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FINDING CRITICAL INDEPENDENT SETS AND CRITICAL VERTEX
SUBSETS ARE POLYNOMIAL PROBLEMS*

CUN-QUAN ZHANGH

Abstract. An independent set J, of a graph G is called critical if
.| = IN(J)| =max {|J| — |N(J)| : Jis an independent set of G },
and a vertex subset U, is called critical if
| Ul — IN(U.)| = max {|U| — |[N(U)| : Uis a vertex subset of G }.

In this paper, it will be shown that finding a critical independent set and a critical vertex subset of a graph are
solvable in polynomial time.
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1. Introduction. It has been proved by mathematicians that finding a maximum
independent set in ceftain kinds of graphs is solvable in polynomial time (for example,
line graphs, bipartite graphs, circle graphs, circular arc graphs, and claw free graphs (see
[GI])), but it is well known that it is an NP-complete problem for general graphs (see
[GIS]). In this paper, we will investigate another problem—finding a certain kind of
independent set in general graphs. An independent set J. of a graph G is called critical
if |J.| — |N(J.)| is the maximum of |J| — |N(J)| over all independent sets J of G,
where N(J) is the set of all vertices of G adjacent to some vertex of J. It will be proved
in this paper that finding a critical independent set of a graph is solvable in polynomial
time. Let

a.=max {|J| — |[N(J)|: Jis an independent set of G},

which is a parameter of a graph G and is called the critical independence number of G.
The critical independence number «, of a graph plays the central role in the study of
fractional independence functions and fractional matching functions of graphs [GZ].
(Itis proved in [ GZ] that the fractional independence number and the fractional matching
number of a graph G are (n — a.)/2 and (n + a.)/2, respectively, where n = | V(G)|.)

Some related problems and parameters of graphs will also be investigated in this
paper. A vertex subset U, of a graph G = (V, E) is called critical if |U.| — |[N(U)| is
the maximum of |U| — | N(U)| over all vertex subsets U of G. Let

p.=max {|U| — [N(U)|: U is a vertex subset of G }

which is a parameter of a graph G. Some similar parameters of graphs have been studied
by Woodall [WD] and Mohar [MB]. The binding number b(G) [WD] and the isoperi-
metric number i(G) [MB] of a graph G are defined as the following:

b(G)=min [w—l(U(f—)' UcV(G), U+ and N(U)# V(G)];
f(G>=min{'a|(5|)' U V(G), U# 2 and |U] s D! V‘ZG)']
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(where d(U) is the number of edges of G with one end vertex in U). Later in this paper,
it will be proved that a, = u,.

Since the empty set is an independent set, and the set of all vertices of a graph G is
also a vertex subset of G, it is trivial that

a.20 and p.20

for any graph . Note that the empty set and the entire graph are critical vertex subsets
of some connected graph G if u.(G) = 0. If we are to avoid these two trivial vertex subsets
& and V(G), we may consider the following parameter of a graph G:

p.=max {|U| = |N(D)|: UcV(G), U+ T and U# V(G)}.

But for any connected graph G and a vertex v of G, we have that N(V(G)\ {v}) =
V(G), and therefore the parameter u.(G) still has a lower bound —1. In order to get
more information about graphs, we prefer to consider only those vertex subsets U of a
graph G such that U # & and N(U) # V(G) which is similar to the definition of the
binding number of graphs. A vertex subset U of G is called proper if U# & and
N(U) # V(G). A proper vertex subset U, of G is called critical if |Up.| — |N(U,)| is
the maximum of |U| — | N(U)| over all proper vertex subsets U of G. The parameter
upc of a graph G is defined as the following:

ppe=max {|U| — [IN(U)|: U< V(G),U# Zand U+ V(G)}.

The problems that will be proved to be solvable in polynomial time are listed as the
following.

INSTANCE. Let G = (V, E) be a graph with the vertex set V and the edge set E and
k be an integer.

PROBLEM 1. Is there an independent set J of G such that

|| = IN()| =k?

