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Abstract. This paper studies the fundamental relations among integer flows, modulo orienta-
tions, integer-valued and real-valued circular flows, and monotonicity of flows in signed graphs. A
(signed) graph is modulo-(2p + 1)-orientable if it has an orientation such that the indegree is con-

gruent to the outdegree modulo 2p+ 1 at each vertex. An integer-valued 2p+1
p

-flow is a flow taking

integer values in \{ \pm p,\pm (p+1)\} . Extending a fundamental result of Jaeger to signed graphs, we show
that a bridgeless signed graph is modulo-(2p+1)-orientable if and only if it admits an integer-valued
2p+1

p
-flow. It was conjectured by Raspaud and Zhu that, for any signed graph, the admission of

a circular r-flow implies the admission of an integer-valued \lceil r\rceil -flow. Although this conjecture has

been disproved in general, it is confirmed in this paper for bridgeless signed graphs if r = 2p+1
p

and

p \geq 3.
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1. Introduction. Graphs considered in this paper may have multiple edges or
loops. A signed graph (G, \sigma ) is a graph G associated with a signature \sigma : E(G) \rightarrow 
\{ \pm 1\} . An edge e is positive if \sigma (e) = 1 and negative otherwise. An ordinary graph
can be considered as a signed graph with all edges positive.

1.1. Motivations. Integer flows of ordinary graphs were introduced by Tutte
[28] as the dual of vertex coloring of graphs embedded on orientable surfaces. Bouchet
[4] extended the concept of flows to signed graphs as a dual notion to local tensions of
graphs embedded on nonorientable surfaces. There are significant differences between
the flows of signed graphs and those of ordinary graphs. Some fundamental results on
flows of ordinary graphs no longer hold for signed graphs. In this paper we address
those differences from the aspects related to circular flows and modulo orientations.

First, for ordinary graphs, Jaeger [13] showed that the admission of a modulo
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FLOWS AND ORIENTATIONS OF SIGNED GRAPHS 377

(2p + 1)-orientation is equivalent to the admission of an integer-valued 2p+1
p -flow.

The modulo orientation (and, more generally, modulo flow) technique is one of the
most important tools in flow theory (see [13, 29]). It is well known that the above
equivalence plays an important role in the proofs of some landmark flow theorems,
such as [11, 13, 17, 18, 25, 26, 29] among others. However, this equivalence is not
true for signed graphs in general (cf. [5, 24, 31, 33]). In this paper, this equivalence
is established for all bridgeless signed graphs, which improves several previous results
[5, 24, 31, 33] in this direction.

Second, for ordinary graphs, Goddyn, Tarsi, and Zhang [9] showed that the admis-
sion of a circular r-flow implies the admission of an integer-valued \lceil r\rceil -flow. For signed
graphs, this basic property was proposed as an open problem by Raspaud and Zhu
[23]. Although many counterexamples have been discovered recently in [20, 24, 19, 14],
in this paper, this open problem is verified for bridgeless signed graphs if r = 2p+1

p
and p \geq 3. In fact, this result follows from a more general monotonicity property of
circular flows of bridgeless signed graphs.

1.2. Notation and terminology. Every edge of a signed graph (G, \sigma ) is com-

posed of two half-edges h and \^h, each of which is incident with one end. Denote the set
of half-edges of (G, \sigma ) byH(G) and the set of half-edges incident with v byHG(v). For
a half-edge h \in H(G), we use eh to refer to the edge containing h. An orientation of

a signed graph (G, \sigma ) is a mapping \tau : H(G) \rightarrow \{  - 1, 1\} such that \tau (h)\tau (\^h) =  - \sigma (eh)
for each h \in H(G). We may consider \tau as an assignment of orientations on H(G)
such that h is a half-edge oriented away from its end if \tau (h) = 1 and oriented towards
its end otherwise. A signed graph (G, \sigma ) together with an orientation \tau is called an
oriented signed graph, denoted by (G, \tau ), with underlying signature \sigma \tau .

Definition 1.1. Let (G, \sigma ) be a signed graph with an orientation \tau . Let k be a
positive integer and f : E(G) \rightarrow \BbbZ be a mapping such that 0 \leq | f(e)| \leq (k  - 1) for
every edge e \in E(G).

(1) The support of f , denoted by supp(f), is the set of edges e with f(e) \not = 0.

(2) The boundary of f at a vertex v is defined as \partial f(v) =
\sum 

h\in H(v) f(eh)\tau (h).

(3) The mapping f is an integer-valued k-flow (or k-flow for short) of (G, \sigma ) if \partial f(v) =
0 for each vertex v \in V (G).

(4) A flow f is nowhere-zero if supp(f) = E(G).

For convenience, we usually shorten the notation of nowhere-zero integer-valued
k-flow into k-NZF. For ordinary graphs, Goddyn, Tarsi, and Zhang [9] introduced the
concept of circular flows as a refinement of Tutte's integer flows, which allows flow
values to be real numbers. The circular flows are extended from ordinary graphs to
signed graphs.

Definition 1.2. Let (G, \sigma ) be a signed graph with an orientation \tau . Let k and d
be two positive integers where k \geq 2d > 0.

(1) An integer-valued k
d -flow of (G, \sigma ) is an integer-valued flow f with d \leq | f(e)| \leq 

k  - d for every edge e \in E(G).
(2) A real-valued k

d -flow of (G, \sigma ) is a real-valued flow f with | f(e)| \in [d, k  - d]
for every edge e \in E(G) (where [d, k  - d] denotes the real-valued interval from d to
k  - d).

Let (G, \tau ) be an oriented signed graph. Denote the number of half-edges incident
with v which are oriented away from v (oriented toward v, respectively) by d+\tau (v)
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378 M. HAN, J. LI, R. LUO, Y. SHI, AND C.-Q. ZHANG

(d - \tau (v), respectively). An edge e is a source (resp., sink) of (\tau , f) if \tau (h1) = \tau (h2) =  - 1
(resp., \tau (h1) = \tau (h2) = 1), where h1 and h2 are the two half-edges of e. For a positive
integer p, an orientation \tau is called a modulo (2p + 1)-orientation if d+\tau (v) \equiv d - \tau (v)
(mod 2p + 1) for every vertex v \in V (G). A signed graph (G, \sigma ) is called modulo-
(2p+ 1)-orientable if it has a modulo (2p+ 1)-orientation.

