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METHOD FOR DATA CLUSTERING AND
CLASSIFICATION BY A GRAPH THEORY
MODEL—NETWORK PARTITION INTO
HIGH DENSITY SUBGRAPHS

REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent
Application Ser. No. 60/677,655, filed May 4, 2005, the entire
content of which is incorporated herein by reference.

STATEMENT OF GOVERNMENT RIGHTS

Research carried out in connection with this invention was
supported in part by National Security Agency Grant Nos.
MDA904-01-1-0022 and MSPR-03G-023. Accordingly, the
United States government may have certain rights in the
invention.

REFERENCE TO COMPUTER PROGRAM
LISTING APPENDIX

This application includes a computer program listing
appendix on two duplicate compact discs. Each compact disc
includes a single file named “clustering.txt,” created May 1,
2006. The program listing is in C++ language and the size of
the file is 57 kilobytes. The contents of the computer program
listing appendix are hereby incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to methods, processes and
systems for working with and analyzing data sets and, more
specifically, for clustering a data set into subsets of closely
related objects.

BACKGROUND OF THE INVENTION

Many applications require partitions of a large graph/net-
work into smaller communities. Qualitatively, a community
is defined as a subset of vertices within the graph such that
connections between the vertices are denser than connections
with the rest of the network. The detection of the community
structure in a network is generally intended as a procedure for
mapping the network into a tree. In this tree (called a dendro-
gram in the social sciences, or a hierarchical tree in biology),
the leaves are the vertices whereas the edges join vertices or
communities (groups of vertices), thus identifying a hierar-
chical structure of communities nested within each other.

Partitioning graphs into communities and searching for
subgraphs with high internal density within graphs/networks
is of practical use in various fields: parallel computing, the
Internet, biology, social systems, traffic management, etc.

For example, the following is an application in biology:
Complex cellular processes are modular, that is they are
accomplished by the concerted action of functional modules.
These modules are made up of groups of genes or proteins
involved in common elementary biological functions. One
important and largely unsolved goal of functional genomics is
the identification of functional modules from genomewide
information, such as transcription profiles or protein interac-
tions. To cope with the ever-increasing volume and complex-
ity of protein interaction data, new automated approaches for
pattern discovery in these densely connected interaction net-
works are required. Cluster analysis is an obvious choice of
methodology for the extraction of functional modules from
protein interaction networks. (See Detection of Functional
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2

Modules From Protein Interaction Networks, by Pereira-
Leal, etc., Proteins, 2004; 54:49-57.)

A second example comes from the study of social net-
works: It is widely assumed that most social networks show
“community structure”, i.e., groups of vertices that have a
high density of edges within them, with a lower density of
edges between groups. It is a matter of common experience
that people divide into groups along lines of interest, occu-
pation, age, etc. (See The structure and function of complex
networks, By Newman, SIAM Review 45, 2003; 167-256)

Due to the fact of its importance in applications, many
clustering methods/algorithms have been discovered and pat-
ented (such as U.S. Pat. No. 5,040,133 Feintuch, et al., U.S.
Pat. No. 5,263,120 Bickel, U.S. Pat. No. 5,555,196 Asano,
U.S. Pat. No. 5,703,959 Asano, et al., U.S. Pat. No. 5,745,749
Onodera, U.S. Pat. No. 5,832,182 Zhang, et al., U.S. Pat. No.
5,864,845 Voorhees, et al., U.S. Pat. No. 5,940,832 Hamada,
et al., U.S. Pat. No. 6,003,029 Agrawal, et al., U.S. Pat. No.
6,038,557 Silverstein, U.S. Pat. No. 6,049,797 Guha, et al.,
U.S. Pat. No. 6,092,072 Guha, et al, U.S. Pat. No. 6,134,541
Castelli, et al., U.S. Pat. No. 6,195,659 Hyatt, U.S. Pat. No.
6,269,376 Dhillon, et al., U.S. Pat. No. 6,353,832 Acharya, et
al., U.S. Pat. No. 6,381,605 Kothuri, et al, U.S. Pat. No.
6,397,166 Leung, et al., U.S. Pat. No. 6,466,946 Mishra, et
al., U.S. Pat. No. 6,487,546 Witkowski, U.S. Pat. No. 6,505,
205 Kothuri, et al, U.S. Pat. No. 6,584,456 Dom, et al., U.S.
Pat. No. 6,640,227 Andreev, U.S. Pat. No. 6,643,629
Ramaswamy, et al., U.S. Pat. No. 6,684,177 Mishra, et al.,
U.S. Pat. No. 6,728,715 Astley, etal., U.S. Pat. No. 6,751,621
Calistri-Yeh, etal., U.S. Pat. No. 6,829,561 Keller, et al., etc.),
and some algorithms have been embedded in various popular
software (such as, BMDP, SAS, SPSS-X, CLUSTAN,
MICRO-CLUSTER, ALLOC, IMSL, NT-, NTSYS-pc, etc.).

In general, almost all existing clustering methods can be
classified as one of two types: agglomerative or divisive,
depending on how the hierarchical trees are constructed and
how vertices are grouped together into communities. (Ex-
amples of agglomerative clustering algorithm are found in
U.S. Pat. No. 5,040,133 Feintuch, et al., U.S. Pat. No. 5,832,
182 Zhang, et al., U.S. Pat. No. 6,049,797 Guha, et al., U.S.
Pat. No. 6,092,072 Guha, et al, U.S. Pat. No. 6,134,541 Cas-
telli, et al.,, U.S. Pat. No. 6,195,659 Hyatt, U.S. Pat. No.
6,397,166 Leung, et al., etc. Examples of divisive clustering
algorithm are found in U.S. Pat. No. 6,038,557 Silverstein,
U.S. Pat. No. 6,353,832 Acharya, et al., U.S. Pat. No. 6,381,
605 Kothuri, et al, U.S. Pat. No. 6,466,946 Mishra, et al., U.S.
Pat. No. 6,505,205 Kothuri, et al, U.S. Pat. No. 6,640,227
Andreev, U.S. Pat. No. 6,684,177 Mishra, et al.; etc.)

SUMMARY OF THE INVENTION

The present invention provides a computer based method
and a system for working with and analyzing data sets and,
more specifically, for clustering a data set into subsets of
closely related objects. The “objects” may be physical
objects, such as people, genes or proteins, or portions of
physical objects, or may represent less tangible data. A “level
of relatedness” between objects of interest may represent any
type of relationship between the “objects”, such as how
closely related they are or how similar they are. Alternatively,
the level of relatedness may represent how dissimilar objects
are, depending on the application.

The present invention is a computer based method, or may
take the form of a general or special purpose computing
system that implements the method. The invention may also
take the form of a computer readable medium having com-
puter-executable instructions embodied therein for perform-
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ing the computer based method. Data to be processed by the
method or system may be entered by a user, provided as an
output from another device or system, or may be stored on a
computer readable medium or computing device.

Some embodiments of the computer based method make
use of a practical (polynomial) algorithm to detect all sub-
graphs whose dynamic density is k (for a given integer k). The
algorithm, uses a well-defined measure of density and
achieves its goal optimally; that is, it finds exactly the optimal
solution, not just an approximation.

According to a first embodiment of the present invention, a
computer-based method of clustering related data is pro-
vided. The data represents a plurality of objects of interest and
information about levels of relatedness between pairs of the
objects. The computer based method comprises:

establishing on a computer a weighted graph G having a

plurality of vertices and a plurality of weighted edges
each joining a pair of the vertices, each vertex represent-
ing an object of interest and each edge e having an
integer weight w(e) representing a level of relatedness
between the corresponding objects of interest and rep-
resenting a set of w(e) parallel edges e joining the pair of
vertices;

finding, on the computer, for a given integer k, all possible

subgraphs H of G satisfying the following dynamic
“edge-to-vertex” ratio:

. |E(H/[P)

k
Y TA-T

where the minimum is taken over all possible partitions
P of the vertex set of H, and E(H/P) is the set of edges
crossing between parts of P;

identifying each subgraph H found as a level-k community
if it is maximal, wherein a subgraph H is defined as
maximal if there are no larger subgraphs containing it
that satisfy the dynamic “edge-to-vertex” ratio for the
same k; and

outputting from the computer all level-k communities.

In some versions, the level of relatedness between objects
of interest represents a similarity or closeness between the
objects of interest.

In the computer based method, finding all possible sub-
graphs H of G may be accomplished by finding the maximal
subgraph H that, for every edge e, H-e contains k edge-
disjoint spanning trees.

