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NOWHERE-ZERO 4-FLOWS AND CAYLEY GRAPHS ON
' SOLVABLE GROUPS*

BRIAN ALSPACH', YI-PING LIU}, AND CUN-QUAN ZHANG?

Abstract. We prove that every Cayley graph on a finite solvable group admits a nowhere-zero
4-flow. In particular, every cubic Cayley graph on a solvable group is 3-edge-colorable.
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1. Introduction. Throughout this paper graphs have neither loops nor multiple
edges. We use the term multigraph when multiple edges are allowed. If X is a graph,
V(X) and E(X) denote the vertex set and edge set, respectively, of X.

DEFINITION 1.1. Let X be a graph and D(X) be an orientation of X. A k-flow
on X is an integer-valued function f : E(X) — (—k,k) such that for every vertex
u € V(X) the sum of the flow values on the outgoing arcs from » in D(X) equals the
sum of the flow values on the incoming arcs at u in D(X). If f(e) # 0 for every edge
e € E(X), the flow is called a nowhere-zero k-flow.

There are several well-known unsolved problems related to flow problems. Prob-
ably the best known unsolved problem dealing with flows is the following problem of
Tutte [13].

CONJECTURE 1.2. Every 2-connected graph containing no subdivision of the
Petersen graph admits a nowhere-zero 4-flow. F. Jaeger [6] proved the first of the
following two results. The second of the two is a consequence of the four-color theorem.

THEOREM 1.3. Fuvery 4-edge-connected graph admits a nowhere-zero 4-flow.

THEOREM 1.4. FEwvery 2-edge-connected planar graph admits a nowhere-zero 4-
flow.

DEFINITION 1.5. Let G be a finite group and S C G satisfy 1 € Sand s € S if
and only if s~! € S. The Cayley graph X(G;S) is the graph with vertex set G and
ab € E(G) if and only if b = as for some s € S.

The first of the following two conjectures was originally posed by L. Lovész [9] as a
research problem and has come to be known as Lovész’s conjecture. The consideration
of Lovész’s conjecture quickly led a number of people to consider the second of the
two. It has been attributed to various people in the literature, but it is not at all clear
who initially posed it.

CONJECTURE 1.6. Every connected vertex-transitive graph has a Hamilton
path.

CONJECTURE 1.7. Every connected Cayley graph with three or more vertices
contains a Hamilton cycle.
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These two conjectures have attracted considerable attention over the last 24 years,
and there have been many partial results. Some of the partial results are the results of
very nice work; nevertheless, in many ways very little is really known about resolving
the two conjectures. Since a graph with a Hamilton cycle admits a nowhere-zero
4-flow, in order for Conjecture 1.7 to be true it must be the case that appropriate
Cayley graphs admit nowhere-zero 4-flows. This led Alspach and Zhang to make the
following weaker conjecture at the Louisville workshop on Hamilton cycles in 1992.

CONJECTURE 1.8. Every Cayley graph with degree at least two admits a nowhere-
zero 4-flow.

Another motivation for the precedmg conjecture is that every graph admitting a
nowhere-zero 4-flow admits a cycle double cover (see [7], [14], and [5]). It has also
been shown that every connected Cayley graph has a cycle double cover (3].

2. Main results. The following lemma is crucial for the proofs of the main
results. It is not hard to prove, and a proof can be found in [6], [11], [13] (see [8]).

LEMMA 2.1. Let X be a cubic graph. The following two statements are equivalent.

1. The graph X admits a nowhere-zero 4-flow.
2. The graph X is 3-edge-colorable.

The remainder of the paper addresses the following two results.

THEOREM 2.2. Ewery cubic Cayley graph on a solvable group is 3-edge-colorable.

R. Stong [12] proved that every Cayley graph X(G;S) on a nilpotent group of
even order has a 1-factorization as long as S is a minimal generating set for G. In
particular, Stong’s result implies that every cubic Cayley graph on a nilpotent group
is 3-edge-colorable. The preceding theorem is an extension to solvable groups of this
special case of Stong’s theorem.

COROLLARY 2.3. Ewvery Cayley graph of degree at least two on a solvable group
admits a nowhere-zero 4-flow.

Proof. Let X be a Cayley graph of degree at least 2 on a solvable group. If X is
of degree 2, then its components are cycles and it admits a nowhere-zero 2-flow. It is
known that the edge connectivity of a connected Cayley graph is equal to its degree
(10]. Thus, if X is of degree 4 or more, each component of X is 4-edge-connected and
by Theorem 1.3 all of X admits a nowhere-zero 4-flow. This leaves only the case that
X is cubic. In this case X is 3-edge-colorable by the preceding theorem. Lemma 2.1
then implies that X admits a nowhere-zero 4-flow and we are done. a

Proof of Theorem 2.2. Let X = X(G; S) be a cubic Cayley graph on the solvable
group G. The theorem is proved by induction on the order |G| of G. We may assume
that X is connected, for if it is not, we may apply the induction assumption to each
component. R. Stong [12] has proved that every connected Cayley graph on a finite
abelian group of even order has a 1-factorization (a partition of the edge set into
1-factors, that is, the chromatic index equals the degree). Thus, the result follows if
G is abelian, and consequently, we assume that G is not abelian.

