Hamiltonian Like Indices

Yehong Shao
Arts and Science, Ohio University Southern, Ironton, OH 45638

April 9, 2008

Abstract

The concept of hamiltonian index was first introduced by Chartrand and Wall, who showed that if a connected graph G is not a path, then $L^k(G)$ is defined for any positive integer k. The hamiltonian index $h(G)$ of G is the smallest positive integer k such that $L^k(G)$ is hamiltonian. Clark and Wormald extended this idea and introduced Hamiltonian like indices. For a property P (Hamilton connected, edge-hamiltonian, pancyclic, vertex pancyclic, edge pancyclic) and a connected nonempty graph G which is not a path, define the P-index of G, denoted $P(G)$, as

$$P(G) = \left\{ \begin{array}{ll}
\min\{k : L^k(G) \text{ has property } P\} & \text{if at least one such } k \text{ exists} \\
\infty & \text{otherwise}
\end{array} \right.$$

We summarize the recent results about Hamiltonian like indices.