Preferably, G is treated as the only level-0 community and
finding all possible subgraphs H of G is accomplished by
finding all level-k communities within a previously found
level-(k-1) community, and repeating this finding step for
k<—k+1 until only single vertices remain. Finding all level-k
communities within a level-(k-1) community H may be
accomplished by:

a)letting T,, T,, . ..
of H;

b) finding a spanning forest T, in

, T;_, be edge-disjoint spanning trees

k-1
H-|_JET);
i=1

¢) finding an edge e that is not used up in the set of T, for all
i=1, ..., k, the edge being a seed edge;
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d) establishing an edge subset B,,, starting with p=1, which
initially contains the seed edge e;

e) expanding the subset B, recursively, for each T, and
each '€ B, by adding all edges e* of any circuit in T,+¢';

f) repeating step (e) until either;

(Case 1) B, connects two unconnected portions of Ty; or

(Case 2) B, does not connect two unconnected portions of

T, and, for every T, and every e'E B, the circuit in T +¢'
contains no edge joining the same vertices as any edge in
B,;

g) if Case 1 of'step () occurs, adjusting the set of spanning
forests {T,, T, . .., T,} and expanding the spanning forest T,
and, thereafter, repeating step (c) for the adjusted set of forests
T, T,, ..., T}

h) if Case 2 of step (f) occurs, storing the subset B, and
setting p<—p+1 and repeating step (c) with an edge e that also
does not join the same vertices as any edge in any of B,
B,,...B,_;;

1) merging B,S that overlap; and

j) outputting the set of subgraphs induced by stored subsets
B, resulting from step (i), each of which is a level-k commu-
nity of G and contained in H.

Expanding the forest T, as required in step (g) may be
accomplished by recording a track of replacement for every
edge of B, and then adjusting the set of forests {T|, T,, .. .,
T,} by adding the seed edge, thereby expanding the spanning
forest T, by connecting unconnected portions of T,. Record-
ing the track of replacement for every edge of B, may be
accomplished by recording the track of replacement for the
seed edge e by initializing sequences I(e)=0 and S(e)={e},
and recording the track of replacement for each edge e* in the
circuit of T,+e' by sequences 1(e*)=I(e")i and S(e*)=S(e")e'.

Expanding the forest T, as required in step (g) may include
letting €' be the edge of B, joining two unconnected portions
of T, and letting I(e")=i,1, . . . i;,_; and S(e')=e,e, . . . ¢, where
e,—the seed edge, and setting T,<—T,+e' and for each
r=1,..., h-1, setting T, < T, +e,~e,, ;.

According to another embodiment of the present invention,
a system is provided for determining a level of relatedness of
data within a dataset. The system includes a computer pro-
cessor, a memory in communication with the processor, an
output device in communication with the processor, and a
computer readable medium having computer-executable
instructions embodied therein. The computer executable
instructions perform a method comprising:

establishing a weighted graph G having a plurality of ver-
tices and a plurality of weighted edges each joining a
pair of the vertices, each vertex representing an object of
interest and each edge having an integer weight w(e)
representing a level of relatedness between the corre-
sponding objects and representing a set of w(e) parallel
edges e joining the pair of vertices;

finding, for a given integer k, all possible subgraphs H of G
satisfying the following dynamic “edge-to-vertex” ratio:

. |E(H[P)

k
-1

min
Y P

where the minimum is taken over all possible partitions
P of the vertex set of H, and E(H/P) is the set of edges
crossing between parts of P;

identifying each subgraph H found as a level-k community
if it is maximal, wherein a subgraph H is defined as
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maximal if there are no larger subgraphs containing it
that satisfy the dynamic “edge-to-vertex” ratio for the
same k; and
outputting, on the output device, all level-k communities.
The processor is operable to execute the computer-execut-
able instructions embodied on the computer readable
medium.
In yet another embodiment of the present invention, a
computer readable medium is provided, having computer-
executable instructions embodied therein for performing a
method of clustering related data representing a plurality of
objects of interest and information about levels of relatedness
between pairs of the objects. The method comprises:
establishing on a computer a weighted graph G having a
plurality of vertices and a plurality of weighted edges
each joining a pair of the vertices, each vertex represent-
ing an object of interest and each edge having an integer
weight w(e) representing a level of relatedness between
the corresponding objects of interest and representing a
set of w(e) parallel edges e joining the pair of vertices;

finding, on the computer, for a given integer k, all possible
subgraphs H of G satisfying the following dynamic
“edge-to-vertex” ratio:

. |E(H/[P)

k
Y TA-T

where the minimum is taken over all possible partitions
P of the vertex set of H, and E(H/P) is the set of edges
crossing between parts of P;
identifying each subgraph H found as a level-k community
if it is maximal, wherein a subgraph H is defined as
maximal if there are no larger subgraphs containing it
that satisfy the dynamic “edge-to-vertex” ratio for the
same k; and
outputting from the computer all level-k communities.
The above described embodiments can be further revised
to achieve an improved complexity, as will be clear to those of
skill in the art, based on a review of the following. Other
embodiments and variations on the present invention will also
be clear to those of skill in the art based on a review of the
following specification and Figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a visual representation of a simple dataset includ-
ing vertices and connections between the vertices, with each
of the connections having a weight associated therewith;

FIG. 2 is a visual representation of another dataset;

FIG. 3 is a visual representation of a starting graph and a
pair of cluster communities into which the graph or dataset
has been partitioned;

FIG. 4 is a visual representation of a spanning tree for the
dataset of FIG. 3, along with a visual representation of the set
of unused unsaturated edges associated with the dataset;

FIG. 5 is a visual representation of the level-0 through
level-3 communities resulting from application of the present
invention to the dataset of FIG. 3;

FIG. 6A is a tabular representation of the results shown in
FIG. 5;

FIG. 6B is a hierarchical tree representing the example of
FIGS. 3-6;

FIG. 7 is a flowchart illustrating the first embodiment of an
algorithm according to the present invention;
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FIGS. 8A-8C are flowcharts representing the algorithm of
FIG. 7 in “plain language™;

FIG. 9 is a visual representation of a dataset to be used in
example processing according to the algorithm of FIG. 7 and
FIGS. 8A-8C;

FIG. 10 is a visual representation of an initial edge set, E;

FIG. 11 is a visual representation of a first maximal span-
ning forest or tree, T ;

FIGS. 12A and 12B are visual representations of alterna-
tive spanning trees;

FIG. 13 is a visual representation of an updated edge set,
Ey;

FIG. 14 is a visual representation of the first tree, T, with
the first seed edge added thereto;

FIG. 15 is a visual representation of a first circuit, C,;

FIG. 16 is a visual representation of an updated edge set,
Ey;

FIG. 17 is a visual representation of the first tree T, with a
different edge added thereto;

FIG. 18 is a visual representation of a circuit C, formed by
addition of this edge;

FIG. 19 is a visual representation of tree T, with yet a
different edge added thereto;

FIG. 20 is a visual representation of a circuit C, created by
addition of this edge;

FIG. 21 is a visual representation of the updated edge set,
Ey;
FIG. 22 is a visual representation of the tree T, with yet a
different edge added thereto;

FIG. 23 is a visual representation of a circuit C, created by
addition of this edge;

FIG. 24 is a visual representation of the updated edge set,
E.:

FIG. 25 is a visual representation of Graph H;
FIG. 26 is a visual representation of two trees, T, and T ;
FIG. 27 is a visual representation of the updated edge set,
Ey;
FIGS. 28 A and 28B are visual representations of two alter-
native trees;

FIG. 29 is a visual representation of the tree T, or T, with
an edge added thereto;

FIG. 30 is a visual representation of the circuits resulting
therefrom;

FIG. 31 is a visual representation of the tree T, or T, with
a different edge added thereto;

FIG. 32 is a visual representation of the tree T, or T, with
yet a different edge added thereto;

FIG. 33 is a visual representation of Graph H;

FIG. 34 is a visual representation of three trees, T, T, and
Ts;

FIG. 35 is a visual representation of the updated edge set,
Ey;

FIG. 36 is a visual representation of the tree T, or T, with
an edge added thereto;

FIG. 37 is avisual representation of the tree T with an edge
added thereto;

FIG. 38 is a visual representation of circuit resulting there-
from;

FIG. 39 is a visual representation of adjustments to trees T
and T5;

FIG. 40 is a visual representation of the adjusted trees;
FIG. 41 is a visual representation of the updated edge set,
E.:

FIG. 42 is a visual representation of the trees T, T, and T,
with an edge added thereto;

FIG. 43 is a visual representation of Graph H;

FIG. 44 is a visual representation of two trees, T, and T,;
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FIG. 45 is a flowchart showing an alternative embodiment
of the algorithm according to the present invention; and

FIG. 46 is a schematic representation of a system according
to a further aspect of the present invention, the system includ-
ing a processor, a memory, an output device and a computer
readable medium.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

General Overview

Some embodiments of the present invention provide
improved methods, systems and algorithms for data cluster-
ing. These embodiments use mathematical graph theory tech-
niques to provide a practical method of clustering a large
dataset into subsets of the most closely connected objects.
That is, when a dataset is made up of a network of input
objects (such as the inhabitants of a town) that have associated
levels of connection between them (such as the number of
interactions between two inhabitants), the algorithm clusters
these objects into subsets such that those subsets are inter-
connected to a proscribed degree and are as inclusive as
possible. Embodiments of the present invention accomplish
this by considering the objects as vertices in a weighted graph
(in the graph theory sense) and the level of connectivity
between a pair of objects as the number of edges connecting
those vertices (also called the weight of the edge). Specifi-
cally, it considers the problem in terms of building trees
spanning the graph (connecting every point with no unneces-
sary edges) and then, by means of unsaturated/used edges
(that is, edges whose multiplicity/weight is greater than the
number of times it appears in the set of trees), building the
clusters by collecting well-connected edges (and, by exten-
sion, building a cluster of their associated vertices/objects) in
a way that is computationally practical and also produces the
unique cluster sets of a given connectedness. This is done
such that the result is independent of any ordering imposed on
the data in the input process.