Let us examine S. We know that an element of order 2 in G generates a 1-
factor of X. Since |S| = 3, we know that S contains either one element or three
elements of order 2. In the latter case, X is 3-edge-colorable. Hence, we assume that
S = {a,a”1,b}, where |b| = 2 and |a| = > 2.

If G has a nontrivial normal subgroup N such that SN N =, then consider the
quotient graph X obtained by first contracting every coset of N to a single vertex. If
some vertex of a coset Ng is adjacent to d vertices of another coset Nh, then every
vertex of Ng is adjacent to d vertices of Nk and vice versa because N is a normal
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subgroup. Then we put an edge of multiplicity d between the vertices corresponding
to the cosets Ng and Nh in X.

There are three possibilities for X. First, X may be 3K, (that is, two vertices
joined by an edge of multiplicity 3). In this case, X is a bipartite graph. It is 3-edge-
colorable because regular bipartite graphs have a 1-factorization.

Second, every vertex of X may be incident with an edge of multiplicity 1 and
another edge of multiplicity 2. This means the quotient graph looks like an even
length cycle in which every other edge around the cycle has multiplicity 2. Since each
edge of X corresponds to a bipartite subgraph of X that is either regular of degree 1
or degree 2, it is again easy to see that X is 3-edge-colorable.

Third, X may be a cubic graph. Since G/N is also solvable, we know that X is
3-edge-colorable by induction. Each color class lifts to a 1-factor of X so that X is
3-edge-colorable too.

Thus we may assume that every nontrivial normal subgroup of G has nonempty
intersection with S.

If the group (a) generated by a contains a nontrivial normal subgroup N, then
b & N, as this'would imply that b € (a), that is, that G is abelian (cyclic). By the
above assumption, a € N, so (a) = N. This implies that X itself is a generalized
Petersen graph. F. Castagna and G. Prins [1] proved that all generalized Petersen
graphs, other than the Petersen graph, are 3-edge-colorable. The Petersen graph is
not a Cayley graph [4, p. 322]. Thus, we may assume that (a) contains no nontrivial
normal subgroups of G.

We now use the previous assumption to reach two useful conclusions. If ba* = a’b
for some 4,5 € {1,2,...,r — 1}, then (a’, a’) is a normal subgroup of G contained in
(a). By assumption we know this is not the case. Thus we conclude that

1. b does not commute with any ¢ fori =1,2,...,7— 1 and
2. batb & {a) fori=1,2,...,7 = 1.

Since G is solvable, G contains a nontrivial abelian normal subgroup N (see |2,
Prob. 11, p. 107]). We know that SN N # 0 and S € N (since X is connected). We
consider the case that a € N and b ¢ N. Then [G : N] = 2. Since N is abelian,
la| = {bab| = r and by 2 above, N = (a) x (bab). Thus, |N| = r?. Note that

N = (a) U bab{a) U ba?b{a) U- - - U ba"~'b({a)
and
bN = b{a) U ab{a) U a®b(a) U---Ua""1b(a).
Denote the cycle of batb{a) by
Ci = 03,001 . . - Vi,r—1%i,0,
where v; ; = ba'ba’ for i,j € {0,1,...,7 — 1}, and denote the cycle of a’b{a) by
D; = us0Ui,1 - - - Ui r—1%i0,

where i,5 € {0,1,...,7 — 1}. The b-edge incident with v; ; = ba‘ba’ is also incident
with u;; = a’ba’ = ba'ba’b because N is abelian and both ba’b and a’ are in N.
Let P, = C; — Vi,iVi 41 and @Q; = D; — u;jqui; for ¢ =0,1,...,7r—1 and with
subscripts reduced modulo . Then the union of all paths P; and Q; and the b-
edges v; jUi i, Viit1Uit1,4, ¢ = 0,1,...,7 — 1, is a Hamilton cycle of X. Thus, X is
3-edge-colorable.
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We now consider the case that b € N and a ¢ N. Observe that (b) # N, for
otherwise, aba~! € N implies that ab = ba, which in turn implies that G is abelian.
Now N is abelian and b € N, so by 2 above, a* & N for any k = 1,2,...,7 — 1 and
a’ba™t # a’ba~? for i # j (otherwise, a*~7 commutes with b).

Consider an auxiliary Cayley graph X’ = X(N;8’) on N with ' = {b,aba"'}.
Both elements have order 2 and define edges in a Cayley graph on an abelian group.
Thus, X' consists of vertex-disjoint 4-cycles. A typical 4-cycle has the form y, yb,
ybaba~1, ybaba~'b,y. Back in the original graph X, each vertex z of a 4-cycle cor-
responds to the r-cycle z, za, za?,...,za" . Notice that there is an edge joining yba
and ybaba~la = ybab and an edge joining ya and ybaba~lba = yab. Hence, the typ-
ical 4-cycle mentioned above lifts to a 4r-cycle in X by removing the edges (y,ya),
(yb, yba), (ybaba~?, ybaba~la), and (ybaba~'b,ybaba~1ba) from the four r-cycles cor-
responding to the vertices of the 4-cycle and by replacing them with the four edges
(y,yb), (ybaba~!,ybaba=1b), (ya,ybaba~1ba), and (yba,ybaba='a). Hence, X has a
2-factor made up of cycles of length 4r, so X is 3-edge-colorable. This completes the
proof of the theorem. 0
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