PROBLEM 1 *. Find a critical independent set J. and the critical independence num-
ber a of G. (That is, to find

a.= | J.| = |N(J.)| =max {|J| — |[N(J)|: Jis an independent set of G }).
PROBLEM 2. Is there a vertex set U of G such that
|U| — |N(U)| zk?

PROBLEM 2*, Find a critical vertex subset U, and the parameter u. of G. (That is,
to find

pe=|U]| — |IN(U;)| =max {|U| — |N(U)| : Uis a vertex subset of G }).
PROBLEM 3. Is there a proper vertex subset U of G such that
Ul = IN(U)| 2k?

PROBLEM 3 *. Find a critical proper vertex subset U, and the parameter u,. of G.
(That is, to find

Bpe = | Upel = IN(Upe)| =max {|U| — IN(U)|:UcV(G),U# & and U# V(G)}).

2. Main results.

THEOREM 1. Problems 3 and 3* are solvable in polynomial time.

Before we prove Theorem 1 we would like to consider the following problems first.
Theorem 1 will be a corollary of Theorem 2.
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INSTANCE. Let G = (V, E) be a graph with the vertex set V" and the edge set E,
{u, v} be an ordered pair of nonadjacent vertices of G, and k be an integer.
PROBLEM 4. Is there a vertex subset U of G such that

uelU,v¢N(U) and
Ul = IN(U)| zk?
PROBLEM 4*. Find a vertex subset U, of G such that
|Us| — IN(U,)| =max {|U| — [IN(U)|:UcV(G),ueUand v¢N(U)}.

The vertex subset U, found in problem 4* is called (u, v)-critical subset of G.

THEOREM 2. Problems 4 and 4* are solvable in polynomial time.

The following lemmas will be used in the proof of Theorem 2.

LEMMA 3 (Hall’s Theorem [HP]). Let B = (V,, V,; E) be a bipartite graph. The
graph B has a matching covering all vertices of V-, if and only if |U| = |N(U)| for any
subset U of V,.

LEMMA 4. Let B = (V,, V,; E) be a bipartite graph. Assume that there is no matching
of B covering all vertices of V,. We will have the following conclusions:

(i) There is a subset U of V, such that |[N(U)| < |U|;

(i1) Let Uy be a subset of V, such that {Uy| — |N(Uy)| is as great as possible, then
there is a matching of the induced bipartite subgraph (Uy, (N(Uyp); E[ Uy, N(Uyp)]) covering
all vertices of N(Uy).

Note that if 4 and B are a pair of disjoint vertex subsets of a graph G, the set of all
edges joining 4 and B is denoted by E(A4, B).

Proof. The conclusion of (i) is an immediate corollary of Hall’s Theorem.

Let U be a subset of V5 such that |U| — | N(U)]| is as great as possible. Let B’ =
(U, N(U); E[U, N(U)]) be the subgraph of B induced by U U N(U). We claim that
| X] £ |[N(X)N U for any subset X of N(U). If not, let X = N(U) such that

| X|> |N(X)NUJ.
We will consider the subset ¥ = U\N(X). Note that
N(Y)=N(U\N(X)) s N(UN\X,
and
Y| = IN(Y)| 2 JUNNX)| = INCUNX| =[|U] = [lUNNX)[]1-[INU)| = | X ]
=[|UI = INCO)[1+[1 X | = [UNN(X)]]
> Ul = IN(U)|.

This contradicts the choice of Uthat | U| — | N(U)| is maximum. So by Hall’s Theorem,
there is a matching in B’ which covers all vertices of N(U). O

Proof of Theorem 2, We only prove that Problem 4 * is solvable in polynomial time.
Let G = (V, E) be a graph with the vertex set V' = {1, 2, 3, --- , n} and the edge set E.
We will consider the ordered pair of vertices (1, 2) of G and find a (1, 2)-critical vertex
subset.