More specifically, embodiments of the present invention
rely on the concept of dynamic density to define connected-
ness within a data subset (that is, the associated subgraph).
Though dynamic density is based on a definition that consid-
ers all possible ways to further partition the subset in ques-
tion, embodiments of the present invention are able to build
both the trees and the cluster sets iteratively with a guaranteed
minimum dynamic density in an efficient manner. These
embodiments do this by building and maintaining a set of
edge-disjoint trees in such a way that the number of such trees
spanning a subset while leaving at least one unsaturated edge
can be used as a measure of the connectivity (that is, it is
equivalent to the dynamic density). The unsaturated edges,
that is those edges not being used by any spanning tree, are
then utilized both to build the next tree within a currently
considered set (if possible) and as starting points for finding
internal data clusters of a higher level of connectivity than at
the previous iteration of the process.

The process of the present invention is able to manipulate
trees efficiently because it has a “fixed reference frame”. That
is to say, even as the algorithm searches through edges for
ones to include in the potential cluster under construction,
adjusting the trees as it goes, the set of new edges to be
considered for inclusion is not affected by these necessary
adjustments of the trees that are central to the process.

Simple Example to Illustrate the General Concept
To explain the main features of the method in less complex
mathematical language, one might say the method of this
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invention is a method for partitioning a dataset made up of a
set of items and a set of quantified relations between those
items, each relation being a positive integer (1,2,3,...). A
small example would be the items {a,b,c} and relations {ab}
weight 2, {ac} weight 5, {bc} weight 1. FIG. 1 shows a
representation of this data network, with the items as vertices,
the connections as lines connecting them, and the weights of
the connection written next to the associated edge; this is a
representation of a weighted graph (a mathematical abstrac-
tion made up of vertices, edges between some pairs of those
vertices and positive integers associated with those edges, the
“weights” of the edges). These weights can be thought of as
indicating multiple edges connecting the pair of vertices in
question; looking at the example in FIG. 1, there are a weight
5 edge connecting {a} and {c}, a weight 2 edge connecting
{b} and {c} and weight 1 edge connecting {b} and {c}. Note
that it is not necessary for every item to have a positive
relation to every other item. In FIG. 2 is shown a representa-
tion of objects {a,b,c,d} with relations {ab} weight 2, and
{ac} and {ad} both weight 1. The missing edges may be
thought of as edges with a weight zero. For example, the edge
{cd} has a weight of zero, and therefore is not shown.

To see what partitioning by the number of connections
looks like, a slightly more complicated graph is useful. FIG.
3 shows a starting graph with items {a,b,c,d,e} and relations
or connections {ab} weight 2, {ac} weight 3, {bc} weight 2,
{bd} weight 1, and {de} weight 2. FIG. 3 also shows this
graph partitioned into two more closely connected clusters or
communities. The first community includes items {a,b,c} and
relations or connections {ab} weight 2, {ac} weight 3, and
{bc} weight 2. The second community includes items {d,e}
and relations {bd} weight 1, and {de} weight 2. In this
example, to partition as indicated makes intuitive sense: {a, b,
¢} makes one subset of closely connected points and {d, e}
makes another. As will be shown below, the present invention
does indeed partition this very simple data set in this manner.
However, a complication that can be seen even in this very
simple example is that {a} is connected to {c} both directly,
by a triple edge, and indirectly, by a double path using two
double edges connecting through {b}. To deal with this com-
plication, a more sophisticated definition of the connected-
ness, “dynamic density”, is employed in this invention. The
formal mathematical definition will be presented at a further
stage of this patent description.

As stated previously, this invention makes use of a list of
spanning trees to calculate the connectedness of a graph. A
spanning tree is a subgraph (a graph that is a subset of the
main graph’s edges and vertices) that connects all vertices of
the graph to be spanned using a minimum number of edges,
that is one less than the number of vertices. An alternative
definition of a spanning tree is a subgraph that connects all the
vertices of a graph but contains no circuit (a circuit can be
thought of as two paths between the same pair of vertices).
FIG. 4 shows a spanning tree (all edges for a tree are always
of' weight 1) for the dataset depicted in FIG. 3 and the unused
unsaturated edges which are critical for this invention.

The spanning tree on the left is not unique. Instead of the
edge {ab}, {ac} could have been used to connect {a} to the
rest of the vertices. Thus a particular spanning tree or set of
spanning trees might turn out to be suboptimal. For this
reason, the present invention adjusts trees in the course of the
algorithm. It does this, however, in such a way as to not
increase the computational complexity to the point of making
the calculation unfeasible; in particular, it does not search
through all possible sets of spanning trees, but yet it produces
an optimal solution independent of what method is used to
make the trees (in fact, the algorithm can build a tree “from
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scratch”, but there are a number of standard algorithms that
can be used to efficiently start the process).

The example of FIGS. 3 and 4 will be explored in extensive
detail below, and as will clear from a complete review of this
disclosure, the present invention may process a graph as
shown on the left side of FIG. 3 to provide a series of com-
munities. A level-0 (zero) community may be thought of as
the starting dataset. However, it is assumed that the level-0
community has all of its vertices connected, which is to say
that all vertices can be connected by a maximal spanning
forest (that is, a tree). If an input graph includes 2 or more
unconnected subgraphs, each subgraph is preferably treated
as a level-0 community and processed independently. A
level-1 community is a group of vertices or objects that are
each interconnected or related one level more strongly than
the vertices or objects of the level-0 community. A level-2
community is a group that is one level more strongly inter-
connected or related than a level-1 community, and so on.

For the example of FIGS. 3 and 4, the dataset may be
processed to provide several levels of communities. FIG. 5
shows communities or clusters for levels O thru 3. The output
may also be provided in tabular form, as shown in FIG. 6. The
reason that each cluster takes the form shown will become
more clear following a detailed explanation of the process
below.

Explanation of Formal Mathematical Basis for Invention

We turn now to an explanation of the formal mathematical
underpinning of the present invention. This will be followed
with an algorithm that represents one embodiment of the
present invention, described in formal mathematical terms.
The same embodiment will then be explained in more detail,
in something closer to plain English. An example using the
starting dataset of FIG. 4 will then be provided, and the
process according to this embodiment will be applied to this
dataset. Then, an algorithm that represents an additional
embodiment of the present invention will be provided.

As a prelude to the formal mathematical description, it is
necessary to define both the symbols used and the mathemati-
cal underpinning so that a precise description can be made.

Weight Graphs

In this invention, an input of a collection of related data is
presented as a graph model G with a vertex set V(G) and an
edge set E(G). Each vertex v of the graph G represents an
input object. Each edge e of the graph G is a connection
between some pair of vertices of V(G). This edge e represents
the closeness/similarity of the two objects in the input data
associated with the vertices. For the case of a weighted graph,
which is the sort frequently encountered in practical applica-
tions, each edge e has associated with it an integer weight
w(e). This weight can be thought of as representing w(e)
parallel edges connecting the pair of vertices in the graph G.

Dynamic Density
Let H be a subgraph of graph G. The dynamic density of H
is the greatest integer k such that

minIE(H/P)I
VP |P-1

where the minimum is taken over all possible partitions P of
the vertex set of H, and E(H/P) is the set of crossing edges
between parts of P.

To explain again for those not fully familiar with this math-
ematical notation, H, as a subgraph of G, is itself also a graph,
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which is a collection of vertices V(H) and edges E(H). The
vertex set, V(H), can be partitioned as P=(V, V,, .. ., V)
(where each V, represents a subset of vertices) and the set of
edges in E(H) connecting vertices of H in different V, (as
opposed to those connecting two vertices in the same V) is
written E(H/P). Said another way, H/P is a graph where each
vertex corresponds to some set of vertices V, of V(H) and each
edge corresponds to an edge of H that crosses between two
such sets. The number of edges (counting an edge e with
weight w(e) as w(e) edges) is IE(H/P)I. This is normalized to
take into account the size of P by dividing the number of
crossing edges by IPI-1, where [P is the number of sets into
which P divides V(H).

The dynamic density is a well-defined way to quantify how
internally connected a subgraph H is. Ifk is very high, then all
parts of H are closely connected: no matter how one subdi-
vides H, those subdivisions are closely connected to each
other. If dynamic density k is low, some parts of H are only
loosely connected to each other.

A maximal connected subgraph H of G with dynamic
density atleast kis a level-k community. By maximal here, we
mean as inclusive as possible both of vertices from V(G)
(every vertex that can be included is included) and also of
edges (the edges E(H) are exactly those edges in E(G) that
connect vertices V(H)). So in terms of this definition, the goal
of'this invention is, for a given integer h and an input graph G,
to find a partition {V,, V,, ..., V,} of V(G) such that each
subgraph of G induced by V, is a level-h community. That is,
every subgraph of G induced by V, is of dynamic density at
least h, while every subgraph that contains some vertices from
two distinct parts V, and V, is of dynamic density less than h.

The full output of the algorithm is a hierarchical tree with
the entire input graph G as the root (the level-0 community)
constructed so that each node N in the k-th level of the tree
represents a level-k community of the input G with its chil-
dren (in the (k+1)th-level of the tree) all the level-(k+1) com-
munities contained in N. The goal as stated in the previous
paragraph would represent the hth level of this hierarchical
tree of graphs.