1.3. Main results. The circular 2p+1
p -flows were introduced and studied by

Jaeger [12, 13] even before Goddyn, Tarsi, and Zhang [9] introduced the concept
of general circular k

d -flow, and he proved that the following three statements are
equivalent.

Proposition 1.3 (Jaeger [12, 13]). Let G be an ordinary graph and p be a
positive integer. The following statements are equivalent.

(I) G admits a modulo (2p+ 1)-orientation.
(II) G admits an integer-valued 2p+1

p -flow.

(III) G admits a real-valued 2p+1
p -flow.

Proposition 1.3 provides a fundamental tool to study k-NZFs and integer-valued
2p+1

p -flows for ordinary graphs in terms of modulo orientations, which is technically
easier to handle. Tutte's 3-flow conjecture asserts that every 4-edge-connected ordi-
nary graph admits a 3-NZF. The weak 3-flow theorem, established by Lov\'asz et al. [18]
using modulo 3-orientations, states that every 6-edge-connected ordinary graph ad-
mits a 3-NZF. Applying some modulo (2p+1)-orientation techniques, Thomassen [26]
and Lov\'asz et al. [18] prove the weak circular flow conjecture of Jaeger [13] by show-
ing that every 6p-edge-connected graph admits an integer-valued 2p+1

p -flow, while the

circular flow conjecture was disproved in [10] for p \geq 3.

1

 - 2

1
 - 2

4

 - 2

(a) No real-valued or integer-valued 3
1 -flow.

1 - 1.5
 - 1

2

 - 1
1  - 1.5

2

 - 1

(b) There is a real-valued but no integer-valued 3
1 -flow.

Fig. 1. Modulo-3-orientable signed graphs without integer-valued 3
1
-flow or real-valued 3

1
-flow.

How about Proposition 1.3 for signed graphs? It is not hard to see that (II)
implies both (I) and (III) by the definitions. However, all other directions of impli-
cation fail. The graph in Figure 1(a) has a modulo 3-orientation but has no real-valued
3
1 -flow (and of course no integer-valued 3

1 -flow). Thus (I) does not imply (II). The
graph in Figure 1(b) has a modulo 3-orientation and has a real-valued 3

1 -flow but
has no integer-valued 3

1 -flow. Hence (I) does not imply (III). The equivalence of
(I) and (III) and of (II) and (III) fails even for some signed graphs with high edge
connectivity, as shown in Proposition 5.3 for every positive integer p.

On the other hand, high edge connectivity may still guarantee the equivalence
of (I) and (II) for signed graphs. The following are some early results in this di-
rection under some connectivity conditions due to Xu and Zhang [31], Schubert and
Steffen [24], Zhu [33], and Cheng et al. [5], respectively.
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FLOWS AND ORIENTATIONS OF SIGNED GRAPHS 379

Theorem 1.4. Let (G, \sigma ) be a signed graph and p \geq 1 be an integer. Then (I)
and (II) are equivalent if one of the following conditions is satisfied:

1. ([31]) p = 1 and (G, \sigma ) is cubic and contains a perfect matching;
2. ([24]) (G, \sigma ) is (2p+ 1)-regular and contains a p-factor;
3. ([33]) (G, \sigma ) is (12p - 1)-edge-connected;
4. ([5]) (G, \sigma ) is odd-(2p+ 1)-edge-connected.

Our first main result establishes the best possible edge connectivity condition for
the equivalence of (I) and (II).

Theorem A. (I) and (II) are equivalent for all bridgeless signed graphs. That
is, a bridgeless signed graph is modulo-(2p+ 1)-orientable if and only if it admits an
integer-valued 2p+1

p -flow.

Remark 1. The connectivity condition in Theorem A is necessary. Figure 1(a)
can be generalized for any positive integer p. For each integer p \geq 1, let \scrH p be
the family of signed graphs obtained from a tree in which the degree of each vertex is
either 1 or 2p+1 by adding p negative loops to each leaf vertex. Note that Figure 1(a)
is a graph in \scrH 1. One can see that every graph in \scrH p is modulo-(2p + 1)-orientable
but has no integer-valued 2p+1

p -flow.

For ordinary graphs, by the definitions and Proposition 1.3, we have the following
monotonicity of circular flows.

Proposition 1.5 (see [9, 13]). Let G be an ordinary graph. Let k, k\prime , d, d\prime be

positive integers such that k\prime 

d\prime \geq k
d \geq 2. If G admits a circular k

d -flow (integer-valued

or real-valued, respectively), then G admits a circular k\prime 

d\prime -flow (integer-valued or real-
valued, respectively).

Obviously Proposition 1.5 still holds for real-valued circular flows of signed graphs.
However, it does not hold for integer-valued circular flows of signed graphs. There
are even some signed graphs with high edge connectivity that admit integer-valued
2k
2d -flows but no integer-valued k

d -flows (see section 5 for more details).
On the other hand, Raspaud and Zhu [23] suggested a conjecture concerning

circular flows and integer flows of signed graphs.

Conjecture 1.6 (Raspaud and Zhu [23]). For any positive integers k, d with
k \geq 2d, every integer-valued k

d -flow admissible signed graph admits a nowhere-zero

\lceil k
d\rceil -flow.

Raspaud and Zhu [23] showed that every integer-valued k
d -flow admissible signed

graph admits a nowhere-zero (2\lceil k
d\rceil  - 1)-flow. Conjecture 1.6 has been disproved

for signed graphs in general (see [20, 24]), and some bridgeless counterexamples are
found in [19, 14]. In contrast, we confirm Conjecture 1.6 for certain integer-valued
2p+1

p -flows of bridgeless signed graphs.

Theorem B. For each positive integer p \not = 2, every bridgeless integer-valued
2p+1

p -flow admissible signed graph admits a nowhere-zero 3-flow.

The case when p = 2 remains open and will be further discussed in sections 4
and 5.