Define a bipartite graph B = (X, Y; Ez) where

X= {xl’ ""xn}’
Y= {,VI,"',,Vn}, and
Eg= {(x:,y,):(i,j)is an edge of G }.
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Let V' be a subset of V' (G), then the corresponding subsets in X and Y are denoted by

X(V'yand Y (V"), respectively. For example, if V' = {i,, ---, i,}, then
X(VYy=X({iy, - ,i})={x, ", x}

and Y(V')Y=Y{{i, - ,i})={¥, ", ¥} (Here X and Y can be consid-
ered bijections mapping {1,2,---,n} onto {x,, - ,x,} and {y;, -+, y.}). If
W= {xy, -, x,}cX(or W= {y,,  , ¥} < Y), then the corresponding subset
{ii, *++, i} of V(G) is denoted by X ~'(W) (or Y (W), respectively). The set of all
neighbors of a vertex u in B is denoted by Np(u). If i is a vertex of G, then

Na(x) = {y;€Y:(x;,y)eEs} = {¥,€Y:(i,)€E(G)} = Y(N(i)).
A weight w: XU Y — [0, 2] is called a (1, 2)-proper weight of B if
w(x;)=2,
w(y2) =1,
1=w(x;)=<2 foreach vertex x;eX,
0=w(y;)=1 foreachvertex y,eY
and 0= w(x;)+w(y;)=2 foreachedge(x;,y;)€Epg.

The total weight 2, xuy w(u) of B is denoted by w(B). A (1, 2)-proper weight w,, of
B is called optimum if

Wwn(B)=max {w(B):wisa(l,2)-proper weight of B}.

It is obvious that finding an optimum (1, 2)-proper weight of B is a linear program-
ing problem. Hence it is solvable in polynomial time. The purpose of the investi-
gation of an optimum (1, 2)-proper weight w,, of B is to prove that the vertex subset
{ieV(G): wn(x;)> 1} is a (1, 2)-critical subset of G.

I. Let w,, be an optimum (1, 2)-proper weight of B and U, be a (1, 2)-critical
vertex subset of G. We claim that

n Wn(B)Z2n+ |U,| — |[N(U,)| =2n+a..
Consider the following weight w; of B:

2 ifiel,

1 otherwise

0 if jeN(U,)

1 otherwise.

wy(x;) = {

and w((y;) = {

It is easy to see that w, is a (1, 2)-proper weight of B and
wi(B)=2|U,| +(n—|U,|)+(n—|N(U,)|)=2n+ |U,| — IN(U,)]|.

By the choice of w,,, we have verified the inequality (1).
II. Let

Xp={xi: Wp(x)>1},
Yi={yi:wm(y:)<1},

Xb,:{xi:1<wm(xi)<2}’ and

Y:'= {y,—:0<w,,,(y,-)<l}.
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By the definition of (1, 2)-proper weight, it is obvious that Nz(X,) = Y;and Ng(Y,-) <
[X\X,] U X,

III. Case 1. Suppose there is a matching M in the induced subgraph B(X, U Y,)
covering all vertices of Y,-. We claim that X, is a (1, 2)-critical vertex subset in this case.
We are to adjust the weight w,, so that the new weight of each vertex in X} is two and
the new weight of each vertex in Y- is zero. If we can verify that this new weight is
optimum, by the inequality (1), it can be shown that X ' (X}) is a (1, 2)-critical vertex
set of G.

If (u, v) is an edge of M, then let ¥ = M(v) and v = M(u). The sets of vertices of
X, covered and not covered by M, are denoted by M(Y /) and X,-\M, respectively.
Thus X, U Y, = Y. U M(Y,) U (X, \M) since M covers all vertices of Y.

Consider the following weight w, of B:

2 ifveX,
w(v)=< 0 ifveY,
w,(v) otherwise.

Since any vertex of Y adjacent to a vertex x; of X, must be in Y, in which the
weight of each vertex is zero, w, is a (1, 2)-proper weight of B. Note that w,, is optimum
and the total weight w,,(B) cannot be less than w,(B). We claim that w, is also an
optimum (1, 2)-proper weight of B by proving that w,,(B) < w,(B). Since

{veXUY:w,(v)#wy(v)} =XpUY,
we must have that

Wa(B)=w2(B)= 2 [Wn(v)=w2(0)]+ 2 [Wn(v) = w2(V)]

veXpr veY;.
= 2 {Wn(0) = w2 (V)1 + [wn(M()) — w2 (M(v))]}
ve Yy
+ 2 [wa(v)=wa(v)].
veXp\M

Here
[Wm(0) = w2 (V)] + [wm(M(v)) — w2 (M(v))]
= [Wm(0) + wn(M(0))] = [w2 (V) + wo(M(v))] =2 -(0+2)=0
for any v € Y,-, and
W(v)—wy(v)<2-2=0

for any v € X, \M. This implies that w,,(B) — wy(B) = 0. Therefore w;, is also an
optimum (1, 2)-proper weight of B and w,,(B) = w,(B). The total weight of w, is

w2 (B)=2| Xp| + | X\ Xp| + | Y\Y].
Since Np(X,) € Y,, we must have that
Wi(B)=w2(B)E2| Xp| +(n— | X [)+(n— [N(Xp)|)=2n+ | Xp| — N(Xp)|
=2n+ | X (X)) | — IN(XH(X3))] = 2n+ a.(by the definition of a,).

By (1), all equalities hold, and therefore X '(X;) = {i€ V(G): Wnu(x;)> 1} is a
(1, 2)-critical vertex subset of G.
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IV. Case 2. If there is no matching of B(X,- U Y;) covering all vertices of Y;-, by
Lemma 4, there is a subset Y, of Y;- such that: (i) | Y,| > | Na(¥,) N X,-| and, (ii) there
is a matching M’ in the induced bipartite subgraph B(Y, U [ Nz(Y,) N X,-]) covering all
vertices of Npz(Y,) N X;.. We are to adjust the weight w,, so that the new weight of each
vertex in Y, U [Np(Y,) N X, ] is 1. We will find that the new weight is greater than w,,.
It will contradict that w,, is optimum.

Consider the following weight wy;

1 ifveY,U[Np(Y,)NXy]
wi(v) = _
w,,(v) otherwise.

The weight w; is (1, 2)-proper since x; ¢ N(Y,-) and any vertex adjacent to a vertex of
Y, must be in [ X\ X,] U [ Np(Y,) N X,-] in which the weight of each vertex is one. Note
that w,, is an optimum (1, 2)-proper weight of B, thus the total weight of w,, cannot be
less than the total weight of w;. Since

{veV(B):wm(v)#wy(v)} S Y,U[Np(Y,) N Xp]

=[Na(Yo)N X, JUM'[Np(Yo) N Xp JU[Y,\M'],

where M'[Np(Y,) N X,-} and [Y,\M'] are the sets of vertices of Y, covered and not
covered by M’, respectively, we must have that

Wm(B)—w3(B)= 2 [Wim(0) = w3 (V)] + 2 [Wim(V) — w3(D)]

ve Ng(Y,) N Xp- veY,

= 2 A0 =w ()] + [wn(M(v)) - wi(M(v))]}

veNg(¥,) O\ X

+ 2 [wWa(v)—ws(v)].

ve Y,\M’
But
[Wm(0) = w3(0) ]+ [Wn(M(v)) — w3(M(v))]

= [Wim(0) + Wi (M(0))] = [w3(v) + w3 (M(v))]=2—-(1+1)=0
for any v € Ny(Y,) N X;-, and

Wh(v)—ws(v)<1—-1=0

for any v € Y,\M'. Since |Y,| > |Ns(Y,) N X, |, the set Y,\M' is not empty and we
have that w,,(B) — w3(B) < 0. This contradicts that w,, is optimum and completes the
proof of the theorem. O

Proof of Theorem 1. For any ordered pair of nonadjacent vertices { #, v} of G, by
Theorem 2, we can find a (u, v)-critical subset in polynomial time. The (u, v)-critical
subset is denoted by Uc,.). Then choose a (u,, v,)-critical vertex subset Ucqy,y,)
such that

‘ UC(uo,ua) I - |N( UC(uo,v,,))l = max { | UC(u,v) l - IN( UC(u,u))l :(u; ‘D) are an ordered
pair of nonadjacent vertices of G }

which is a proper critical subset of G desired in Problem 3 *. The total cost of finding a
critical proper vertex subset is polynomial since the cost of finding a (u, v)-critical ver-
tex subset is polynomial and the number of pairs of nonadjacent vertices in G is at
most (3). O
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THEOREM 5. Problems 2 and 2* are solvable in polynomial time.

Proof. Let G = (V, E) be a graph. Consider a new graph G’ by adding two isolated
vertices x, y, to G. Let U, be an (x, y)-critical subset of G'. Obviously, x, y € U, and it
is clear that U\ {x, y} is a critical subset of G.

Alternating proof of the theorem. Define a bipartite graph B = (X, Y; Eg) where X
={x, ", X%}, Y={w, - ,ya}and Ep= {(x;, ¥;): (i, ) is an edge of G }. Assign
a weight w to the vertex set of B such that w: XU Y — [0, 2] and

1=w(x;)=2 for each vertex x;€X,
0=w(y)=1 for each vertex y;€Y
and 0=w(x;)+w(y;)=<2 foreach edge (x;,y;)€Ep.
The total weight 2, xuy w() is denoted by w(B). Let
Wwnm(B)=max { w(B):w is a weight of B satisfying the above definition }.

By an argument similar to the proof of Theorem 2, we can prove that the set Vj, =
{ie V(G): wu(x;) > 1} is a critical vertex subset of G. O

THEOREM 6. Problems 1 and 1* are solvable in polynomial time.

Before the proof of Theorem 6, we will prove a Theorem by which Theorem 6 is
an immediate corollary.

THEOREM 7. Let G = (V, E) be a graph.

(1) Let U, be a critical vertex subset of G and T, - - - , Ty be all nontrivial components
of the induced subgraph G(U,). Then J = V(UN[V(T)U --- U V(T,)] is a critical
independent set of G and | J| — |N(J)| = |U.| — |IN(U.)|.

(i) max {|J| — |N(J)| : J is an independent set of G} = max {|U| — |[N(U)| :
U is a vertex subset of G}. That is, any critical independent set is also a critical vertex
subset of G and therefore a. = u..

Proof. 1t is obvious that

(2) 0=a.=max {|J| — |[N(J)|: Jis an independent set of G }

=max {|U| — |N(U)|:Uis a vertex subset of G } = .- * -

since any independent set is a vertex subset of G.

Let U. be a critical vertex subset of G. The theorem is trivial if U, is an empty set.
Assume that U, is a counterexample to the theorem containing a minimum number of
vertices. By this assumption, U, cannot be an independent set of G. Let T be a nontrivial
component of the induced subgraph G(U,). It is clear that V' (T') = N(T) since T is not
a singleton. Thus

|UNT| = IN(UND)| 2[|Ue| = I TIT=[IN(U)| = [ T|1= | Ue| = IN(Ue)].

It implies that U\ T is also a critical vertex subset of G which contains less vertices than
U.. It contradicts the choice of U, and therefore completes the proof of the theorem. O

Proof of Theorem 6. Let U, be a critical vertex subset of G. Let T, - -+, T, be all
nontrivial components of the induced subgraph G(U.). Then by Theorem 7,
UN{T,, ---,T,}isacritical independent set of G. Since finding a critical vertex subset
U, and deleting all vertices of U, incident with some edge of G( U, ) need only polynomial
cost, finding a critical independent set is solvable in polynomial time.

Alternating proof of the theorem (also see [GZ]). Consider a weight w: V(G) -
[0, 1] such that

O=w(v)=1 for each vertex v of G

and w(u)+w(v)=1 foreachedge(u,v)of G.
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The total weight 2, (g w(u) is denoted by w(G). Let
wn(G)=max { w(G):w is a weight of B satisfies the above definition }.

Obviously finding w,, is a linear programing problem. By an argument similar to the
proof of Theorem 2, we can prove that the set V, = {v € V(G) : w,,(v) > 1} is a critical
independent set of G. O

(Note that the weight w defined above is called a fractional independence function
of a graph G which was introduced by Domke, Hedetniemi, and Laskar in [DHL] and
by Grinstead and Slater in [GS2], and was studied by Grinstead and Slater in [GS1]
and by Goldwasser and Zhang in [GZ].)
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