Background of the Mathematical Issues Associated with this
Invention

The most critical issue for algorithm design is complexity.

The number of partitions of a set of order n is call the Bell
number and is denoted by B, (see the book by P. J. Cameron
(1994) “Combinatorics: topics, techniques, algorithms™ p39,
and the book by G. E. Andrews (1984) “The Theory of Par-
titions”’ p214). It can be shown that the Bell number B,
satisfies the relation

B,>2"!

by applying recursively that the number of partitions of a set
of size n into exactly two non-empty subsets is 2”~'~1. The
above estimation of the Bell number can also be proved by
applying the following recursive formula

(see the book by P. J. Cameron (1994) “Combinatorics: top-
ics, techniques, algorithms” p 40) and that the sum of bino-
mial coefficients is 2°~" and each B,_,=1.

So one can conclude that the Bell number B,, is at least an
exponential function. That is, the complexity of the determi-
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nation of the dynamic density of a graph would be unfeasible

if it was determined by searching all possible partitions of the

vertex set.

However, the algorithm presented herein is able to deter-
mine the dynamic density with a polynomial complexity (at
most O(h*n®) and O(m?), where n=1V(G)I, the number of
vertices/data items, m=I|E(G)I, the total weight of G, and h is
the maximum dynamic density of the goal partition). That is,
the algorithm is feasible and practical.

As was described earlier, this invention is based on a
description using spanning trees which is equivalent to the
one above in terms of dynamic density. It is this that allows a
practical algorithm.

Mathematical Claim: A graph H is of dynamic density at
least k if and only if, for every edge e of H, the subgraph H-e
contains k edge-disjoint spanning trees.

The proof of this claim is presented below. First, it is
appropriate to define again here a few important technical
graph theory terms that will be needed here and in later items
describing the algorithm.

Circuit: a minimal non-empty subgraph of G in which each
pair of vertices is connected by means of two disjoint edge
sets. (That is, a circuit is just what one would expect from
the everyday use of the word.)

Forest: a graph which has no circuits.

Tree: a forest which is connected.

Spanning forest: a spanning forest T of graph H is a forest that
is a subgraph of H and that contains all vertices of H (that
is, V(T)=V(H)).

Spanning tree: a connected spanning forest.

Proof of claim: Assume that H is a graph satistying the fol-
lowing inequality:

. |EH/P)
min
VP |P-1

> k.

Let e be an arbitrary edge of H. In the graph H—e, we have the
following inequality for every partition P of V(H):

. |E(H —e)/P)|

k.
GES

VP

By a theorem in graph theory (Tutte and Nash-Williams, J.
London Math. Soc. 1961), the graph H—e contains k edge-
disjoint spanning trees. This completes one direction of the
proof.

Next, we assume that, for every edge e of H, the graph H-e
contains k edge-disjoint spanning trees T, . . . T,. If there is
a partition P of V(H) such that

minIE(H/P)I
VP |P-1

Choose e as a cross edge between two parts of P. By contract-
ing each part of P to a single vertex, each T,/P becomes a
connected, spanning subgraph of (H-e)/P, each of which
contains at least |PI-1 edges (the number of cross edges in
T,/P). The sum of all those cross edges would contradict the
above inequality; this completes the proof in the other direc-
tion.
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Sample Algorithm Illustrating a First Embodiment of
the Present Invention

Summary List of Main Variables Used in the Algorithm

B,: edges of potential level-k community. A subset of edges
from E(G).

c{(e): coverage of edge e. This tracks the number of spanning
forests in T containing edge e.

e, e, e,: edges.

E,: unsaturated edges. This is a set containing all edges e in
E(H) for which c{e)<w(e). These edges are starting points
for building potential level-k communities B, of some
level.

E(H): edges of the graph H. An edge is a connection between
some pair of vertices v, u in V(H). Edges represent connec-
tions between the pair of data points associated with v and
u. Each edge e in E(H) has a weight w(e).

f(e): flag function ofthe edges E(H). f(e)=1 indicates that the
edge e in E(H) has already been checked for addition to the
last spanning forest, T,, and for inclusion into a potential
level-k community B,; f(e)=0 indicates that the edge has
not been checked. When f(e)=1 for all unsaturated edges,
ein E, the search for new level-k potential communities of
the current subgraph H is complete.

G: the input graph; made up of vertices V(G) and edges E(G)
with weights w(e) for e in E(G).

h: maximum level of search. Search starts at k=0 and runs
through the end of k=h step.

H: subgraph currently being partitioned in an iterative pro-
cess. Atk=1, H=G. I(e): a sequence of indices of forests in
the track record. This accompanies the sequence of edges,
S(e), and is used to adjust the forests in T by swapping
edges between forests and E.

p: integer counting the current number of potential commu-
nities. Used by B,,.

S(e): a sequence of edges in the track record. This accompa-
nies the sequence of indices of forests, I(e), and is used to
adjust the forests in T by swapping edges between forests
and E,.

T: a set of spanning forests. The number of spanning forests in
T (all spanning “trees” except possibly the last) is the same
as the level of community under construction, k.

V(H): vertices of graph H. Represents a data object in some
dataset.

w(e): weight of an edge e in E(G). Integer value representing
the level of connectedness or relatedness between the two
vertices joined by e. This relatedness can represent any
type of relationship. As will be clear to those of skill in the
art, a non-integer value for relatedness can be rounded to an
integer value, all values can be multiplied by the least
common multiple of the denominators or the values can be
otherwise converted for use with the present invention. The
weight w(e) can be thought of as the number of copies of e
that can be used before e is “saturated”, completely used.

Description

The input graph G may have parallel edges. For each edge
e, the multiplicity of e is denoted by w(e) (the number of
parallel edges between a pair of given vertices). For a set T of
spanning forests (that is, a subgraph of G connecting its
vertices which contains no circuits), the coverage of an edge
e is the number of members of T containing the edge e,
denoted by c,{e). (In the algorithm, it is required that c,{e)
=w(e); that is, one can only use an edge w(e) times). The set
of edges with c,{e)=w(e) (unsaturated edges) is denoted by
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E,. These edges can be thought of as edges leftover from the
edges of G after the construction of the set T of spanning
forests.

The input graph G itself is considered as a level-0 commu-
nity if E(G)=0 (where @ indicates an empty set). E(G)=0
represents the trivial case of no connections between vertices.

This example makes use of a “flag” to act as a “stop and
restart” sign for the completion of the current community
search and the starting point of searching another community.
This flag is not “on” until the search of the current community
ends. That is, the process of searching a new “community” is
to start when the “flag” is “turned on”. In the following
sample algorithm, the “flag” is a function f associated with
each e€E(G) (where “€” means “element of”). Initially all
functions/flags f(e) are set to 0. After an edge has been pro-
cessed, its f-value is set to 1.

This example also makes use of a “Track record”. A track
record is a set of sequences (edge-sequence, index-sequence,
or other sequences) associated with each edge (or vertex) of
G. The purpose of'a “track record” is to record the track of any
possible adjustment and expansion of a set of spanning trees/
forests. In this sample algorithm, the track record is a pair of
sequences associated with each edge e: a sequence S(e) of
edges and a sequence I(e) of indices of forests.

The integer p counts the number of potential communities.
The subset B, collects edges of the current level-k-commu-
nity.

Algorithm

A sample algorithm according to a first embodiment of the
present invention is shown in flowchart form in FIG. 7, and
will be described below.

Inputs: (see SOq in flowchart) a graph G with w(e) as the
multiplicity for each edge e and an integer h.

Goal: find all level-h-communities in G.

Referring to S04 in the flowchart, the initial conditions are
set. This step sets k=0 (the program runs until k=h level is
complete), HeG (a level-0-community), T<—@ (the set of
spanning trees in H) and ¢ {e)=0 for all e in E(G).

Step 1 (see Sla in flowchart)

k—Fk+1.

(Note: if k>1, T={T,, ..., T,_,} is a set of edge-disjoint
spanning trees of H, and c,{e) is the coverage of each
edge. These are outputs of Step 6 in the previous itera-
tion of the main algorithm. When k=1, no spanning tree
preexists (i.e. this is the first iteration).

Let E be the set of edges (unsaturated edges) e with c{e)
<w(e).

Let T, be a spanning forest in H consisting of edges of E,,.
As known to those of skill in the art, there are a number
of'approaches to creating such a spanning forest, any of
which may be used with the present invention. Prefer-
ably, we apply either Kruskal’s algorithm, or, Prim’s
algorithm so that T, is maximum in the subgraph of H
induced by edges of E. (See book “Applied Combina-
torics” by Roberts and Tesman, p. 737-742).

(see S16 in flowchart)

Let T<—T+{T,} and update the coverage c,{e) and E,as
follows:

ce)«—c{e)+] ifeis an edge of T,, otherwise, c{e)=c(e)
(no change), and delete all edges e in Egsuch that
ce)y=w(e).

Go to step 2.

Step 2 (see S2 in flowchart)
For each e€ E(H), let f(e)<—0. Let p<—1 and go to Step 3.
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Step 3 (see S3a in flowchart)

If E,=0, then go to Step 5.

Otherwise, (see S35 in flowchart) pick any e,& Eyand set
the track record S(eq)<—{e,}; I(e,)<—D.