The organization of the rest of the paper is as follows. In section 2, we introduce
additional notation and terminology and some basic lemmas needed for the proofs of
the main results. Section 3 introduces a method to construct a new regular modulo-
(2p+ 1)-orientable signed graph from an arbitrary modulo-(2p+ 1)-orientable signed
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graph, which allows us to reduce our theorems to regular signed graphs. Then we
apply those results to complete the proofs of Theorems A and B in section 4. Some
further remarks on the difference between integer-valued and real-valued circular flows,
as well as a few open problems, will be presented in section 5.

2. Preliminaries. In this section we first introduce additional notation and
terminology needed for the rest of the paper and then present some basic properties
of flows of signed graphs. For terminology and notation not defined here we follow
[2, 3, 30].

Let G be a graph with vertex set V (G) and edge set E(G). The degree of a vertex
v is the number of edges incident with v, where each loop is counted twice. Let X and
Y be two disjoint vertex sets. We denote by [X,Y ] the set of edges with one end in X
and the other end in Y . Denote by B(G) the set of bridges of G. The graph G - B(G)
consists of some components, called blocks, each of which is either 2-edge-connected
or a single vertex. A block is called a leaf block if it is incident with exactly one bridge
in B(G). Note that leaf blocks always exist when G contains bridges.

A signed graph is flow-admissible if it admits a nowhere-zero k-flow for some
integer k. In a signed graph, switching at a vertex u means reversing the signs of all
edges incident with u. Two signed graphs are equivalent if one can be obtained from
the other by a sequence of switching operations. A signed graph is balanced if and
only if it is equivalent to a graph without negative edges. In particular, a circuit is
balanced if it has an even number of negative edges and is unbalanced otherwise. A
signed graph (G, \sigma ) is antibalanced if there is a bipartition (A,B) of V (G) such that
an edge e is positive if and only if e belongs to [A,B]. We use K - p

1 to denote the
signed graph consisting of p negative loops sharing a common vertex.

Note that switching at a vertex does not change the parity of the number of
negative edges in a circuit, and it does not change the admission of flows either.
Bouchet [4] provided a characterization for flow-admissible signed graphs.

Proposition 2.1 (Bouchet [4]). A connected signed graph (G, \sigma ) is flow-admissible
if and only if it is not equivalent to a signed graph with exactly one negative edge and
it has no bridge b such that (G - b, \sigma | G - b) has a balanced component.

Proposition 2.2. Let p \geq 1 be an integer. Suppose that (G, \sigma ) is modulo-(2p+1)-
orientable.

(i) If e = uv is a bridge, then each component of G  - e has at least p negative
edges, and thus each component of G - e is unbalanced.

(ii) (G, \sigma ) is flow-admissible.
(iii) If G is (2p+ 1)-regular, then (G, \sigma ) is antibalanced.

Proof. Let \tau be a modulo (2p+ 1)-orientation of (G, \sigma ).
(i) and (ii): Let [U,U c] be an edge cut of (G, \sigma ). Let a and b be the number of

sink edges and the number of source edges with both endvertices in U , respectively.
Denote by u+ and u - the numbers of oriented-in and oriented-out half-edges of the
edges in [U,U c] incident with a vertex in U , respectively. Since \tau is a modulo (2p+1)-
orientation, we have

(\ast ) 2a+ u+ \equiv 2b+ u - (mod 2p+ 1).

If [U,U c] is a bridge, then u+ + u - = 1, and thus | a  - b| \equiv p (mod 2p + 1).
Therefore, a+ b \geq | a - b| \geq p. This proves (i).

If U c = \emptyset , then u+ = u - = 0, and thus by (\ast ) we have a \equiv b (mod 2p+ 1). This
implies a+ b \not = 1. By (i), if G has a bridge e, each component of G - e is unbalanced.
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FLOWS AND ORIENTATIONS OF SIGNED GRAPHS 381

Therefore, by Proposition 2.1, (G, \sigma ) is flow-admissible.
(iii): Since G is (2p + 1)-regular and \tau is a modulo (2p + 1)-orientation, either

d+\tau (v) = 0 or d - \tau (v) = 0 for each vertex v \in V (G). Let A = \{ v \in V (G)| d - \tau (v) = 0\} 
and B = \{ v \in V (G)| d+\tau (v) = 0\} . Then (A,B) is a bipartition of V (G), and an edge
e is positive if and only if e \in [A,B]. This proves that (G, \sigma ) is antibalanced.

Lemma 2.3. Let f be an integer-valued flow of a signed graph (G, \sigma ) with an
orientation \tau . Then f(e) must be even for each bridge e \in B(G).

Proof. Let [U,U c] be an edge cut. We use U+ (U - , respectively) to denote the
set of oriented-out (oriented-in, respectively) half-edges in [U,U c] which are incident
with a vertex in U . Then we have\sum 

e\in U+

f(e) - 
\sum 
e\in U - 

f(e) =
\sum 

e\in E(U),\sigma (e)= - 1

\pm 2f(e).

The lemma follows immediately from the above fact when [U,U c] is a bridge.

Proposition 2.4. Let C be a circuit in a signed graph (G, \sigma ) with an orientation
\tau . Let v be a vertex in C. Then there is a mapping fC : E(G) \rightarrow \{ 0, 1, - 1\} with
supp(f) = E(C) such that \partial f(x) = 0 for each vertex x \not = v.

Proof. One may start to assign nonzero flow values to the edges E(C) from v
clockwise until returning to v so that the boundary at every vertex distinct from v is
0, which gives a desired mapping.

3. Modulo orientable graphs and (2\bfitp + 1)-regular graphs. In the study
of flows and orientations, one may often try to reduce the graphs to regular graphs. A
classical method for this reduction is to apply some splitting results that preserve the
edge connectivity (see [7, 8, 21, 22, 32]). Usually the classical splitting method does
require high edge connectivity. In this section, we propose a new method to construct
a regular graph from certain graphs such that the regular graph easily preserves the
properties of orientations, flows, and edge connectivity, and the original graph is the
contraction of some positive edges in the new regular graph. We believe that this
construction is of interest in its own right and will be useful in the future study of
flows and orientations of (signed) graphs.

Lemma 3.1. For any two nonnegative integers a, b with a \equiv b (mod 2p+1), there
exists a 2p-edge-connected bipartite simple graph B(a, b) = (X,Y ) such that

(i) each vertex in X \cup Y is of degree 2p or 2p+ 1,
(ii) the numbers of vertices of degree 2p in X and in Y are exactly a and b,

respectively.
For example, Figure 2 shows the construction of B(a, b) when p = 1, a = 1, and
b = 4.

Proof. Without loss of generality, we assume that b \geq a and b  - a = (2p + 1)t,
where t \geq 0. Let n = a + b + 2p + 2 and \BbbZ 2n = \{ 0, 1, 2, . . . , 2n  - 1\} be the additive
cyclic group of order 2n. We construct B(a, b) in the following three steps.

Step 1: Construct a 2p-edge-connected circulant graph H1.
(1-1) V (H1) = \BbbZ 2n, and bipartition V (H1) intoX and Y , whereX = \{ 1, 3, 5, . . . , 2n - 

1\} and Y = \{ 0, 2, 4, . . . , 2n - 2\} .
(1-2) E(H1) = \{ xy| x \in X, y \in Y, x - y \in \{ \pm 1,\pm 3,\pm 5, . . . ,\pm (2p - 1)\} .
Clearly, H1 is a vertex-transitive graph and hence is 2p-edge-connected (see The-

orem 9.14 of [2]).
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1 3 5 7 9 11 13 15 17

0 2 4 6 8 10 12 14 16

X

Y

(1) H1 in Step 1;

1 3 5 7 9 11 13 15 17

0 2 4 6 8 10 12 14 16

X

Y

(2) H2 in Step 2;

1 3 5 7 9 11 13 15 17

v1 0 2 4 6 8 10 12 14 16

X

Y

(3) B(1, 4) in Step 3.

Fig. 2. The construction of B(a, b) in Lemma 3.1 for p = 1, a = 1, and b = 4, where the larger
circles are degree 2 vertices.

Step 2: Add more edges to H1 to obtain a new graph H2.
The graph H2 is obtained from H1 by adding the edges in:

S =

n\bigcup 
i=b+1

\{ xy : x = 2i - 1, y = 2i+ 2p\} .

Then in H2 both X and Y have b vertices of degree 2p.

Step 3: Add t new vertices to Y and more edges to finally obtain B(a, b).
The graph B(a, b) is obtained from H2 by adding t new vertices v1, v2, . . . , vt (to

Y ) and adding the edges in:

S\prime =

t\bigcup 
j=1

2p+1\bigcup 
i=1

\{ vjx : x = 2(2p+ 1)(j  - 1) + 2i - 1\} .

It is easy to see that B(a, b) is 2p-edge-connected and satisfies (i) and (ii) as
required.

Construction 3.2. Let (H,\sigma ) be a signed graph with a modulo (2p+1)-orientation
\tau . We construct a (2p+ 1)-regular signed graph (G, \sigma \prime ) from (H,\sigma ) as follows.

(1) For each vertex v \in V (H), let Bv(d
+
\tau (v), d

 - 
\tau (v)) = (X,Y ) be the 2p-edge-connected

bipartite graph constructed in Lemma 3.1.

(2) First split v into d+\tau (v) + d - \tau (v) vertices of degree 1, and then identify each degree
1 vertex of an out-arc with a vertex of degree 2p in X, and identify each degree 1
vertex of an in-arc with a vertex of degree 2p in Y .
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(3) Let G be the resulting graph from (2). The signature \sigma \prime of G is defined as follows:
for each e \in E(G),

\sigma \prime (e) =

\biggl\{ 
\sigma (e) if e \in E(H) \subset E(G),
1 if e \in E(G) \setminus E(H).

(4) The orientation \tau of (H,\sigma ) can be extended to (G, \sigma \prime ) to obtain a modulo (2p+1)-
orientation by orienting the half-edges of each edge in Bv(d

+
\tau (v), d

 - 
\tau (v)) away from X

and toward Y .

(H,\sigma ) (G, \sigma \prime ) = anti(H,\sigma )

Fig. 3. An example of (G, \sigma \prime ) = anti(H,\sigma ) in Construction 3.2 when p = 2.

By Construction 3.2(4) above, (G, \sigma \prime ) is modulo-(2p+ 1)-orientable, and thus by
Proposition 2.2, the graph (G, \sigma \prime ) constructed above is antibalanced. We denote such
a graph (G, \sigma \prime ) by anti(H,\sigma ). See Figure 3 for an example of Construction 3.2.

The following proposition directly follows from the construction of (G, \sigma \prime ).

Proposition 3.3. Let (H,\sigma ) be a modulo-(2p+1)-orientable signed graph. Then
(G, \sigma \prime ) = anti(H,\sigma ) satisfies the following:

(i) (G, \sigma \prime ) is (2p+ 1)-regular and is modulo-(2p+ 1)-orientable.
(ii) There is a set T of positive edges in G such that H = G/T and \sigma \prime agrees with

\sigma for all edges in H.
(iii) If H is k-edge-connected, then G is t-edge-connected, where t = min\{ 2p, k\} .

In particular, G is bridgeless if H is bridgeless.
(iv) Every bridge in G is also a bridge in H.

A classical result of B\"abler [1] shows that every bridgeless (2p+ 1)-regular graph
contains a k-factor if k is odd and 2p+1

3 \leq k \leq 2p - 1. Using Tutte's f -factor theorem
[27], Kano [15, 16] obtained an extension of B\"abler's result, allowing at most one
bridge.

Theorem 3.4 (Kano [16]). Let G be a (2p + 1)-regular graph with at most one
bridge. If k is odd and 2p+1

3 \leq k \leq 2p - 1, then G has a k-factor.

Note that the existence of one bridge is useful in our later inductive arguments.

Corollary 3.5. Let p \geq 1 be an integer and G be a (2p+ 1)-regular graph with
at most one bridge. Then each of the following holds.

(a) E(G) can be partitioned into a p-factor and a (p+ 1)-factor.
(b) If p \geq 3, then E(G) can be partitioned into a (p - 1)-factor and a (p+2)-factor.
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Proof. Since G is (2p+1)-regular, the complement of a k-factor is a (2p+1 - k)-
factor in G. Thus we only need to show that G has a p-factor or a (p + 1)-factor in
(a) and has a (p - 1)-factor or a (p+ 2)-factor in (b).

For (a), let

k1 =

\biggl\{ 
p+ 1 if p \equiv 0 (mod 2),
p otherwise.

Then G has a k1-factor by Theorem 3.4, since 3k1 \geq 3p \geq 2p+ 1.
For (b), let

k2 =

\biggl\{ 
p - 1 if p \equiv 0 (mod 2),
p+ 2 otherwise.

Then G has a k2-factor by Theorem 3.4, since p \geq 3 and 3k2 \geq 2p+ 1.

4. Modulo (2\bfitp +1)-orientations and integer-valued flows. We will present
the proofs of our main results in this section.

4.1. Modulo (2\bfitp +1)-orientations and integer-valued \bftwo \bfitp +\bfone 
\bfitp 

-flows. In this

subsection we will prove Theorem A. Actually, we shall show the following slightly
stronger theorem instead, which will be useful in the next subsection.

Theorem 4.1. Let (H,\sigma ) be a modulo-(2p + 1)-orientable signed graph with at
most one bridge. Then (H,\sigma ) admits an integer-valued 2p+1

p -flow.

By Proposition 3.3, there is a (2p+ 1)-regular modulo-(2p+ 1)-orientable signed
graph (G, \sigma \prime ) with at most one bridge such that H = G/X for some set X consisting
of positive edges. Since the flow property is preserved under contraction, Theorem 4.1
follows directly from the lemma below.

Lemma 4.2. Let (G, \sigma ) be a (2p + 1)-regular modulo-(2p + 1)-orientable signed
graph with at most one bridge. Then G can be partitioned into a p-factor M1 and
a (p + 1)-factor M2 so that (G, \sigma ) has an integer-valued 2p+1

p -flow f where f(e) =

 - (p+ 1) if e \in M1 and f(e) = p if e \in M2.

Proof. By Corollary 3.5, there is a partition of E(G) into a p-factor M1 and a
(p+ 1)-factor M2. Let \tau be a modulo (2p+ 1)-orientation of (G, \sigma ) and let

f(e) =

\biggl\{ 
 - (p+ 1) if e \in M1,
p otherwise.

Therefore, f is a desired flow.

Taking p = 1, an integer-valued 3
1 -flow is indeed a 3-NZF. For the case when

p = 2, an integer-valued 5
2 -flow is exactly a 4-NZF with flow values in \{ \pm 2,\pm 3\} by

definition. Therefore, we have the following corollary.

Corollary 4.3. (i) Every modulo-3-orientable signed graph with at most one
bridge admits a nowhere-zero 3-flow.

(ii) Every modulo-5-orientable signed graph with at most one bridge admits a
nowhere-zero 4-flow with flow values in \{ \pm 2,\pm 3\} .

The case when p = 1 slightly strengthens the result by Xu and Zhang [31], which
claims that every bridgeless modulo-3-orientable signed graph admits a nowhere-zero
3-flow.
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4.2. Modulo (2\bfitp + 1)-orientations and integer flows. In this subsection,
we will prove Theorem B. In fact, Theorem B is a corollary of Theorem A and the
following theorem.

Theorem C. Let p \geq 3 be an integer. If a signed graph (G, \sigma ) has a modulo
(2p+ 1)-orientation, then (G, \sigma ) has a modulo 3-orientation.

Note that the case when p = 2 and G has bridges is excluded from Theorem B
and from Corollary 4.3, which will be settled for 5-flows in the following two theorems.

Theorem D. Every modulo-5-orientable signed graph admits a 5-NZF.

DeVos et al. [6] showed that every modulo-3-orientable signed graph has a 5-NZF,
which is one of the key steps in establishing an 11-flow theorem of signed graphs. This
result together with Theorem C (for p \not = 2) and Theorem D (for p = 2) implies the
following theorem.

Theorem E. For each integer p \geq 1, every modulo-(2p + 1)-orientable signed
graph admits a 5-NZF.

Remark 2. Here the flow number 5 in Theorem E is sharp as every signed graph
in \scrH p (defined in Remark 1) has no 4-NZF by Proposition 2.3.

Now we start the proof of Theorem C.

Proof of Theorem C. Let (H,\sigma ) be a counterexample to the theorem with | V (H)| +
| E(H)| minimized. That is, (H,\sigma ) is modulo-(2p + 1)-orientable but is not modulo-
3-orientable.

Claim 1. H contains at least two bridges.

Proof. Suppose to the contrary that H has at most one bridge. Let (G, \sigma \prime ) =
anti(H,\sigma ) be the signed graph defined in Construction 3.2. Then G is (2p + 1)-
regular and (G, \sigma \prime ) has a modulo (2p + 1)-orientation \tau . By Proposition 3.3, G has
at most one bridge. Since p \geq 3, by Corollary 3.5(a), G has a (p  - 1)-factor M . By
reversing the direction of each edge in M , we obtain a new orientation \tau \prime of (G, \sigma \prime )
satisfying the following:

\bullet d+\tau \prime (v) = p+ 2, d - \tau \prime (v) = p - 1 if d+\tau (v) = 2p+ 1;
\bullet d+\tau \prime (u) = p - 1, d - \tau (u) = p+ 2 if d - \tau (v) = 2p+ 1.
Hence d+\tau \prime (v) - d - \tau \prime (v) \equiv 0 (mod 3) for each v \in V (G). Therefore, \tau \prime is a modulo

3-orientation of (G, \sigma \prime ), which yields a modulo 3-orientation of (H,\sigma ), a contradiction.
Thus H contains at least two bridges.

By possibly some switching operations, we assume that every bridge is positive.

Claim 2. Every leaf block of H is a K - p
1 .

Proof. Suppose to the contrary that there is a bridge e = uv such that one of
the components H1 and H2 of G  - e, say H1, is a leaf block and H1 \not = K - p

1 . By
Claim 1, we have H2 \not = K - p

1 . For each i = 1, 2, let Gi be the new graph obtained
from H by replacing Hi with p negative loops K - p

1 . Then both G1 and G2 are
modulo-(2p+ 1)-orientable.

Since H admits a modulo (2p+1)-orientation, by Proposition 2.2, Hi contains at
least p negative edges for i = 1, 2. Since H1 \not = K - p

1 and H2 contains a bridge which is
a positive edge, we have | E(Gi)| < | E(H)| for each i = 1, 2. Hence by the minimality
of H, each Gi admits a modulo 3-orientation \tau i. One may choose \tau 1 and \tau 2 such that
e = uv has the same directions in both \tau 1 and \tau 2. Combining H1 + uv of G2 under
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orientation \tau 1 and H2 of G1 under orientation \tau 2, we obtain a modulo 3-orientation
of (H,\sigma ), which is a contradiction. This proves the claim.

Now, by Claim 2, each leaf block of H is a K - p
1 . Let t be the number of leaf

blocks and u1, . . . , ut be the t vertices of the leaf blocks. Let G\ast be a new signed
graph obtained from H by identifying u1, u2, . . . , ut into a new vertex u\ast . Then G\ast 

is bridgeless and is modulo-(2p+ 1)-orientable. By Theorem 4.1 and Theorem B, G\ast 

admits a modulo 3-orientation. In the modulo 3-orientation of G\ast , we split u\ast back
to u1, u2, . . . , ut. Since p \geq 3, we can reverse the direction of some negative loops
adjacent to ui for each 1 \leq i \leq t to obtain a modulo 3-orientation of (H,\sigma ).

Next, we will prove Theorem D. We first prove the following lemma.

Lemma 4.4. Let (H,\sigma ) be a modulo-5-orientable signed graph with exactly one
bridge e0. Then each of the following holds.
(i) (H,\sigma ) admits a 4-NZF f1 such that f1(e) \in \{  - 3, 2\} for each edge e \in E(H) and
f1(e0) = 2.
(ii) If one of the two components of H  - e0 is a K - 2

1 , then (H,\sigma ) admits a 5-NZF f2
such that f2(e0) = 4.

Proof. Let (G, \sigma \prime ) = anti(H,\sigma ) be the signed graph defined in Construction 3.2.
Note that G contains precisely one bridge, which is corresponding to the edge e0 in
H.

(i) By Lemma 4.2, (G, \sigma \prime ) has an integer-valued 5
2 -flow f1 such that f1(e) =  - 3 if

e is in a 2-factor of G, and f1(e) = 2 otherwise. Since e0 is a bridge, it does not belong
to a 2-factor of G, and hence f1(e0) = 2. By Proposition 3.3, (H,\sigma ) is obtained from
G by contracting a set of positive edges, and thus the flow f1 is preserved in (H,\sigma ).
Hence we actually obtain a 4-NZF f1 of (H,\sigma ) such that f1(e) \in \{ 2, - 3\} for each
edge e \in E(H) and f1(e0) = 2.

(ii) Denote e0 = xy. Let H1 and H2 be the two components of G  - e0 where
H2 = K - 2

1 , x \in V (H1), and y \in V (H2). By Proposition 2.2, H1 is unbalanced since
H is modulo-5-orientable, and thus H1 contains an unbalanced circuit.

First, suppose that there is an unbalanced circuit containing x. Then C together
with e0 = xy and a negative loop inH2 forms a long barbell, which has a characteristic
3-flow g1 such that g1(e0) = 2 and g1(e) \in \{ \pm 1\} otherwise. Then f2 = f1 + g1 is a
5-NZF with f2(e0) = f1(e0) + g1(e0) = 4.

Next, suppose that there is no unbalanced circuit containing x. Let C be an
unbalanced circuit C in H1. Then C does not contain x. Since H1 is bridgeless, by
Menger's theorem there are two edge-disjoint paths from x to C, P1 and P2. We
choose a pair of paths P1, P2 such that | E(P1)| + | E(P2)| is the minimum. Denote
by u1 and u2 the other endvertices of P1 and P2, respectively. Then u1, u2 \in V (C).
If u1 \not = u2, let P \prime be the (u1, u2)-segment of C such that in E(P1) \cup E(P2) \cup E(P \prime )
the circuit containing E(P \prime ) is unbalanced; if u1 = u2, let P \prime = C. Therefore, by
the minimality of | E(P1)| + | E(P2)| , E(P1) \cup E(P2) \cup E(P \prime ) consists of a chain of
circuits C1, C2, . . . , Cs such that x \in C1, u1 \in Cs, and | V (Ci) \cap V (Ci+1)| = 1 for
each i = 1, . . . , s  - 1 (see Figure 4 for an illustration of H1 and C). Since x is not
contained in any unbalanced circuit of H1, C1 is balanced. Note that by the choice
of Cs, Cs is unbalanced. Let t be the smallest integer j such that Cj is unbalanced.
Then it is easy to see that the graph consists of C1, . . . , Ct together with e0 = xy
and a negative loop in H1 has a 3-flow g2 such that g2(e0) = 2 and g2(e) \in \{ \pm 1\} 
otherwise. Therefore, f2 = f1 + g2 is a 5-NZF with f2(e0) = f1(e0) + g1(e0) = 4, as
desired.
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C

P \prime 

u1

u2

P1

P2

P \prime = C

u1 = u2

P1

P2

x or x

Fig. 4. The structure of H1 in the proof of Lemma 4.4.

Now we are ready to prove Theorem D.

Proof of Theorem D. The proof applies ideas similar to those of Theorem C. Let
(H,\sigma ) be a counterexample of Theorem D with | V (H)| + | E(H)| minimized. Note
that every modulo-5-orientable signed graph with at most one bridge has a 4-NZF by
Corollary 4.3-(ii). Thus H contains at least two bridges since (H,\sigma ) is a counterex-
ample. As before, we assume each bridge is a positive edge by applying possibly some
switching operations.

Claim 3. Every leaf block of H is a K - 2
1 .

Proof. Suppose to the contrary that H1 is a leaf block of H and H1 \not = K - 2
1 . Let

e0 be the bridge adjacent to H1. Denote by H2 the other component of G - e0. Let
Gi be the graph obtained from H by replacing Hi with a K - 2

1 for each i = 1, 2. Thus
both G1 and G2 are modulo-5-orientable. Since | V (G1)| +| E(G1)| < | V (H)| +| E(H)| ,
by the the minimality of H, G1 has a 5-NZF f1. Let e1, e2 be the two negative loops
adjacent to e0 in G1. Since f1 is a 5-NZF and e0 is a bridge of G1, by Lemma 2.3,
f1(e0) is even, i.e., f1(xy) \in \{ \pm 2,\pm 4\} . Note that G2 contains exactly one bridge. If
f1(e0) \in \{ \pm 2\} , we apply Lemma 4.4(i), with possibly negating flow values of each
edge, to obtain a 5-NZF f2 of G2 such that f2(e0) = f1(e0) \in \{ \pm 2\} . If f1(e0) \in \{ \pm 4\} ,
we apply Lemma 4.4(ii), with possibly negating flow values of each edge, to obtain
a 5-NZF f2 of G2 such that f2(e0) = f1(e0) \in \{ \pm 4\} . Then in each case we combine
those flows together to obtain a 5-NZF of H, which is a contradiction. This proves
the claim.

By Claim 3, each leaf block of H is a K - 2
1 . Let t be the number of leaf blocks

and u1, . . . , ut be the t vertices of the leaf blocks. Let u\prime 
i be the neighbor of ui for

each i = 1, . . . , t. Let G\ast be the new signed graph obtained from H by identifying
u1, u2, . . . , ut into a new vertex u\ast . Then G\ast is bridgeless and is modulo-5-orientable.
By Construction 3.2 and Proposition 3.3, (G\prime , \sigma \prime ) = anti(G\ast , \sigma ) has a modulo 5-
orientation and G\prime is bridgeless. By Theorem 4.1, G\prime has a 4-NZF f \prime and a 2-factor
M such that f \prime (e) = 3 if e \in M and f \prime (e) =  - 2 otherwise.

We are going to obtain a contradiction by finding a 5-NZF of (H,\sigma ) from f \prime in
the following.

First, we modify the flow values of uiu
\prime 
i to be an even number in \{ 2, 4\} .

Let M \prime \subset M be the set of circuits in M containing at least one edge uiu
\prime 
i where

uiu
\prime 
i is corresponding to the bridge in H connecting a leaf block. By Proposition 2.4,

for each circuit C \in M \prime , there is a vertex ui \in C and an edge weight fC : E(G\ast ) \rightarrow 
\{ 0, 1, - 1\} with supp(fC) = E(C) such that \partial fC(x) = 0 for each vertex x \not = ui. Let
g = f \prime +

\sum 
C\in M \prime fC . Then \partial g(x) = 0 if x \not \in \{ u1, . . . , ut\} and g(e) \in \{  - 2, 2, 3, 4\} for
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each edge e in G\ast . In particular, g(uiu
\prime 
i) \in \{ 2, 4\} for each i = 1, . . . , t.

Second, we further modify g to obtain a 5-NZF of (H,\sigma ) by reassigning flow
values to the negative loops adjacent to each ui.

For each i \in \{ 1, . . . , t\} , we have g(uiu
\prime 
i) = 2a, where a \in \{ 1, 2\} . Without loss of

generality, we assume that the half-edge of uiu
\prime 
i with end ui is oriented toward ui. We

first orient the two negative loops such that one is a sink and the other one is a source.
Then we assign the flow values a+ 1 and 1 to the sink and the source, respectively.

In this way we extend g to be a 5-NZF of (H,\sigma ), a contradiction. This completes
the proof of the theorem.

5. The differences among modulo orientations, integer-valued and real-
valued circular flows. Let k, d be two integers with k \geq 2d > 0. It is known from
[9, 13] that for an ordinary graph, it has a real-valued k

d -flow if and only if it has

an integer-valued k
d -flow. Lu et al. [19] showed the following interesting result about

circular flows of signed graphs.

Lemma 5.1 (see [19]). Let k, d be two integers with k \geq 2d > 0. If (G, \sigma )
admits a real-valued k

d -flow, then it admits a real-valued k
d -flow f such that | f(e)| \in 

\{ d, d+ 1
2 , d+

2
2 , . . . , k  - d - 1

2 , k  - d\} .
Lemma 5.1 implies the following relation between real-valued circular flows and

integer-valued circular flows.

Proposition 5.2. Let (G, \sigma ) be a signed graph. Then (G, \sigma ) has a real-valued
k
d -flow if and only if it has an integer-valued 2k

2d -flow.

Proof. If f is an integer-valued 2k
2d -flow, then d \leq | 12f(e)| \leq k - d, and thus 1

2f(e)

is a real-valued k
d -flow. This proves the sufficiency.

Now we show the necessity. Assume that (G, \sigma ) has a real-valued k
d -flow. Then

by Lemma 5.1, (G, \sigma ) has a real-valued k
d -flow (\tau , f) such that | f(e)| \in \{ d, d+ 1

2 , d+
2
2 , . . . , k - d - 1

2 , k - d\} . Thus | 2f(e)| \in \{ 2d, 2d+ 1, . . . , 2k - 2d\} . Therefore, 2f is an

integer-valued 2k
2d -flow.

In fact, there are many signed graphs which have a real-valued k
d -flow but no

integer-valued k
d -flow (see [14, 19, 24] and Proposition 5.3 below).

Remark 3. By Proposition 5.2, Conjecture 1.6 is equivalent to stating that every
real-valued k

d -flow admissible signed graph admits a \lceil k
d\rceil -NZF (which is the original

form in [23]).

In the following, for each integer p \geq 1, we will present a 2p-edge-connected signed
graph Gp which shows that the equivalence of (I) and (III) and the equivalence of
(II) and (III) both fail.

Let C4 = v1v2v3v4v1 be a circuit of length 4 and pC4+v1v3 be the graph obtained
by replacing every edge in C4 with p parallel edges and then adding one edge v1v3
(the multiplicity of v1v3 is one).

Let (Gp, \sigma ) be the signed graph obtained from pC4 + v1v3 by adding (2p  - 1)
negative loops at each of v2 and v4. An illustration for p = 1, 2 is shown in Figure 5.

Proposition 5.3. Let p \geq 1 be a positive integer. Then
(1) (Gp, \sigma ) admits a real-valued 2p+1

p -flow.

(2) (Gp, \sigma ) does not admit an integer-valued 2p+1
p -flow.

(3) (Gp, \sigma ) does not admit a modulo (2p+ 1)-orientation.
(4) In particular, when p = 1, (G1, \sigma ) admits an integer-valued 6

2 -flow but no integer-

D
ow

nl
oa

de
d 

03
/3

1/
21

 to
 1

32
.1

74
.2

53
.6

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLOWS AND ORIENTATIONS OF SIGNED GRAPHS 389

1

1

1

-2

-2

-1.5

1.5v1

v3

v2

v4

-3
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2
2

2

-3

2 2

2v1

v4
v3

v2

-2.5

-2.5 2.5

2.5-2.5

2.5

(1) G1 when p = 1 (2) G2 when p = 2

Fig. 5. Graphs with real-valued 2p+1
p

-flow but no integer-valued 2p+1
p

-flow for p = 1, 2.

valued 3
1 -flow.

Proof. It is clear that Gp is 2p-edge-connected. By Theorem A, (3) and (2) are
equivalent. If (1) holds, then by Proposition 5.2 (G1, \sigma ) has an integer-valued 6

2 -flow
in (4). Hence (4) follows from (1) and (2). Therefore, we only need to show (1) and
(3).

We first prove (1) by finding a real-valued 2p+1
p -flow. Let t = p if p is even and

t = p - 1 otherwise.
We first define the orientation of Gp: all half-edges incident with the end v1 are

oriented toward it and all half-edges incident with the end v3 are oriented away from
it; all negative loops are oriented as sources.

Then the flow f is defined as follows:
(i) f(e) = p for each (parallel) edge e between v1 and v2 and between v3 and v4.
(ii) Among 2p  - 1 negative loops incident with v2, 2p  - 1  - t

2 loops have flow
values p+ 1

2 , and the remaining t
2 loops have flow values  - (p+ 1

2 ).
(iii) Among 2p  - 1 negative loops incident with v4, 2p  - 1  - t

2 loops have flow
values  - (p+ 1

2 ), and the remaining t
2 loops have flow values p+ 1

2 .
(iv) If p is odd, f(v1v3) = p and f(e) =  - (p + 1) if e \in [v1, v4] \cup [v2, v3]. If p is

even, f(v1v3) =  - (p+ 1), f(e1) = f(e2) = p, where e1 is an edge in [v2, v3] and e2 is
an edge in [v1, v4], and f(e) =  - (p+ 1) for each e \in [v2, v3] \cup [v1, v4] \setminus \{ e1, e2\} .

One can easily check that (f, \tau ) is a real-valued 2p+1
p -flow. This proves (1).

Next we show (3). Suppose to the contrary that Gp has a modulo-(2p + 1)-
orientation \tau . Since dGp

(v1) = dGp
(v3) = 2p+ 1 and v1 and v2 are adjacent, we may

assume that in \tau , all half-edges incident with the end v1 are oriented out and all half-
edges incident with the end v3 are oriented in. Therefore, exactly half of the negative
loops incident with v2 must be oriented in, and the other half must be oriented out.
This is impossible since there are (2p - 1) negative loops incident with v2. This proves
(3).

We would like to point out that such signed graphs (Gp, \sigma ) can be modified to
be (2p+ 1)-edge-connected as well. However, we are not aware of any such examples
with higher edge connectivity.

Note that Theorem C does not include the case when p = 2. We propose the
following conjecture.

Conjecture 5.4. Every modulo-5-orientable signed graph is modulo-3-orientable.

Clearly, Conjecture 5.4 implies that every bridgeless modulo-5-orientable signed
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graph has a 3-NZF. By Corollary 4.3(ii), every bridgeless modulo-5-orientable signed
graph has a 4-NZF with flow values in \{ \pm 2,\pm 3\} . Theorem D shows that every modulo-
5-orientable signed graph admits a 5-NZF with flow values in \{ \pm 1,\pm 2,\pm 3,\pm 4\} , and
perhaps this could be strengthened to a special 5-NZF to prove Conjecture 5.4 pro-
vided that the values \{ \pm 3\} are forbidden. Also, by Lemma 4.9 in [5] and Theorem 3.1,
every odd-5-edge-connected modulo-5-orientable signed graph is modulo-3-orientable
and thus admits a 3-NZF. Those observations provide some evidence to support Con-
jecture 5.4.

For ordinary graphs, Propositions 1.3 and 1.5 imply the following monotonicity
of modulo orientations.

Proposition 5.5 (see [9, 13]). Let G be an ordinary graph. If G has a modulo
(2p + 1)-orientation for some p \geq 1, then it has a modulo (2p\prime + 1)-orientation for
each integer p\prime with 1 \leq p\prime \leq p.

It is unknown whether Proposition 5.5 remains true for signed graphs, and we
can show that it is true whenever p - p\prime is even for bridgeless signed graphs.

Proposition 5.6. Let p and p\prime be two positive integers with p > p\prime and p  - p\prime 

even. If G is bridgeless and (G, \sigma ) has a modulo (2p+1)-orientation, then (G, \sigma ) has
a modulo (2p\prime + 1)-orientation.

Proof. It is sufficient to show the case when p\prime = p  - 2 and (G, \sigma ) is (2p + 1)-
regular by Proposition 3.3. Let \tau be a modulo (2p + 1)-orientation of (G, \sigma ). Since
p\prime = p  - 2 \geq 1, we have p \geq 3. Thus 2p  - 1 \geq 2p+1

3 . Hence by Theorem 3.4, G has
a (2p - 1)-factor, whose complement is a 2-factor, denoted by M . One may obtain a
modulo (2(p - 2) + 1)-orientation by reversing the directions of all edges in M .

By Theorem A, an equivalent form of Proposition 5.6 says that for positive inte-
gers p, p\prime with p > p\prime and p - p\prime even, if G is bridgeless and (G, \sigma ) admits an integer-

valued 2p+1
p -flow, then (G, \sigma ) admits an integer-valued 2p\prime +1

p\prime -flow as well. However,
Proposition 5.6 does not completely solve the monotonicity of modulo orientations
and circular flows. We conclude the paper with the following problem.

Problem 5.7. Let p \geq 2 be an integer. Is it true that for any integer p\prime with
1 \leq p\prime < p, if (G, \sigma ) is modulo-(2p + 1)-orientable, then it is also modulo-(2p\prime + 1)-
orientable?

Conjecture 5.4 suggests a positive answer to Problem 5.7 for p = 2, but we are
not sure in general.
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