Strong Steiner tree packing

Hehui Wu
Department of Mathematics
University of Illinois at Urbana-Champaign
April 14, 2008

Abstract

Given a graph G and $S \subset V(G)$, a S-Steiner-tree is a subtree of G containing S. We call a subgraph H strong S-subgraph if there exist a system of edge disjoint paths in H with two end points in S, after splitting them to internal disjoint paths, they induces a S-Steiner-tree. In the case when $G - S$ is empty or all the vertices in $V(G) - S$ have even degrees, we give a necessary and sufficient condition for G have k edge-disjoint strong S-subgraph. In addition, we prove if S is $34k$ edge-connected in G, then there exists k edge-disjoint strong S-subgraph in G. Furthermore, if S is $24k$ edge-connected in G, then there exists k edge-disjoint S-Steiner-tree, which slightly improve Lap-Chi Lau’s result.