t \geq 3 \), then \(2t - 4 \) isolated vertices \(\{x_2, y_2, x_3, y_3, \ldots, x_{t-1}, y_{t-1}\} \). Thus, \(F_1 \cap F_2 = \{x_1, y_1\} \) if \(t = 1 \), and \(F_1 \) and \(F_2 \) are disjoint if \(t \geq 2 \). Define \(G \) to be the graph obtained from \(H \) by the addition of these internally disjoint arcs:

\[
\begin{align*}
A_2(x_{i+1}, y_{i+1}) & \quad (1 \leq i \leq t-1); \\
A_2(x_i, x_{i+1}) & \quad (1 \leq i \leq t-1); \\
A_3(x_i, x_{i+1}) & \quad (1 \leq i \leq t-1); \\
A_2(y_i, y_{i+1}) & \quad (1 \leq i \leq t-1); \\
A_3(y_i, y_{i+1}) & \quad (1 \leq i \leq t-1).
\end{align*}
\]

Thus, \(|V(G)| = 9t + 12\), and the only three vertices of degree 4 in \(G \) join 5-cycles in \(F_1 \cup F_2 \). Since every incremental subgraph has a vertex of degree 4, \(F_1 \) and \(F_2 \) are the only incremental subgraphs in \(G \). Since \(G \) can be obtained from \(R \) by repeated applications of operation 1 (or 3) of Theorem 3, \(G \) is \(C_5 \)-critical and \(K_4 \)-free.

REFERENCES

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium