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Abstract. Many basic properties in Tutte’s flow theory for unsigned graphs do not have their
counterparts for signed graphs. However, signed graphs without long barbells in many ways behave
like unsigned graphs from the point view of flows. In this paper, we study whether some basic
properties in Tutte’s flow theory remain valid for this family of signed graphs. Specifically let (G, o)
be a flow-admissible signed graph without long barbells. We show that it admits a nowhere-zero 6-
flow and that it admits a nowhere-zero modulo k-flow if and only if it admits a nowhere-zero integer
k-flow for each integer k > 3 and k # 4. We also show that each nowhere-zero positive integer
k-flow of (G, o) can be expressed as the sum of some 2-flows. For general graphs, we show that every

nowhere-zero %—ﬂow can be normalized in such a way, that each flow value is a multiple of i. As
a consequence we prove the equality of the integer flow number and the ceiling of the circular flow
number for flow-admissible signed graphs without long barbells.
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1. Introduction. Many basic properties in Tutte’s flow theory for unsigned
graphs do not have their counterparts for signed graphs. For instance, Tutte’s 5-flow
conjecture [24] states that every flow-admissible unsigned graph has a nowhere-zero
5-flow. The best approximation so far is that every flow-admissible unsigned graph
has a nowhere-zero 6-flow [18]. Flow-admissible signed graphs which do not admit a
nowhere-zero 5-flow are known. Therefore, the 5-flow conjecture is not true for signed
graphs in general. But a 6-flow theorem might be true for flow-admissible signed
graphs as conjectured by Bouchet [1]. This conjecture is verified for several classes of
signed graphs (see, e.g., [5, 6, 9, 13, 16, 17, 25]).

The signed graphs without long barbells form a very interesting family in general.
Slilaty [20] presents a complete characterization of signed graphs without long barbells
(Theorem 1.2 in [20]). Such a signed graph can also be translated into a special
unsigned graph without vertex-disjoint odd circuits by inserting one vertex of degree
2 into each positive edge. Readers are referred to [7] and [19] for a characterization
of unsigned graphs without vertex-disjoint odd circuits.

The family of signed graphs without long barbells also has its special interest from
the point view of flow theory. It is well known that cycles are fundamental elements
in flow theory. For unsigned graphs, every element in the cycle space is the support of
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a 2-flow. However, some element (long barbells) in the cycle space of a signed graph
is the support of a 3-flow but not a 2-flow. Therefore, we may expect signed graphs
without long barbells to inherit some nice properties from unsigned graphs, which
naturally motivates the question whether signed graphs without long barbells have
almost similar properties as unsigned graphs in Tutte’s flow theory. Unfortunately,
the answer is no. For example, the unsigned Petersen graph admits a nowhere-zero
5-flow, while the signed Petersen graph of Figure 1, which has no long barbells, admits
a nowhere-zero 6-flow but no nowhere-zero 5-flow.

Fic. 1. A signed Petersen graph admits a nowhere-zero 6-flow but no mowhere-zero 5-flow.
Positive edges are solid, and negative edges are dashed.

Khelladi verified Bouchet’s 6-flow conjecture for flow-admissible 3-edge-connected
signed graphs without long barbells.

THEOREM 1.1 (Khelladi [6]). Let (G,0) be a flow-admissible 3-edge-connected
signed graph. If (G, o) contains no long barbells, then it admits a nowhere-zero 6-flow.

Lu et al. [9] also showed that every flow-admissible cubic signed graph without
long barbells admits a nowhere-zero 6-flow. In section 3 we will verify Bouchet’s
6-flow conjecture for the family of signed graphs without long barbells. We further
study the relation between modulo flows and integer flows on signed graphs. The
equivalency of modulo flow and integer flow is a fundamental result in the theory of
flows on unsigned graphs.

THEOREM 1.2 (Tutte [23], or see Younger [27]). An unsigned graph admits a
nowhere-zero modulo k-flow if and only if it admits a nowhere-zero k-flow.

Almost all landmark results in flow theory, such as the 4-flow and 8-flow theorems
by Jaeger [4], the 6-flow theorem by Seymour [18], the 3-flow theorems by Thomassen
[22] and by Lovész et al. [11], are proved for modulo flows.

However, there is no equivalent result in regard to Theorem 1.2 for signed graphs
in general.

We will prove an analog of Theorem 1.2 for the family of signed graphs without
long barbells. We show that the admittance of a nowhere-zero modulo k-flow and a
nowhere-zero k-flow are equivalent for k = 3 or k > 5.

In section 4 we study the decomposition of flows. For unsigned graphs, a positive
k-flow can be expressed as the sum of some 2-flows.

THEOREM 1.3 (Little, Tutte, and Younger [8]). Let G be an unsigned graph and
(1, f) be a positive k-flow of G. Then

where each (7, f;) is a nonnegative 2-flow.
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We extend Theorem 1.3 to the class of signed graphs without long barbells.

The paper closes with the study of circular flows in section 5. For an unsigned
graph G, Goddyn et al. [2] showed ®;(G) = [®.(G)]. Raspaud and Zhu [15] con-
jectured this to be true for a signed graph (G,o) as well, and they proved that
®,(G,0) < 2[®.(G,0)] — 1. The conjecture was disproved in [17] by constructing
a family of signed graphs where the supremum of ®;(G,0) — ®.(G,0) is 2 (see one
member of the family depicted in Figure 5). This result was further improved in [14]
by showing that the supremum of ®;(G,0) — ®.(G, o) is 3 which is best possible if
Bouchet’s 6-flow conjecture is true. We show that ®;(G, o) = [®.(G,0)] for a signed
graph (G, o) without long barbells and verify the conjecture of Raspaud and Zhu for
this family of signed graphs. The result is a consequence of a normalization theorem
for signed graphs which states that every nowhere-zero %’—ﬂow on a signed graph can
be normalized in such a way, that each flow value is a multiple of i. For unsigned
graphs it is known [21] that every nowhere-zero %—ﬂow on a signed graph can be nor-

malized in such a way that each flow value is a multiple of %. We show that this is
also true for signed graphs without long barbells.

2. Notations and terminology. Let G be a graph. For S C V(G), the set
V(G) — S is denoted by S°. For Uy,U; C V(G), the set of edges with one end in
Uy and the other in U; is denoted by dg(Uy,Us). For convenience, we write ¢ (Us)
for 6¢(Ur,Uf) and 0 (v) for 0 ({v}). The degree dg(v) of v is the number of edges
incident with v where a loop is counted twice.

A signed graph (G, o) is a graph G together with a signature o : E(G) — {—1,1}.
An edge e € E(G) is positive if o(e) = 1 and negative otherwise. The set En(G,0)
denotes the set of all negative edges in (G, o). An unsigned graph can also be consid-
ered as a signed graph with the all-positive signature; i.e., En(G,0) = 0. Let (G,0)
be a signed graph. A path P in G is called a subdivided edge of G if every internal
vertex of P is a 2-vertex. The suppressed graph of G, denoted by G, is the signed
graph obtained from G by replacing each maximal subdivided edge P with a single
edge e and assigning o(e) = o(P) where o(P) is the product of the signs of the edges
in E(P). A circuit (C,o|g(c)), or shortly C, is a connected 2-regular subgraph of
(G,0). A circuit C is balanced if |[En(C)| = 0 (mod 2), and it is unbalanced other-
wise. A signed graph is balanced if it does not contain an unbalanced circuit, and it is
unbalanced otherwise. A signed circuit is a signed graph of one of the following three
types:

(1) a balanced circuit;

(2) a short barbell, the union of two unbalanced circuits that meet at a single

vertex;

(3) along barbell, the union of two disjoint unbalanced circuits with a path that

meets the circuits only at its ends.

Following Bouchet [1], we view an edge e = uwv of a signed graph (G, o) as two half-
edges h¥ and h?, one incident with u and one incident with v. Let Hg(v) (abbreviated
H (v)) be the set of all half-edges incident with v, and H(G) be the set of all half-edges
in (G,0). An orientation of (G, o) is a mapping 7 : H(G) — {—1,+1} such that for
every e = wv € E(G), 7(h¥)T(hY) = —o(e). If 7(h¥) = 1, then h¥ is oriented away
from w; if 7(h¥) = —1, then A is oriented toward u. Thus, based on the signature, a
positive edge can be directed like e—>—>—e or like e—<«—<—e, and a negative edge can
be directed like @-»>----<- or like ®--<--»>-o. A signed graph (G, o) together with an
orientation 7 is called an oriented signed graph, denoted by (G, ), with underlying
signature o.
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DEFINITION 2.1. Let (G,T) be an oriented signed graph and [ : E(G) — R be a
mapping. Let r > 2 be a real number and k > 2 be an integer.
(1) The boundary of (7, f) is the mapping O(7, f) : V(G) — R defined as

o(r, fw) = r(h)f(en)

heH (v)

for each vertex v, where ey, is the edge of (G,0,) containing h.

(2) The support of f, denoted by supp(f), is the set of edges e with |f(e)| > 0.

(3) If O(7, f) = 0, then (7, f) is called a flow of (G,0,). A flow (1, f) is said to
be nowhere-zero of (G, 0,) if supp(f) = E(G).

(4) If1 < |f(e)] < r—1 for each e € E(G), then the flow (7, f) is called a circular
r-flow of (G,0;).

(5) If fle) € Z and 1 < |f(e)| < k —1 for each e € E(QG), then the flow (T, f) is
called a nowhere-zero k-flow of (G, o).

(6) If O(7, f) =0 (mod k) and f(e) € Zi \ {0} for each e € E(G), then the flow
(1, f) is called a nowhere-zero modulo k-flow or a nowhere-zero Zg-flow of

(G,o7).

A signed graph is flow-admissible if it admits a nowhere-zero k-flow for some
integer k. In a signed graph, switching at a vertex u means reversing the signs of all
edges incident with u. Two signed graphs are equivalent if one can be obtained from
the other by a sequence of switches. Then a signed graph is balanced if and only if it is
equivalent to a graph without negative edges. Note that switching at a vertex does not
change the parity of the number of negative edges in a circuit, and although technically
it changes the flows, it only reverses the directions of the half-edges incident with the
vertex and the directions of other half-edges and the flow values of all edges remain
the same. Bouchet [1] gave a characterization for flow-admissible signed graphs.

PROPOSITION 2.2 (Bouchet [1]). A connected signed graph (G,o) is flow-
admissible if and only if it is not equivalent to a signed graph with exactly one negative
edge and it has no cut-edge b such that (G — b, o|g—p) has a balanced component.

The following lemma is a direct consequence of Proposition 2.2 and the definition
of long barbell.

LEMMA 2.3. Let (G,0) be a signed graph without long barbells. Then for each
X C V(G), one of (G[X],0|p@ix))) and (G[X°],0lp@cixe)) s balanced. Thus, if
(G, 0) is flow-admissible, then (G, o) is bridgeless.

For a flow-admissible signed graph (G, o), its circular flow number and integer
flow number are defined, respectively, by
®.(G,0) = inf{r: (G,o) admits a circular r-flow},
®,(G,0) = min{k : (G, o) admits a nowhere-zero k-flow}.
Raspaud and Zhu [15] showed that ®.(G, o) is a rational number for any flow-
admissible signed graph (G,o) and ®.(G,0) = min{r : (G,o) admits a circular
r-flow}, just like for unsigned graphs.

3. Integer flows and modulo flows.

3.1. Integer flows. This subsection will extend Khelladi’s result (Theorem 1.1)
to the class of all flow-admissible signed graphs without long barbells. For the proof
of our result we will need the following two results.
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THEOREM 3.1 (Seymour [18]). Ewvery bridgeless unsigned graph admits a nowhere-
zero 6-flow.

LEMMA 3.2 (Lu, Luo, and Zhang [9]). Let G be an unsigned graph with an ori-
entation 7 and assume that G admits a nowhere-zero k-flow. If a vertex u of G has
degree at most 3 and 7 : dg(u) — {£1,...,£(k — 1)} satisfies O(7,7v)(u) = 0, then
there is a nowhere-zero k-flow (1,¢) of G so that ¢[s,) = 7.

THEOREM 3.3. Let (G,0) be a flow-admissible signed graph. If (G,o) contains
no long barbells, then it admits a nowhere-zero 6-flow.

Proof. Suppose to the contrary that the statement is not true. Let (G,0) be a
counterexample with |E(G)| minimum. We will deduce a contradiction to Theorem
1.1 by showing that G is 3-edge-connected.

We first show that the minimum degree of G, §(G) > 3. If G has vertices of
degree two, then the suppressed graph G remains flow-admissible and contains no
long barbells. Thus by the minimality of G, G admits a nowhere-zero 6-flow, so does
G, a contradiction. Hence G contains no vertices of degree two. Since (G, o) is flow-
admissible, it contains no vertices of degree one and thus the minimum degree of G
is at least three.

Next we show that G is 3-edge-connected. By Lemma 2.3, (G, o) is bridgeless
since it contains no long barbells.

Suppose that (G,o) has a 2-edge-cut, say {ujug,wiws}. Since the minimum
degree of G is at least 3, every 2-edge-cut is nontrivial. Let (G1,0|g(s,)) and
(G2,0|B(a,)) be the two components of G —{ey, ea}, where e; = ujus and ez = wiws
with w;,w; € V(G;) for i = 1,2. By Lemma 2.3 again, one of (G1,0|g,)) and
(G2,0|E(Gs,)) is balanced. Without loss of generality we assume that (G1,0|gq,)) is
balanced. By switching, we may further assume that all edges in (G1,0|g(q,)) are
positive. Fix an arbitrary 7 on H(G). Let G be the unsigned graph obtained from
(G,0) by contracting H(Gz) U {h¢?, hy?} into a vertex vy, and let (G5, 0|p(qy)) be
the signed graph obtained from (G, o) by contracting H(G1) into a vertex vg. An
illustration on G and (G%, 0|g(qgy)) is shown in Figure 2.

F1G. 2. An illustration on how to construct G| and (G’2,0|E<G/2)) from (G,0).

From the definition of (G5, o|g(gy)), we know that (G, 0| p(cy)) is flow-admissible
and contains no long barbells. So (G%,0|gq;)) admits a nowhere-zero 6-flow
(T|r(Gy)s f2) by the minimality of (G, o). Assign y(viui) = fa(v2uz) and y(viwr) =
Ja(v2wz). Since G is an unsigned graph, the restriction of 7 on H(G1) U {hy!, he)
can be considered as an orientation of G} denoted by 71. Then we have 9(r1,v)(v1) =

O(7lr(ay), f2)(v2) =0. By Theorem 3.1 and Lemma 3.2, there is a nowhere-zero 6-flow
(71, f1) of G such that f1|5c'1(vl) =v= f2|5G,2(7j2). Thus (7, f1) and (T|H(G/2),f2)
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can be combined to a nowhere-zero 6-flow of (G,0), a contradiction. Therefore
G is 3-edge-connected, a contradiction to Theorem 1.1 since (G,0) is a counter-
example. ]

3.2. From modulo flows to integer flows. In flow theory, an integer flow and
a modulo flow are different by their definitions, but they are equivalent for unsigned
graphs as shown by Tutte [24] (see Theorem 1.2). However, Tutte’s result cannot be
extended to signed graphs (see, e.g., [26]). That is, there is a gap between modulo
flows and integer flows for signed graphs.

In this subsection, we will extend Tutte’s result and show that the equivalence
between nowhere-zero Zy-flows and nowhere-zero k-flows still holds for signed graphs
without long barbells when k =3 or k£ > 5.

THEOREM 3.4. Let (G, o) be a signed graph without long barbells, and let k be an
integer with k = 3 or k > 5. Then (G, o) admits a nowhere-zero Zi-flow if and only
if it admits a nowhere-zero k-flow.

The “if” part of Theorem 3.4 is trivial since every nowhere-zero k-flow is also a
nowhere-zero Zj-flow in a signed graph. For the “only if” part of Theorem 3.4, by
Lemma 2.3, the case of £k = 3 is an immediate corollary of a result about Zs-flow
in [26], and the case of k > 6 follows from Theorem 3.3, and thus we only need to
consider the case of kK = 5, which is a corollary of the following stronger result.

THEOREM 3.5. Let k > 3 be an odd integer and (G, o) be a signed graph with a
nowhere-zero Zy-flow (1, f1). If (G, o) does not contain a long barbell, then there is a
nowhere-zero k-flow (7, fa) such that fi(e) = fa(e) (mod k).

In order to prove Theorem 3.5, we introduce some new concepts.

DEFINITION 3.6. Let W = xge1x1eams ... 1x¢_16:T¢ be a signed walk with an
orientation T.

(1) W is called a diwalk from zo to x¢ if T(he?) = 1 and 7(he!) +7(hgi, ) =0
foreachie {1,...,t—1}.

(2) The diwalk W from xq to x; is positive if T(hi!) = —1. Otherwise, it is
negative.

(3) A diwalk is all-positive if all its edges are positive.

(4) A ditrail from x to y is a diwalk from x to y without repeated edges.

(5) A dipath from z to y is a diwalk from x to y without repeated vertices (see

Figure 3).
€1 €2 €3 €4 €1 €2 €3 €4
>—>—0 > < O —O < - >e 0> OO C > @ > 0
T T2 T3 T4 Zs T X2 xs3 Iy Ts

(a) (b)

Fic. 3. (a) A positive dipath from x1 to x5; (b) A negative dipath from x1 to xs.

DEFINITION 3.7. An oriented signed graph is called a tadpole with tail end x (see
Figure 4) if

(1) it consists of a ditrail C and a dipath P with V(C)NV(P) = {v1};

(2) P is a positive dipath from x to vy;

(3) C is a closed negative ditrail from vy to vy.
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>0 > < O——W G- >

Fic. 4. A tadpole with tail end x.

Note that it is possible that * = v; in the above definition. In this case, the
tadpole is called a tailless tadpole. Although in the proof of Theorem 3.5, the ditrail
C of the tadpole is a ditrail without repeated vertices, the definition of a tadpole only
requires C' to be a ditrail which allows repeated vertices for general purpose.

DEFINITION 3.8. Let (G, T) be an oriented signed graph and f : E(G) — R.

(1) A vertex z is asource (resp., sink) of (7, f) if O(t, f)(x) >0 (resp., (7, f)(x) <
0).

(2) An edge e is a source (resp., sink) of (7, f) if the boundary at e, O(7, f)(e) =
—(7(h1) + 7(h2)) f(e), is positive (resp., negative), where hy and hs are the
two half-edges of e.

Note that an edge is a source or a sink if and only if it is negative. A sink is either
a sink vertex or a sink edge and a source is either a source vertex or a source edge.
The following observation is a trivial fact in network theory.

OBSERVATION 3.9. Let (G,7) be an oriented signed graph and f : E(G) — R.
The total sum of boundaries on V(G) U E(G) is zero. In particular, if f is a flow,
then the total sum of the boundaries on E(Q) is zero.

The following observation is also a trivial fact in network theory which will be
applied to find a tadpole.

OBSERVATION 3.10. Let (G, 7) be an oriented signed graph and f : E(G) — Rt U
{0}. For each source x, there must exist a sink t, such that there is an all-positive
dipath from x to t,.

DEFINITION 3.11. Let (G, 7) be an oriented signed graph, Ey C E(G), and f :
E(G) — Zy, be a mapping. The operation minusing of (1, f) on Ey is done by reversing
the directions of both half-edges of e and changing f(e) to k — f(e) for every e € Ey.
The resulting pair obtained from (7, f) is denoted by (75, f5,)-

We are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Let (G,009) be a counterexample and (7q,f1) be a
nowhere-zero Zg-flow of (G,00). We can choose a triple (G, 7, f) obtained from
(G, 70, f1) by a sequence of switching and minusing operations such that
(S1) 0 < f(e) < k for every e € E(G);

(S2) subject to (S1), d(7, f)(v) =0 (mod k) for every v € V(G);

(S3) subject to (S1) and (S2), n(7, f) = X, cv () 10(7, f)(v)] is as small as possible;

(S4) 3), the number of source vertices of (7, f) is as
large as possible.

Let X = {x € V(G) : O(t, f)(x) > 0)} be the set of source vertices of (7, f). The
following claim shows that by the choice of (G, T, f), there is no sink vertex in (7, f).

Cram 1. X = {2 € V(G) : 9(7, f)(x) # 0)}. That is, there is no sink vertex in
(7. f)-
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Proof. Suppose to the contrary that there is a vertex v € V(G) such that 9(r, f)(v)
< 0. Let (G, 7') be the resulting oriented signed graph obtained from (G, 7) by switch-
ing at v, and let X’ = X U {v}. Note that switching at v is done by reversing all
directions of half-edges in Hg(v). Thus (G, 7', f) satisfies (S1)—(S3) and X" is the set
of source vertices of (7', f). This contradicts (S4). 0

The following claim shows that (7, f) # 0, and thus (G, 7, f) is indeed a network
with sinks and sources.

CLAamM 2. X # (.

Proof. Suppose X = ). Then (7, f) is a nowhere-zero k-flow of the signed graph
(G,0). Since (G, T, f) is obtained from (G, 7o, f1) by a sequence of switching and
minusing operations, there are Vo C V(G), Ey C E(G) and an orientation 7 of (G, o)
such that (G, 1) is obtained from (G, 1) by switching on Vg, and (7, f) is obtained
from (71, f1) by minusing on Ey. Let f': E(G) — Z be defined as follows:

ron fle) ife¢ Ey;

f(e)_{ —fle) ifee€ Ey.
Since (7, f) is a nowhere-zero k-flow of (G, o) and is obtained from (1, f1) by minusing
on Ey, (11, f') is also a nowhere-zero k-flow of (G,0) and satisfies f/'(e) = fi(e)
(mod k) for every e € E(G). Thus (79, f’) is a desired nowhere-zero k-flow of (G, ()

since (G, 1) is obtained from (G, 79) by switching on Vp. This contradicts that (G, o)
is a counterexample. 0

By (S2) and Claim 1, every vertex = in X satisfies

o, [)(x) = pk

for some positive integer p.

For directed unsigned graph, there is only one type of ditrails/dipaths. However,
for directed signed graphs, there are two types of ditrails/dipaths, namely, positive
and negative. We first show that a negative ditrail between two vertices in X does
not exist in (G, 7).

CLAM 3. There is no negative ditrail of (G, T) between two distinct vertices in
X.

Proof. Suppose to the contrary that X contains two distinct vertices xz; and xo
such that there exists a negative ditrail P from 2 to x2 in (G, 7). By the definition of
negative ditrails (see Definition 3.6) and by Definition 3.11, it is not difficult to check
that

2

gy Fapy) = 2O @) —k) + Y AT f)(v) =n(r.f) — 2k

i=1 veV(G)\{z1,22}

This contradicts (S3). 0

Similar to unsigned graphs, for a given source vertex = € X we need to study the
properties of the graph induced by the vertices y in (G, 7) such that there is a dipath
from x to y. We may partition such reachable vertices according to the signs of the
dipath.
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Pick an arbitrary vertex x from X by Claim 2, and let

Y," ={y € V(G) : (G, ) contains a positive dipath from z to y},
Y, ={y € V(G) : (G, ) contains a negative dipath from z to y} \ Y, , and
Y, =Y Uy,

In fact, we will show that we may further assume that Y- = 0. By Claim 3,
Y, NX =0,s0 9(r, f)(y) =0 for each y € Y,~. Switch at every vertex in Y, , and
denote the resulting pair obtained from (G, 7) by (G, 7). Then (G, 0-,) is equivalent
to (G,0,), and 7 is an orientation of (G,0,,). Since 9(r, f)(y) = 0 for y € Y,
it is easy to see that the triple (G, 7, f) also satisfies (S1)—(S4). Moreover, by the
definitions of Y," and Y, , (G, 71) contains a positive dipath from z to y for every
y € Y,. Without loss of generality, we can assume

(1) Y, =0 and Y, =Y,"

and consider (G, 71, f) = (G,7,f). Then the following claim holds which will be
applied to find tadpoles in (G[Y,], 7).

CLAIM 4. For everyy €Y., (G,T) contains a positive dipath from x to y.
CLAM 5. (G[Y],T) contains a tadpole with tail end x (see Definition 3.7).

Proof. By Observation 3.10, there is a sink ¢, of (7, f) such that (G, 7) contains
an all-positive dipath from « to ¢,. Note that (7, f) contains no sink vertices by Claim
1. Hence t, must be a sink edge, say t, = v'u”. Let P, be an all-positive dipath from
x touw'. Then v €Y, t, ¢ E(P,), and P, + ¢, is a negative dipath from z to u”
since t,, is a sink edge. Thus u” € Y, =Y, (by (1)).

This implies that (G[Y],7) has a positive dipath from z to u”. Let P) =
xerxy - ep—1Ti—1e:xy (x = u”) be a positive dipath from z to «” in (G[Y], 7).
Then t, ¢ F(P)) since t, is a sink edge. If E(P,)NE(P)) =0, then P, +1t, + P) is
a tailless tadpole with tail end x.

If E(P))NE(P)) # 0, then let s be the maximum index in {1,2,...,t} such that
es € E(P)). If both P, and P traverse ey in the same direction, then P, + ¢, +
P!(xs,u") is a tadpole with tail end x, where P)(xzs,u”) is the segment of P. from
zs tou.

If P traverses e, in the opposite direction from P), then the segment P)(z,xs) is
a negative dipath from x to x, since ey is a positive edge. Since P)(x, z;) is a negative
dipath, there is a segment P.(z;,xz;) of P)(z,xs) such that P.(x;,x;) contains an
odd number of negative edges and V (P} (z;,z;)) N V(PL(z,2s-1)) = {zi,z;}. We
choose such a segment that ¢ is as small as possible. By the minimality of i, we
have that P)(z;,x;) is a negative dipath from z; to x; and the segment P)/(x,x;)
is a positive dipath from z to z;. Denote the segment of P, from z to zs_1 by
Pl(z,2s-1) = YoY1 - .Yp, Where yo = = and y, = x5_1. Then z; = y, and z; = y
for some a,b € {0,...,p}. If a < b, then P)(z;, ;) + P.,(x;, ;) is a closed negative
ditrail from y,(= ;) to y., and thus P, (x,z;) + P/ (x;,x;) + Py(x;,x;) is a tadpole
with tail end z. If @ > b, then P)(z;,z;) + P.(z;,2;) is a closed negative ditrail
from y,(= x;) to yp since P, (z;, ;) is an all-positive dipath from ¥y, to y,, and thus
Pl(z,x;) + P)(z;,z;) + P.(z;,z,) is a tadpole with tail end 2. This completes the
proof of the claim. ]

By Claim 5, let P, + C, be a tadpole with tail end x in (G[Y,], 7). Here, P, is an
all-positive dipath from x to a vertex, denoted by y,; C is a closed negative ditrail
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from y, to y, and V(P,)NV(C,) = {y.}. Note that it is possible that P, is the single
vertex .

CramM 6. 9(, f)(x) =k, and if y. # x, then O(T, f)(y=) = 0.

Proof. Suppose to the contrary O(t, f)(x) # k. Then O(r, f)(z) > 2k, since z is
a source vertex and 9(t, f)(x) = pk for some positive integer .

If O(7, f)(y=) = 0, then y, # x, so |E(P,)| > 1. We can check easily that the new
triple (G, THEL)’ fE(P )) satisfies (S1)—(S3), and the set of source vertices is X U{y.},
a contradiction to (S4).

If O(r, f)(yz) # 0, since P, + C,, is a negative ditrail from x to y,, the new triple
(G, 7%, fz) (where E' = E(P, + C,)) satisfies (S1) and (S2). However, the total
sum of boundaries is reduced by 2k. This contradicts (S3), and so the claim holds.
Therefore O(t, f)(z) = k.

Now assume y, # x. Since P, + C, is a negative ditrail from = to y,, by Claim
3, y» ¢ X, and thus 9(7, f)(y,) = 0. d

For the sake of convenience, let (G, TH5ED ,f ) = (G, 7y, fz), and let X’ be

the set of source vertices of (74, f.). The next two clalms show that (G, 7, fz) has
the same properties as (G, 7, f) and will replace (G, 7, f) in the rest of the proof to
obtain a contradiction.

CrLaM 7. The following statements for (G, 7y, fo) are true.

(a) Cy is a tailless tadpole with tail end y, in (G, 7);

(b) X' = (X \{z}) U{y.};

(¢) (G, T, fr) satisfies (S1)—(54).

Proof. The statement (a) is trivial since E(C,) N E(P,) = () and C,, is a tailless
tadpole with tail end y, in (G, 7). Now we show the statements (b) and (c). In fact,
if y, =z, then X' = X and (74, fz) = (7, f), and thus both (b) and (¢) are trivial; if
Yz # x, then by Claim 6, we can also check directly that both (b) and (c¢) hold. d

Similar to Claims 1 and 3, it follows from Claim 7(c) that (7., f) contains no sink
vertex and (G, 7,;) contains no negative ditrail between two distinct vertices of X'.

The next claim basically tells that for any two distinct vertices z1, 29 € X (if
any), Y, NV(C,) = 0. It will be applied to show that there is exactly one source
vertex.

CLAM 8. For every ' € X'\ {yz}, (G,7z) contains no dipath from x' to C,.

Proof. Suppose to the contrary that P is a dipath from z’ to y with V(P) N
V(C.) ={y} in (G, 7). Since C,, is a closed negative ditrail from y, to y, (by Claim
7(a)) and y € V(Cy), Cy can be decomposed into two edge-disjoint ditrails from y,
to y, denoted by C7 and Cs. Since C, is negative, one of C; and Cs is positive and
the other one is negative. Thus either P + C7 or P + (5 is a negative dipath from x’
to y,. This contradicts that (G, 7,;) contains no negative ditrails between two distinct
vertices of X'. O

CLamM 9. X = {z}.

Proof. Suppose to the contrary ' € X \ {z}. Then 2’ € X'\ {y,.} by Claim 7(b).
Let
Y, ={y € V(G) : (G, 7;) contains a dipath from z’ to y}.

By Claim 8, Y, NV(C,) = (). Note that (G, 7, f) satisfies (S1)—(S4) by Claim 7(c).
Similar to the discussion in Claims 4 and 5, (G[Yy/], 7,) contains a tadpole with tail end
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z'. By the definition, there is an unbalanced circuit, denoted by C,/, in this tadpole.
Since (G, o) contains no long barbells, V(C,) NV (Cyr) # 0, so Yy NV (Cy) # 0. This
contradicts Y,» NV (Cy) = 0. O

Now we can complete the proof.

The final step. By Claim 9, X = {«}. By Claim 6, 9(t, f)(z) = k which is an odd
number. Since the boundary of every negative edge is an even number, the total sum
of the boundaries of (7, f) on V(G)UE(G) must be odd since x is the only source/sink
vertex with an odd boundary. This contradicts Observation 3.9. Hence the proof of
Theorem 3.5 is complete. 0

There are precisely two abelian groups of order 4, namely, the Klein Four Group
K4 and the cyclic group Z4. Clearly, the elements of the Klein Four Group are self-
inverse and therefore, a signed cubic graph G has a nowhere-zero Ky-flow if and only if
the underlying unsigned graph of G is 3-edge-colorable. We will show that this is also
true for signed graphs without long barbells which admit a nowhere-zero Z4-flow. We
will apply a result of Macajova and Skoviera. A signed graph (G, o) is antibalanced if
it is equivalent to a signed graph (G, o’) with Ex(G,0’) = E(G).

THEOREM 3.12 (Méacajova and Skoviera [12]). A signed cubic graph admits a
nowhere-zero Z4-flow if and only if it admits an antibalanced 2-factor.

THEOREM 3.13. Let (G,0) be a flow-admissible signed cubic graph. If (G,0)
contains no long barbells, then (G, o) admits a nowhere-zero Zy-flow if and only if the
underlying unsigned graph G is 3-edge-colorable.

Proof. First assume that (G,o) admits a nowhere-zero Zy-flow. By Theorem
3.12, (G, o) has an antibalanced 2-factor F. Since (G, o) contains no long barbells
and Y .7 |V(C)| = |V(G)| =0 (mod 2), it follows that that every circuit of F is of
even length, so G is 3-edge-colorable.

Now assume that G is 3-edge-colorable. Then FE(G) can be decomposed into
three edge-disjoint 1-factors M;, My, and M3. Without loss of generality, assume
|M1 N EN(G,0)| = |M2N En(G,0)| (mod 2). Let C = My U Ms. Clearly, C is a
2-factor of G.

Since |E(C) N En(G,0)| = |M1 N En(G,0)| + |[Ma N En(G,0)] = 0 (mod 2),
C contains an even number n of unbalanced circuits. Since (G, o) contains no long
barbells, it follows n = 0. This implies that each component of C is a balanced
circuit with even length and thus is antibalanced. By Theorem 3.12, (G, o) admits a
nowhere-zero Z4-flow. O

Theorem 3.4 doesn’t hold for k¥ = 4. There is a signed W5 (the wheel with six
vertices) which has a nowhere-zero Zs-flow but doesn’t have a nowhere-zero 4-flow
(see [3]).

However, we don’t know whether Theorem 3.5 can be extended to all even positive
integers k > 6. We conclude this section with the following problem.

PROBLEM 3.14. Let k > 6 be an even integer and (G, o) be a signed graph with
a nowhere-zero Zy-flow (7, f1). If (G, o) contains no long barbells, does there exist a
nowhere-zero k-flow (7, f2) such that

fi(e) = fa(e) (mod k)?

4. Circuit decomposition and sum of 2-flows. The following theorem is
well-known for unsigned graphs.
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THEOREM 4.1. Every Eulerian unsigned graph has a circuit decomposition.

Theorem 4.1 for unsigned graphs is extended to the class of signed graphs without
long barbells.

THEOREM 4.2. Let (G,0) be a flow-admissible signed Eulerian graph with
|En(G,0)| even. If (G,o) contains no long barbells, then (G,c) has a decomposi-
tion C such that each member of C is either a balanced circuit or a short barbell.

Proof. Suppose to the contrary that (G, o) is a counterexample. Since (G, o) is
a signed eulerian graph, it has a decomposition C = {C4,...,Cp,Cra1,---, Chim,
Chim+1s -+ s Cham+n}, where h,m, and n are three nonnegative integers, and C; is
an balanced circuit if ¢ € {1,...,h}, a short barbell if : € {h + 1,...,h + m}, and
an unbalanced circuit otherwise. We choose such a decomposition that h + m is as
large as possible. Then n # 0. Furthermore, n > 2 is even since |En(G,0)| =
|En(Ci,olpc,))| = 0 (mod 2) for each i € {1,...,h +m}. Since (G, o) contains
no long barbells, it also contains no vertex disjoint unbalanced circuits, and thus,
Chimy1 and Chymyo have at least two common vertices. Let z; and x5 be two
common vertices of Cp4y41 and Chq o such that Cp 1 has a path P, from z; to
xo containing no vertex of C,y,,+2 as internal vertex. Let P» and P3 be the two paths
from x1 to x9 in Chypmya. Since Chymyo is an unbalanced circuit, there is exactly
one of P and Ps, say P, such that |[En(P1)| = |[En(P2)| (mod 2), so Py + P is a
balanced circuit of (G'\ UM E(C;)). This contradicts the choice of C. ad

Next we are going to study the decomposition of nowhere-zero k-flows into el-
ementary 2-flows. One of the basic theorems in flow theory for unsigned graphs is
Theorem 1.3. The next theorem extends this result to the class of signed graphs
without long barbells.

THEOREM 4.3. Let (G,0) be a signed graph without long barbells and (7, f) be a
nonnegative k-flow of (G,c) where k > 2. Then

k—1

(Ta f) = Z(Tv fz)a

i=1
where each (T, f;) is a nonnegative 2-flow.

We need some lemmas to prove Theorem 4.3.

LEMMA 4.4. Let (G,0) be a signed graph and (7, f) be a k-flow of (G,0). Then
the total number of negative edges with odd flow values is even.

Proof. Denote F = {e € En(G,o) : f(e) isodd}. By Observation 3.9,
Yecbn(Go)(—27(R))f(e) = 0, and thus - . p (g0 T(R)f(e) = 0, where h is a half-
edge of e. Therefore |F| =3 . 7(h)f(e) =0 (mod 2). 0

THEOREM 4.5 (Xu and Zhang [26]). A signed graph (G, o) admits a nowhere-

zero 2-flow if and only if each component of (G, o) is Eulerian and has an even number
of negative edges.

LEMMA 4.6. Let (G,0) be a signed graph without long barbells and (7, f) be a
k-flow of (G,0). Let (Q,0|gq)) be the subgraph of (G,0) induced by the edges of
{e: f(e) =1 (mod 2)}. Then every component of (Q,0|g(q)) has an even number of
negative edges, and thus (Q,c|gq)) admits a nowhere-zero 2-flow.

Proof. Obviously, (Q,0|g(g)) is an even subgraph of (G,0). By Lemma 4.4,
(Q,0|E(@)) has an even number of negative edges and thus the number of compo-
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nents of (Q,0|g(g)) with an odd number of negative edges is even. By Theorem 4.5,
if a component of (Q,0|g(g)) has an odd number of negative edges, then it is un-
balanced. Thus (Q,c|gg)) has an even number of unbalanced components. Since
(G, o) contains no long barbells, (Q, o|g(q)) does not contain two vertex-disjoint un-
balanced circuits. Therefore, each component of (Q, o|g(q)) is balanced, and thus by
Theorem 4.5 again, it admits a nowhere-zero 2-flow. ]

Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Prove by induction on k. It is trivial if £ = 2. Now assume
that the theorem is true for all t < k—1. Let (7, f) be a nonnegative k-flow of (G, o).
For convenience, every flow is a flow of (G, o) under the orientation 7 in the following.

We first consider the case when k is odd. Let (Q,0|gq)) be the subgraph of
(G, o) induced by the edges of {e: f(e) =1 (mod 2)}. By Lemma 4.6, (G, o) admits
a 2-flow g with supp(g) = E(Q). Then each

P e R R
1 27 2 2

is a nonnegative (% + 1)-flow. By induction hypothesis, each g; is the sum of %
nonnegative 2-flows. Thus f = g1 + go is the sum of k — 1 nonnegative 2-flows.

Now assume that k is even. Then k — 1 is odd. First consider f as a modulo
(k—1)-flow. Then by Theorem 3.5, (G, 1) has a (k —1)-flow g satisfying the following
two properties:

(a) f(e) =g(e) (mod k — 1) for each edge e € E(G);

(b) supp(g) = supp(f) \ {e € E(G) : f(e) =k —1}.

Now in the rest of the proof, we consider f as an integer k-flow. Since 0 < f(e)
k—1and —(k—2) < g(e) <k —2, for each edge e we have —(k —2) < f(e) — g(e)
2k — 3. Thus we have the following properties for f —¢:

*(f—g)(e) =0, or k—1Dby (a);

e {e € B(G): f(e) = k— 1} C supp(f — g) by (b). |

Note that by (b), for each edge e, if f(e) = 0, then g(e) = 0. Thus f; = %
is a nonnegative 2-flow with {e € E(G) : f(e) = k — 1} C supp(f1). Therefore
f — f1 is a nonnegative (k — 1)-flow. By induction hypothesis, f — f is the sum of
k — 2 nonnegative 2-flows. Together with f;, f can be expressed as the sum of £ — 1
nonnegative 2-flows. This completes the proof of the theorem. ]

<
<

5. Integer and circular flow numbers. As mentioned in the introduction,
®,(H) = [®.(H)] holds for each unsigned graph H (Goddyn et al. [2]) but there are
signed graphs with ®;(G, o) — ®.(G, o) > 1. In this section we study the circular flow
numbers of signed graphs and prove that signed graphs without long barbells behave
like unsigned graphs in this context.

Most examples with the property [®.(G,0)] < ®,(G,0) contain a star-cut. A
star-cut is an induced subgraph S isormorphic to K7 of G such that every edge of
S is an edge-cut of G. It becomes natural to ask whether for each 2-edge-connected
signed graph (G, o) the numbers [®.(G,0)] and ®;(G, o) are the same. We present
an infinite family of counterexamples to this questions. Kompisovd and Macajova [10]
present a family of bridgeless cubic signed graphs which also are counterexamples to
this question.

PROPOSITION 5.1. Let t be a positive integer and Gy be the unsigned graph ob-
tained by identifying t copies of K4 at a common edge vivy. Let (G,0) be the signed
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graph obtained from Gy by deleting vivy and adding two negative loops Ly, Ly at vy
and vy, respectively. Then ®.(G,0) < 3 and ®;,(G,0) > 4.

Proof. Note that it is easy to check that the unsigned graph G; does not admit a
nowhere-zero 3-flow but admits a positive nowhere-zero 4-flow (D, f) with precisely
one edge vyvy with flow value 3.

We first claim that (G, o) admits a circular nowhere-zero 3-flow. Assume that
v1v9 is oriented away from v; and toward ve in D. Orient L; away from v; and
orient Ly toward ve and define a mapping ¢ on E(G) from f by ¢(e) = f(e) for each
e ¢ {L1,L2} and ¢(Ly) = ¢(L2) = 1.5. Then ¢ is a circular 3-flow of (G, o), so
d.(G,0) <3.

Now we claim that (G, o) does not admit a nowhere-zero 3-flow. Suppose to the
contrary that (G, o) admits a nowhere-zero 3-flow and thus admits a nowhere-zero Zs-
flow (7, g) such that g(e) = 1 for every e € E(G). Since every vertex in V(G)\ {v1,v2}
is of degree three in G, every copy of K4 —vyv9 contributes zero to 9(7, g)(v;) for each
i € {1,2}. Thus |0(r, g)(v;)| = 2|g(L;)| Z 0 (mod 3), a contradiction. O

The following structural lemma is needed in the proofs of Theorems 5.4 and 5.6.
Given a circular (2 + 1)-flow (7,1) of a signed graph (G,0), let Iy = {e € E(G) :
qp(e) & Z}.

LEMMA 5.2. Let (G,0) be a signed graph admitting a circular (% + 1)-flow, and
let (,9) be a circular (£ + 1)-flow of (G,0) such that Fy has minimum cardinality.
If Fy #0, then

(1) the signed induced graph (G[Fy],o|F,) consists of a set of vertex-disjoint un-

balanced circuits;

(2) for every edge e € E(G) \ Fy, 2qd(e) is an even integer, while for every edge

e € Fy, 2q¢(e) is an odd integer.

Proof. Without loss of generality, we may assume ¢(e) > 0 for every edge e €
E(G).

I. (G[Fy],0|F,) contains no signed circuits.

Suppose to the contrary that (G[Fy],o|r,) contains a signed circuit C. Then
(G,0) admits an integer 2- or 3-flow (7,¢1) with supp(¢1) = E(C) (see [1]). Let
€ = mingcp(c) min{qb%@(g — ¢(e)), ﬁ(e)(d)(e) — 1)}. Then both (7,¢ + ep2) and
(1,0 — €¢o) are circular (% + 1)-flows and at least one of Fy ey, and Fy_cg, is a
proper subset of Fy, contradicting the choice of ¢.

II. G[F})] is 2-regular.

It is easy to see that the minimum degree 6(G[Fy]) > 2 since (7, ¢¢) is a flow with
integer value in E(G) \ F and noninteger value only in Fy.

Suppose that @ is a component of G[Fy] with maximum degree A(Q) > 3. Then
(@ must contain at least two distinct circuits C; and C5, otherwise ) itself is a circuit.
By I, both C; and Cs are unbalanced. Hence, one may find either a balanced circuit
or a short barbell if C7 and Cs intersect each other, or a long barbell if C7 and Co
are vertex-disjoint, contradicting I.

Obviously, (1) is a corollary of I and II. To prove (2), let e € E(G). Since g¢(e) is
not an integer if and only if e € Fy,, 2¢¢(e) is an even integer if e € E(G)\ F,. Assume
e € Fy below. By (1), let C be the unbalanced circuit in (G[Fy],0|r,) containing e.
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Without loss of generality, further assume that e is the unique negative edge of C
after switching. Hence, by (1) again,

2g6(e) =] > A(r,qd)(v)| =0 (mod 1).
veV(C)

Thus 2g¢(e) is an odd integer since g¢(e) is not an integer. This completes the proof
of the lemma. 0

DEFINITION 5.3. Let p be a positive integer. A signed graph (G,o) is i—ﬂow—

normalizable if it admits a circular %—flow with rational flow values in {1,1+ i, 1+
%, . % —-1- ﬁ, % — 1} whenever it admits a circular %—ﬂow with real flow values in

1, %—1]. By G,, we denote the family of signed graphs which are i-ﬂow-normalizable.

For unsigned graphs we have G; = G, = {G : G is a bridgeless graph} for each
> 2 (see [21]). However, for general signed graphs this does not hold. As an example
we refer to the graph depicted in Figure 5 with ®.(G, o) = 4, where it is easy to see
that every circular 4-flow must contain an edge with flow value 1 + %

F1G. 5. A nowhere-zero circular 4-flow of a graph (G, o) with ®;(G,o) = 5.

The following theorem is a direct corollary of Lemma 5.2(2) and the definition of
Go.

THEOREM 5.4. A signed graph (G, o) is flow-admissible if and only if (G,0) € Gs.

The following lemma gives some sufficient conditions for [®.(G,0)] = ®,(G, o).

LEMMA 5.5. Let (G,0) € G1. Then [®.(G,0)] = ®;(G,0).

Proof. Let (G,0) € G1 with a circular E-flow (7, f). Let k = [Z]. Since (7, f) can
also be considered as a circular %—ﬂow, by Definition 5.3, (G, o) admits a circular %—
flow (7, f') with rational flow values in {1, 1+ %, 1+ %, o k—1— %, k—1}. Obviously,
(7, ') is a nowhere-zero k-flow. 0

THEOREM 5.6. Let (G,0) be a signed graph containing no long barbells. Then
(G,0) € G1, and thus [®.(G,0)] = ©;(G,0).

Proof. Suppose that (G, o) admits a circular (g + 1)-flow. Without loss of gener-
ality, assume that G is connected. We choose a circular (% + 1)-flow (1, ¢) of (G, o)
such that Fy = {e € E(G) : q¢(e) ¢ Z} has minimum cardinality. If F, = (), then
(G,0) € G by the definition of G;.
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Now assume Fy, # (). Then by Lemma 5.2(1), G[F,] consists of a set of vertex-
disjoint unbalanced circuits. Since G is connected and (G, o) has no long barbells,
(G, o) does not contain two vertex-disjoint unbalanced circuits. Thus (G[Fy],o|F,)
is an unbalanced circuit. By switching, we may assume that G[Fy] is an unbalanced
circuit with precisely one negative edge, denoted by eg.

Since (7, ¢) is a circular flow of (G, o), so does (7,¢¢). By Observation 3.9, the
total sum of the boundaries on E(G) is zero for (7, q¢p). By Lemma 5.2(2),

0= Y A(r,q0)(e) = > 2q¢(e) = 2q¢(e0) =1 (mod 2).

e€E(G) e€EN(G,0)NFy
This contradiction completes the proof of the theorem. 0
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