Let B,<{e,}, and let e'<e,,

Go to Substep 4-2 of Step 4 (one does not need to perform
the checks in the first part of Step 4 because e,is in Ejand
T, was constructed to be maximal relative to E,.)

Step 4 (see S4a in flowchart)
If f(e)=1 for every e€ B, (see S4b in flowchart) then
BEy<—Ey-B,,, p<—p+1 and go to Step 3.
Otherwise, (see Sdc in flowchart) pick e,& B, with
f(e;)=0.Does e, join two components of T,? If yes, go to
Substep 4-1; if no, let e'+e; and go to Substep 4-2.

Substep 4-1. (see S4-1 in flowchart) Adjust the forests as
follows:

Suppose

S(el):eils Cipp o o5 €43

I(el):“'ls Moy o es lJ't—l'

Forj=1,...,t-1,1et T, <T +e,~e, andletT, T +e,.
L 1

Also update the coverage ¢ I(je) as follows: ¢ Ae)ye—c(e)+]
if e=e,, otherwise, c{(e)=c,(e) (also delete e, from Eif
cgle)=w(ey)).

(see S4-1b in flowchart) Let f(e)<—0 for every e and
B,<0.

After the adjustment, go to Step 3.

Substep 4-2. (see S4-25b in flowchart) Fori=1,2, ..., k, T +¢'
contains a circuit C,.

For each e€ B(C,)-B,, let

S(e)<—S(e"e;

I(e)=—1(e"i.

Let

B,<B,UE(C).
Let f(e')=—1.
Go to (the beginning of) Step 4.

Step 5 (see S5 in flowchart)
Fori,j=1,2, ..., pwithizj, if V(B,)NV(B,)=0 then merge
B,and B,

Step 6 (see S6a in flowchart)

Ifk=h, (see S65 in flowchart) output all B,, each of which
is a level-h-community of G. If k<h, (see S6c¢ in flow-
chart) then repeat Step 1 for He-G[V(B,)] for every i,
and T={T,|H, T,IH, . .. T,/H}, the set of edge-disjoint
spanning trees in H (as inputs of Step 1 for the next run
of the algorithm at level (k+1)).

Further Description of Algorithm

The following is a well-known lemma in mathematics,
which plays a key role in the search for possible expansions of
the last spanning forest T, and the search for edges in the same
community.

Let T be a spanning forest of a graph G and let e be an edge
of E(G)-E(T) (an edge not contained in the forest T). Then,
either T+e s a larger spanning forest, or T+e contains a unique
circuit. Furthermore, if T+e contains a circuit C, then T+e—¢'
is again a spanning forest of G for every edge e' of the circuit
C (in other words, e' is any edge in the circuit created by
adding e to T).

Communities are detected level-by-level in G. The main
part of the algorithm is repeated for each k=1,2, . . ., h. For
each k, the algorithm detects all level-k-communities in a
previously identified level-(k-1)-community H. The follow-
ing is an explanation of the main idea of the algorithm.
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a LetT,, T, ..., T, be (k-1) edge-disjoint spanning
trees of a level-(k-1) community H, and let T, be a
spanning forest in H-E(T)-E(T,)- . .. =E(T,_)).

b. Find an unused edge e, (e, is not in any forest T;:
i=1, ..., k). Label all edges of the unique circuit con-
tained in T,+e,. Repeat this procedure for each i=1, . . .,
k. (Labeled edges are added into B,—a potential level-
k-community.)

c. Label all edges of the unique circuit contained in T,+e
(added into B,). For each edge €' of B, repeat this
procedure again until one of the following two cases
occur: (1) some new edge €' of B, joins two components
of'the last forest T,; or (2) the “flag” is turned on. (In the
sample algorithm, the “flag” is “on” when every edge in
B, is of f-value 1.)

d. If Case (1) of (¢) occurs, that is, an edge ' found in (b) or
(c)joins two components of T,. Then Substep 4-1 will be
executed for adjustment: the forest T, is therefore
expanded as follows: adding e (the unused edge given in
(b)) into some tree/forest and recursively replacing a
sequence of edges into and out of a corresponding
sequence of trees/forests (as described in Substep 4-1).
That is, a new set of spanning trees/forest is to be con-
structed in

k
Jemu {80}(Wherein 0
i=1

i=1

means union of all these edges sets, that is the union of all
E(Tl)s E(Tz)s E(T3), cee E(Tk))

e. If Case (2) of (¢) occurs, every edge of the circuit con-
tained T,+¢' is already contained in B, for every edge ¢'
of B,, and, every spanning tree/forest T;. Therefore, the
subgraph B, cannot be expanded further and is of
dynamic density at least k. At this time, Substep 4-2
stops and the algorithm returns to Step 3 to search for
another potential level-k-community B,,, .

f. Combine overlapping subgraphs with dynamic density at
least k.

Other Special Methods and Techniques in the Algorithm
Design for the Reduction of Time-Complexity

The sample algorithm described shows the most basic and
fundamental ideas of'this invention. Using the same or similar
ideas, the algorithm can be further revised or improved for the
purpose of the reduction of time complexity. Different meth-
ods or approaches include (but are not limited to):

a. Bdges of B, found in Step 4 can be contracted as a single
vertex in Step 4-2 before the processing of p<—p+1 and
the repeating of Step 3.

b. Vertices of the unique circuit in T,+e' can be labeled,
instead of the edges, and all edges with both labeled end
vertices can be used for further adjustment/expansion.
This search is processed along spanning trees instead of
all labeled edges.

Those different contraction methods are fulfilled by different
methods of keeping “track records”, setting “flags”, or defin-
ing other parameters.

Important Roles of an Extra Edge—a Special Method and
Technique in the Algorithm Design that Reduces the Time-
complexity, and Improves the Connectivity of Outputs.

One preferred part of this invention is the connectivity
measurement by the parking of spanning trees with an extra
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edge. An extra edge makes the search processing traceable,
and therefore, practically feasible. Let e be an edge not con-
tained in any of the forests T,, for every i=1, . . . k. Let
R(e,)<{e,} be the set of edges that are replaceable by e,. Add
all edges e, into R(e,) for which e, is contained in the circuit
of T+e, for some e,& R(e,). Elements of R(e,) are edges
replaceable by e,. The subgraph of G induced by R(e,) is a
subgraph with dynamic density k whenever the spanning
forests have reached their maximum.

The existence of an extra edge in a community eliminates
some less connected outputs.

Fixed Reference Frame—an Important Method and Tech-
nique in the Algorithm Design that Reduces the Time-com-
plexity and Memory Storage Complexity.

All edges that are replaceable by an extra edge ejare deter-
mined by referring to the initial set of forests {T, ..., T,}.
The correctness of the expansion procedure for the last span-
ning forest T, and the searching procedure of all edges
replaceable by e can be mathematically proved. Therefore, it
eliminates the complexity of recording and tracing all modi-
fied forests for every additional edge in R(e).

The Classification of the Method—Neither Agglomerative
Nor Divisive.

Almost all existing methods for clustering can be classified
as two types: agglomerative and divisive, depends on the
constructions of the hierarchical trees and the ways that ver-
tices are grouped together into a community. However, the
method presented in this patent is neither agglomerative nor
divisive. Instead, the hierarchical tree is built from the top (the
level-0 community—the input G itself) by dividing a level-
(k-1)-community into several level-k-communities. And a
k-community is detected by clustering vertices together
based on their cyclic connection in a spanning tree of the
level-(k-1)-community.

Special Features of the Method (About the Outputs)
Uniqueness of Outputs and Independence of Labeling

Output of a program according to embodiments of the
present invention that searches communities with dynamic
density as the measurement of density is independent of the
labeling. That is, for two different labelings of the vertex set
of the same input, the outputs of the program are the same.
Note that most existing methods, either agglomerative or
divisive, are not independent of labeling: computer programs
follow the order of the labeling in each repeating or recursive
computation and, therefore, vertices with smaller labels tend
to have a higher priority of being selected. The outputs will be
different if the input graph has some vertices with similar
local structures which are close to each other. However, the
output using the method of the algorithm of this patent is
independent of the labeling and therefore the output of the
same input is unique.

Density of Communities

For each level-k community H of G, the subgraph H is
denser inside H than its connection with any other part outside
of' H. That is, the dynamic density of H is at least k, while any
subgraph of G induced by some vertices of H and some
vertices outside of H must be of dynamic density less than k.

Well-Defined Mathematically

The special features described in the previous two para-
graphs are due to the fact that the measurement of density is
mathematically well-defined, and the optimization goal is
fully achieved by the program. Therefore, it is not an approxi-
mation approach.
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Sample Algorithm in Plain Language

The above algorithm will now be described in more detail
and in something closer to plain language. FIGS. 8A-8C
provide a “plain language” flowchart for the sample algo-
rithm, and will be described below. The steps described below
correspond both to the flowchart of FIGS. 8A-8C and the
flowchart of FIG. 7.

Step O: Initial Setup
INPUT—Step Oa: initial step, always followed by Step Ob
DATA

The data is entered in the form of a graph G. This graph is
made up of two parts:

(1) Objects are entered as vertices v, referred to collectively
as V(G). The goal of the algorithm is to find clusters of
these objects/vertices. That is, the goal is to determine
how to arrange these objects into subsets so that objects
in the same subset have at least a certain level of relat-
edness as described in the theory section. Objects in
different subsets are less related according to the rela-
tionship criterion of this algorithm, dynamic density. As
far as the actual input of the objects, in computer terms
one may assign an index to each item and keep track of
them as a list, making sure to do this in such a way that
the associated relation connecting them is maintained.
An “objects” or “objects of interest” may be physical
objects, such as people, genes or proteins, or portions of
physical objects, or may represent less tangible data. A
“level of relatedness” between objects of interest may
represent any type of relationship between the “objects”,
such as how closely related they are or how similar they
are. Alternatively, the level of relatedness may represent
how dissimilar objects are, depending on the applica-
tion.

(2). Relations are entered as edges e, referred to collec-
tively as V(QG). Theses relations indicate a “direct con-
nectedness” between a pair of objects; the informal use
of“‘direct connectedness™ just previously is in contrast to
other notions of connectedness that allow a hypothetical
object A to be connected to C if they are both connected
to an intermediary B. Each relation has a strength asso-
ciated with it that is part of the dataset; this strength is
referred to as a weight. If the relation is represented as
edge e, the weight of the edge is represented in the
algorithm as w(e); in terms of the graph G, this weight
indicates many copies of the identical edge enters the
graph G. In computer terms, one may make a second list
with its own index; each member of the list contains
information on which two objects it relates (a pair of
indexes referring back to the list of vertices/objects) and
an integer representing the weight, w(e). The relation,
weight, number of connections, or “level of relatedness”™
between objects or vertices may represent any type of
relationship between the “objects”, such as how closely
related they are or how similar they are. Alternatively,
the level of relatedness may represent how dissimilar
objects are, depending on the application.

Goal or Target level of search:

One also inputs how many levels of clustering are to be
done, which will be referred to as h. One could in prin-
ciple run the algorithm until it separated the dataset into
sets containing one object each (after which, there could
be no more refinements into smaller subsets), but since
each level has a computational cost, often one wants to
set a limit. Note that this algorithm calculates the inter-
mediate levels of clustering, so that the output of a larger
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hincludes all output that could be generated by a smaller
h. The subsets in a clustering are called “communities”.
Ultimately the goal is to partition the vertices/objects,
but it is just as accurate to refer to a graph H or just a set
of edges B as a community. In the case of H, it is the set
of vertices V(H) that correspond to the cluster of objects.
In the case of B, it is the set of vertices making up the
edges in B that correspond to the cluster of objects. The
goal of the algorithm can be stated as “Find all level-h
communities in G

The data used in the present invention may be referred to as a
database, a data set, or in other ways, and may be provided to
the system or method in any way known to those of'skill in the
art. This may be referred to herein as “establishing” the
weighted graph. The graph may be established by loading
data from a database or data set, reading data from a storage
device or computer readable medium, receiving data from
another system or process, receiving data through any type of
input device, or in any other way.

INITIALIZE MAIN COMPONENTS—Step Ob: called once
at the end of Step Oa and always followed by Step la.

(1) Current level of clustering, k, is set to 0 to indicate that
the main algorithm has run zero times so far.

(2) The main algorithm is called once for each community
produced at the previous level. In this sample it will be
assumed that the first graph, G, is a single connected
graph, and thus a level-0 community. Otherwise, for the
case where G is made up of multiple unconnected
pieces, this algorithm would be run on each such con-
nected sub-graph of G separately. In such a case, each
such initial connected sub-graphs is a level-0 commu-
nity. For convenience, in this description of the algo-
rithm, it is assumed that G is a single connected level-0
community. The first graph that needs to be processed by
the algorithm is the whole starting graph so the algo-
rithm sets the sub-graph under consideration, H, to be G,
the graph corresponding to the original dataset.

(3) This algorithm depends on manipulation of trees and
possibly one forest. (Recall, a tree is a connected forest.)
Each level uses the previous level’s forests to generate
the first k-1 trees and then creates the kth forest using
some standard algorithm to generate an initial forest
from remaining edges. In this setup phase there are no
trees or forests; therefore the list of spanning forests T is
set to “empty” (T=0).

(4) As the trees are built, it is important to keep track of how
many forests currently make use of each edge. That is,
how many total copies of each edge are used in the
complete collection of spanning forests, T. Recall that
w(e) counts the number of edges in the current graph H.
The number of edges used by the forests, then, is limited
to no more than w(e). The number of forests containing
an edge e is designated c,(e); this integer array is
referred to as “the current coverage for edge e”. Array
c{e) is initially set to 0 for each member (each edge in
(3); no edges are in use by T, as there are no trees or
forests initially.

START THE MAIN ALGORITHM—Step 1a: called the first
time from Step Ob to start the process; thereafter called recur-
sively by Step 6¢ for each level-(k-1) community found
inside the previous subgraph H; always followed by Step 2b.
(1) Update the main algorithm level counter by increment-
ing k to k+1.
(2) Note: if k>1, in addition to H, the input to the main
algorithm (if one considers the main algorithm as a
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sub-piece of the whole process) includes T={T,, . . .,
T,_,}, a set of edge-disjoint spanning trees of H, and
c,{e), the current coverage of each edge. ({T,, ..., T,_,}
“edge-disjoint” means if one considers the graph G as
containing w(e) copies of the edge e, then when different
T,, T; both use e, these are different copies of e.

Define “unsaturated edges” for the current subgraph under
consideration, H and starting trees T={T, ..., T,_; }. An
edge is unsaturated if the number of trees containing it is
less than the total number of that edge in the subgraph H
being partitioned by the loop: e in H and c{e)<w(e)
implies e unsaturated. Define E to be this set of unsat-
urated edges e in H. In computer terms, E will be alist of
edges. Note that unlike with H, only distinct edges are
being considered, not multiple copies of the same edge;
that is to say, no two edges in E,connect the same pair of
vertices.

(3) Construct T,, the kth spanning forest in H. This new
forest, T,, will be constructed only using edges in E,.
This can be done in a number of ways; this algorithm is
not dependent on which is used. For example, one can
apply either Kruskal’s algorithm, or, Prim’s algorithm
so that T, is maximum in the sub-graph of H induced by
edges of E,. (See the book “Applied Combinatorics” by
Roberts and Tesman, p. 737-742). In computer terms, we
can think of this as a call to a separate algorithm. Note,
that T, may not be a tree, that is, it may not have enough
edges to be fully connected; the algorithm will improve
on this if possible by making adjustments to all the
forests in T.

UPDATE FOR NEW FOREST—Step 1b: called once per
implementation of the main algorithm between Step 1a and
Step 2.
(1) Add the new forest to the spanning trees already in T to
make a set of k spanning forests for H. So T=T+{T,}.
(2) Next update the current coverage of edge e, c,{¢e), and
the set of unsaturated edges Eas follows: for each edge
e in the new forest T,, increment the coverage of that
edge by one: c{e)=c{e)+]. If this makes c{e)=w(e),
then delete e from E,,.

INITIALIZE EDGE-SEARCHING FUNCTIONS—Step 2:
called once per implementation of the main algorithm
between Step 1b and Step 3a

(1) A flag function f(e) is used to keep track of whether a
particular edge e has been processed by the New Com-
munity Loop. When f(e)=0, the edge has not been pro-
cessed; when f(e)=1, the edge has already been pro-
cessed. When f(e)=1 for all e in H, then the “flag” is
“on”, indicating that the loop has completed the building
of the current potential community. Before the commu-
nity building process begins, the flag must be initialized
by setting f(e)=0 for all e in H.

(2) In partitioning graph H into smaller clusters, potential
communities must be built. Before entering the commu-
nity building loop, there are no potential communities
yet. Initialize the number of the current potential com-
munity under construction to one: p=1.

MAIN JUNCTION—Step 3a: within the main algorithm,
called first by Step 2; called by Step 4b after a new potential
community is completed; called by Step 4-1b when commu-
nity building is reset because the spanning forest is adjusted;
followed by Step 3b or Step 5 (see description below).
Level-k communities are built from H (a level-(k-1) com-
munity), by building potential level-k communities B
using unsaturated edges. If all the unsaturated edges
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have been used (“YES”), then the list of potential level-k
communities is complete and the algorithm can proceed
to the final part of the main algorithm. The set E,is the
list of as yet unused (not assigned to any B,) unsaturated
edges. If E,=0 is TRUE, then the algorithm should stop
potential community building and proceed to step 5.
Otherwise (“NO”), there is more work to be done build-
ing potential communities, and the algorithm proceeds
to step 3b.

INITIALIZE NEW COMMUNITY LOOP—Step 3b: called
once before starting each New Community Loop by Step 3a;
followed by Step 4-2b (note in the order of the numbering of
the steps, this bypasses earlier parts of “Step 4”).

(1) Though the goal is to find clusters of the vertices (cor-
responding to objects in the dataset), the potential clus-
ters are initially defined by accumulating a list of edges
whose vertices will make up the level-k cluster. To begin
the process, an as yet unused (by this call of the main
algorithm) edge is chosen (thatis, an edge from E;). One
feature of the algorithm is that the final clustering does
not depend on the order, so one can choose whichever
edge is convenient from E,. Denote this seed edge as e,©
Eo.

(2) The list of edges that belong to the new potential level-k
community will be designated B,,. This list is initialized
to contain just the seed edge: B,={e,}.

(3) In order to adjust the forests as needed, a track record is
necessary. This is made up of a sequence of indices of
forests I(e), and a sequence of replacement edges S(e).
When necessary, these will be used to swap edges
between forests and E,. At this stage, the first edge that
may require swapping has been introduced: e,. Cur-
rently, there are no candidate replacements, so the track
record starts with only the current edge, S(e,)=e,, and
there is no next edge, so the index of the tree of the next
edge is empty: I(e,)=0.

(4) For clarity, the initial seed, e, is differentiated from the
edge currently under consideration in determining what
edges should be added to B,,. The latter edge will be
referred to as e' and here that is initialized: e'=e,,.

NEW COMMUNITY LOOP

UPDATE NEW COMMUNITY—Step 4-2b: called once
from Step 3b at beginning of a new community loop, there-
after called by Step 4-2a; followed by Step 4a.

Note that the following sub-steps refer to multiple actions. In
practice, an inner loop will be set up to find the circuit for each
tree, and then another loop inside that loop will process each
edge in each circuit.

() The set of spanning forests T was initially constructed to
be maximal with respect to E,. The first k-1 forests are
full trees, which is to say they have the maximum num-
ber of edges possible to connect the vertices of H. In the
case of thelast forest, T,, e was chosen so that it does not
connect disconnected components of T,. In either case,
adding any e' to a tree T, will produce a single circuit,
specifically one containing ¢'. This circuit in T,+e' is
designated as C, in this algorithm.

(2) Bach circuit C, may contain edges not found in B,,. All
these edges are important as new members of the current
potential community. They must also be processed so as
to build the track record that enables updating of sub-
optimal spanning forests. Therefore it is important to
process each properly. A particular edge will be referred
to generically as e.
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(3) As described above, the track record of each edge e in C, An edge €' in B, has been found that has not yet been
but not yet in B, must be created. This track record processed by the New Community Loop and this edge
makes it possibleto trace e back through a chain of edges does not join two components of the kth spanning forest,
that can be substituted to alter the trees. This track record T,. This edge should be processed to update potential
is made up of a list of edges for e, S(e), and a list of 5 new community B,,. The edge to be processed, €', is set to
indices that refer to the tree where e was found. Updating be unchecked edge e; .

the edge list means adding the new edge e to the end of (Find of NEW COMMUNITY LOOP)

the list for the current edge being checked, e': set
S(e)=S(e")e. This means that we append e to the end of COMMUNITY COMPLETE—Step 4b: called only from a
the S(e') list. Updating the list of indices means adding 10 “NO” result from Step 4a; followed by Step 3a.

the index of the current tree in which e was found to the (1) The current potential new community is complete: each

list of the current edge being checked: I(e)=I(e")i. This
means that we append i to the end of the I(e") list. The
track record may also be referred to as a “track of

edge in B, has been checked. Before proceeding to the
construction of the next potential k-level community, the
list of unused unsaturated edges must be updated by

replacement” for an edge e, which allows edges to be 15 removing those in B, (because they are now being

substituted recursively in the trees without requiring all “used”, not because they are not unsaturated). Set Ejto

trees to be reconstructed. (See Step 4-1a forthe use of the Eq-B,.

track record.) (2) The pth potential community is finished. Increment the
(4) The vertices of this new edge e are closely connected to counter of the current potential community: increment p

those of vertex e' and thus to those of e (as measured by 20 to p+l.

being in the circuit created by adding edge ¢' to one ofk
(maximal) spanning forests). Therefore the vertices in
question should be in the same level k community as
those of ¢' and e,. Add the new edge e by letting

UPDATE FOREST—Step 4-1a: called only from “YES”
result from Step 4c; followed by Step 4-1b.
(1) Because e, joins two components of spanning forest T,

it is necessary to the algorithm that this forest be updated

B,=B,U{all e in the circuit O'f T#e' foreach LET}. 25 to make use of this edge. Note, by construction T}, is

(5) Update flags to reflect th?t N ha}s be.:en checked and all maximal with respect to E,; that is to say, if e, connects
the new edges from e}ssomated 01r$u1ts have been added two components of T, it must be a saturated edge and so

to the current potential group: f(e')=1. all copies of e, are currently beingusedby T, ..., T,_;.
FIND NEXT EDGE-—Step 4a: called after each Step 4-2b; 4, Therefore in order to add a copy of e, to Ty, it is neces-
followed by Step 4b or Step 4c (see below). sary to free e, from one of the full trees. This was the
The algorithm has finished updating new potential group purpose of constructing a track record as edges were
B, using €' to include all vertices within k-levels of ¢€'. ad@ed o B,. Specifically, the track record associated
Nextit is necessary to determine if there are any edges in with e, is needed, S(e,) and I(e,). Suppose the track

B, that have not yet been checked. Note that new edges ;5 re.:cord has t e.:dges, S(el):ei(l)s €2y - 5 Sy and asso-

may have been added since the last time this check was ciated spanning tree index I(e, )=, Uy, . . ., ;. Then
done. Therefore the algorithm searches through the the update is carried out by updating the yu, tree by adding
edges in B,, looking for an edge e, with f(e, )=0. If such €, to and subtracting ¢, , from T, for j from 1 to t-1.

an edge is found (“YES”), it may at a later step become Note that ¢,,,=€, and e,,=e,, so the net result of the

the next edge under consideration, €'; the algorithm pro- previous adjustment is to add e, to and subtract ¢, from

ceeds to Step 4c. If all the edges have been checked, that
is, if f(€)=0 for some ein B,, (“NO”), then the flag is “on”
and the current potential k-level is complete; the algo-
rithm proceeds to Step 4b.

T,,..., T, while keeping them spanning trees. Finally,
the spanning forest T, is updated by adding e, .

(2) The above adjustment moved one new copy of edge e,

into T, so it is necessary to update the coverage for this

edge by incrementing ¢ {e,) to c{ey)+1.

(3) Since the edges used in T, has changed, it may be
necessary to update the set of (unused) unsaturated
edges, E,. If c{e;)=w(e,) is TRUE, then the edge e,is
saturated and is deleted from E,.

50 UNMAKE CURRENT NEW COMMUNITY—Step 4-1b:
called only from Step 4-1a; followed by Step 3a.
The process of making a new community was aborted

CHECK LAST FOREST—Step 4c: called only from a
“YES” result (flag not “on”) from Step 4a; followed by Step
4-1a or 4-2a (see below).

As described under 4-2b(1), the first k-1 forests are full
trees, with the maximum number of edges possible to
connect the vertices of H while the last forest, T,, was
constructed to be maximal with respect to E,. This
means that T, may not be a full tree; that is, it may be

made up of disconnected components. The maximum
condition implies that e,will not connect components of

because the spanning forest was not optimal. The previ-
ously seeding edge e,has since been used to adjust the

T, however edges in B, taken from the full trees may; 55 spanning forest. and.the process of building the .pth
therefore it is necessary to check them against T,. If e, k-level community will berestarted from the. beginning.
connects two components of T, (“YES”), the algorithm However, it is ) important t.o. note that preVlous.ly con-
will go to 4-1a so that T, is updated and the building of structed potential communities B, for. q<p remain Vah(,l’
the current community is restarted if possible. Other- as do completed communities, at this level as well is

60 those that preceded it. This is an important feature of the

wise, thatis if e, does not connect two components of T,
that is, both of the vertices of e, are already in the same
component (“NO”), the New Community L.oop contin-
ues and the algorithm proceeds to Step 4-2a.

algorithm, that the sub-optimal spanning forest can be
updated without requiring the recalculation of any but
the current potential new community of the current level.

(1) To reset the current potential community, first each edge
e in B,, needs to be marked as not yet considered: that is,
the flag f(e) is setto 0 (unchecked) for each e in B,,. Note
that some of these edges may actually have been

USE EDGE (TO UPDATE COMMUNITY)—Step 4-2a: 65
called only from a “NO” result from Step 4c; followed by
Step 4-2b.
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checked in the construction of an earlier potential k-level
community, ones that overlapped B,,. In this implemen-
tation, not tracking where edges were checked was cho-
sen over rechecking edges that have already been
checked.

(2) The potential community itself is reset to empty: set B,
to @.

COMPARE NEW COMMUNITIES—Step 5: called only
from “YES” result from Step 3a; followed by Step 6a.

All potential new communities have been built. These are
B,, B,, . . ., B,. These are sets of edges with associated
vertices V(B,). The construction guarantees that all vertices
associated with a particular set have the required minimum
connectedness. It does not guarantee that there is not overlap
between these potential communities. It is necessary to sys-
tematically go through each pair of groups, B,and B, fori, j=1,
2, ..., p with i»}, and check whether they share any vertices.
Ifso (V(B)NV(B,)=@ TRUE) then these two pair of commu-
nities will be merged. This continues until there is no overlap
between the vertices. For convenience, renumber these so
there are p' communities and check forany: B, B,, ..., B,.
These are the k-level communities of the graph H.

