Math 222 Exam 3 topics

1. Interpolation, least squares approximation, including parametric curve data. Plot data and error.
2. Pseudocolor plots, surface plots, curves in three dimensions
 pcolor(X,Y,Z), surf(X,Y,Z,C), plot3(x,y,z)
 Setting up the domain as rectangular grids
 Transforming from rectangular grids for parameter domains
 polar coordinate specification of domain
 cylindrical coordinates (cone $z = r$, ramp $z = \theta$, $0 \leq r \leq 1$, $0 \leq \theta \leq 10$, etc)
 other parametric surfaces
 Plotting curves on surfaces
 Function contours (level curves) for two-dimensional data $f(x,y)$

3. Simulation:
 Simulate a discrete probability distribution, or, more generally a random experiment
 Discrete distribution, e.g. $p = [0.2, 0.3, 0.5]$. Simulate 1000 trials of this distribution plot
 results in a bar graph, compare with expected values. Here is a semi-efficient approach
 P=[0 .2 .3 .5 1]; %cumulative distribution
 N=zeros(1,3); %to contain outcome counts
 for i=1:1000
 x=rand;
 for j=1:3
 if x>P(j) & x<P(j+1)
 N(j)=N(j)+1;
 end
 end
 end
 bar(1:3,N)
 Random walks of +/-1 or a random number e.g. dy=2*rand-1, collect data as directed
 (e.g. max value, ending value, number of zero crossings, time of last zero, etc)
 plotting the outcome of a random walk
 Ex:
 Random walk of length 100
 100000 trials. Where do you end up if you never return to zero?
 N=zeros(1,101); %hopefully that’s enough
 for n=1:100000
 y=0;
 for k=1:100
 if rand>.5, dy=1;, else dy=-1;end
 y=y+dy;
 if y==0, break;end
 end
 if y==0, N(y+51)=N(y+51)+1;end
 end
 bar(-50:50,N)