It should be noted that the above communities do not
necessarily include all vertices of H. The missing vertices
were not included because the clustering process of the algo-
rithm is based on collecting edges. Thus single vertex k-level
clusters are not represented. This is not a problem because (1)
these singletons will remain singletons at all remaining lev-
els, and so no further processing is necessary, and (2) given
the starting dataset and an output made up only of k-level
communities, it can be immediately inferred that objects
missing from the communities are singleton clusters. While
an implementation of this algorithm might add in the single-
ton clusters at some point for inclusion in the output, the
implementation being described here does not.

CHECK LEVEL—Step 6a: called only from Step 5; fol-
lowed by Step 6b or Step 6¢ (see below).

If the current level is not the final level, then each k-level
community needs to be broken down into k+1-level commu-
nities. The final level is h, a level chosen by the user of the
algorithm at the beginning. If k=h is TRUE (“YES”), then the
algorithm proceeds to output the current communities (Step
6b). Otherwise (“NO”), it must arrange to call the main algo-
rithm for each new sub-graph (this done in Step 6c¢).

CALL NEXT LEVEL—Step 6¢: called only from “NO”
result of Step 6a; makes multiple calls to Step 1a (see below).

For the current graph H, the k-level communities have been
found in the form of B, B,, .. ., B, Since the algorithm has
not reached the final h-level, the k+1-level communities must
be constructed.

For each final k-level community B, found by partitioning
H by the current call of the main algorithm:

(1) Find the sub-graph induced on G by B,, symbolically
represented as G[B,]. The community B, is made up of
edges, whereas a graph is made up of vertices and edges
connecting the vertices. (There are also weights associ-
ated with the edges, but since these are the same as for
the original G throughout the algorithm, these can be
handled as a global constant and so nothing need be done
with them here.) Formally, set H to be the graph with the
vertex set V(H)=V(B,) (the vertices contained in the
edges of B,), and all edges of G with endvertices in V(H)
(it contains B,, and may be more than B,), and the
weights as before. (Note, at this stage it is appropriate to
output H as a k-level community, an intermediate prod-
uct of the algorithm.)
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(2) To call the algorithm, it is also necessary to construct
the spanning trees associated with the new sub-graph H.
This is constructed by intersecting the current trees with
the new H. This is also described as “restricting” the
current trees to the new subgraph and is represented
symbolically by T={T,IH, T,IH, . . . T,/H}. Note that
while T, may not be a full tree, T, restricted to H is a
spanning tree of H; this is because, by construction, H is
connected and no edge in H connects disconnected
pieces of T, (otherwise the forest would have been
updated by Step 4-1a and Step 4-2b).

(3) Call the main algorithm, passing the values of H, T, and
k (to Step 1a).

Note that this step does not pass control to another step in
the way other steps do. Rather, it makes multiple recur-
sive calls to Step la. After all these calls are resolved
(terminating in either new Step 6¢’s or Step 6b’s), the
current call of the main algorithm terminates.

OUTPUT—Step 6b: called only from “NO” result of Step 6a.
No steps follow.

Output all B,, each of which represents a level-h-commu-
nity of G. This run of the main algorithm has terminated
(though due to the recursive nature of the process, there may
still be outstanding steps). The output may take any form,
include printing, displaying on a display, recording to a
memory or storage device or the output may be used as an
input to another device or system or to control external
devices or objects.

Example Processing of a Dataset

To see what partitioning by the number of connections with
the above algorithm looks like, a simple example is useful.
For this purpose, the dataset presented in FIG. 3 will be
manipulated using the algorithm and with many of the steps
illustrated graphically.

The dataset of FIG. 3 is reproduced in FIG. 9, and may be
considered a visual representation of a graph, G. The dataset
is made up of objects {a, b, c, d, e}. The relations are ab, ac,
be, bd and de with strengths/weights 2, 3, 2, 1 and 2 respec-
tively. In this example, the clustering will be done to 3 levels.

The steps below correspond to the same steps in FIGS. 7
and 8A-8C, and reference may be taken to these Figures, and
the above explanations, to illuminate the following process.
In the earlier Figures and text, step labels were abbreviated,
such as S1b, for Step 1b, and so forth.

Step 0: See FIG. 9
In step 0, the dataset of Graph G is input, resulting in the
following:

Step Oa

Set vertices V(G)={a, b, ¢, d, e}

Set edges E(G)={ab, ac, bc, bd, de}

Set weights w(E(G))—=[2, 3, 2, 1, 2]

Graph G defined by V(G), E(G), w(E(G))

Set h=3

The local variables for the main algorithm are also initialized
to beginning values:

Step Ob:
Set k=0
(2) Set H=G
(3)Set T={ }

(4) Set c(B(G))=[0,0,0,0,0]
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Step 1: See FIGS. 10-13
In Step 1, the main algorithm is started, a first maximal
spanning forest is created, and the list of unsaturated edges is
updated to indicate what edges remain after building this first
forest.

Step 1a: find first maximal spanning forest.

(1) First call of main algorithm: k=1

(2) Initially unsaturated edges are all edges (no trees): set
B,={ab, ac, bc, bd, de} (See FIG. 10). It should be noted
that E,does not indicate the weight of the edges, only
whether they are unsaturated.

(3) Call algorithm and get maximal spanning forest T, as
shown in FIG. 11. FIGS. 12a and 1256 show other pos-
sibilities for spanning forests that could have been used
for T,.

Step 1b: update for the new forest

(1) Set T={T,}

(2) Set c{(B())=c,{ab, ac, bc, bd, de})=[1,0,1,1,1].
Because the edge coverage for {bd} is equal to the
original weight of {bd}, c¢{(bd)=w(bd), all copies of
{bd} have been used up by building T,. Therefore, {bd}
is removed from E,, and Eis set to {ab, ac, b, de}. The
updated version of Eis shown in FIG. 13.

Step 2

In step 2, the edge-searching functions are initialized.
(1) Reset flag f({ab, ac, b, bd, de})=[0,0,0,0,0]
(2) Get ready for first 1-level community: set p=1

Step 3

In step 3, a check is performed to see if all unused (not
already in a potential new community) unsaturated (not used
up by the spanning forests) edges are already assigned to a
potential sub-cluster. If not, a new community loop is initial-
ized.

Step 3a: check if all unsaturated edges are used

E,is not an empty set.

Step 3b: initialize new community loop

(1) Choose any unused unsaturated edge in E,: set e,=ab.
The choice of edge is arbitrary at this point.

(2) Potential new community: set B,={ab}

(3) Track Record: Set S(ab)=ab; Set I(ab) to be empty.
S(ab) may be considered a seed edge and I(ab) is an
index that indicates what tree the edge came from.

(4) Set e'=ab. €' is the edge currently being processed.

Step 4: See FIGS. 14-16
In step 4, the edge being processed is added to each tree
(one in this case) to find what circuits are created.

Step 4-2b: Update the new Community

(1) As shown in FIG. 14, the seed edge is added to the first
tree, T, +ab. This creates circuit C,, as shown in FIG. 15.
The edges in this circuit are E(C,)={ab, ab}, where
multiplicity is explicitly represented for convenience
rather than introduce another weight variable.

(2) (3) (4) No new edge is found in this circuit, so these
substeps are not performed (i.e. edgeabis already in B, ).

(5) The flag for edge {ab} is set to 1 to indicate the edge has
been checked: Set f(ab)=1

Step 4a: Determine if any Edges in the Potential New

Community have not been Checked.

All edges in B, (only contains {ab}) have been checked.
So, there are no edges that have not been checked, result-
ing in a “NO” This indicates that Step 4b is next.

Step 4b: Community Complete

(1) Remove ab from E,,. Set E,={ac, bc, de}. This results in
Eqas shown in FIG. 16.

(2) Set p=2
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Step 3:

The process returns to step 3, a check is again performed to
see if all unsaturated edges are already assigned to a potential
sub-cluster. If not, a new community loop is initialized.

Step 3a: Check if all Unsaturated Edges are Used

Eynot empty.

Step 3b: initialize new community loop

(1) Choose e =ac

(2) Potential new community set B,={ac}

(3) Set S(ac)=[ac]; set I(ac) set to be empty

(4) Set e'=ac

Step 4 (second community)

Step 4-2b (first pass)

(1) See FIG. 17 for T, +ac, C,. The edges E(C,)={ab, ac,
be}, as shown in FIG. 18.

(2) There are two edges not yet in B,, ab and bec.

(3) Set S(ab)=[ac, ab], Set S(bc)=[ac, bc]; both edges from
tree 1, Set I(ab)=[1], Set I(bc)=[1]. This indicates that
{ac} can substitute for {ab} in tree 1 and tree 1 will still
be a maximal spanning tree.

(4) Set B,={ac, ab, bc}.

(5) Set f(ac)=1

Step 4a Determine if any Edges in the Potential New Com-

munity have not been Checked.

Currently f({ac, ab, bc})=[1,1,0], therefore e,=bc has not
been checked. So, there is an edge that has not been
checked, resulting in a “YES”. This indicates that Step
4c is next.

Step 4c

T, is made up of a single component (it is a tree, not a
disconnected forest) so be will not be used to update the
spanning forests: “NO”

Step 4-2a

e'=bc

Step 4-2b (Second Pass)

(1) See FIG. 19 for T, +bc, which results in C,, as shown in
FIG. 20 The edges B(C,)={bc, bc}.

(2) (3) (4) No new edge since only edge is bc, which is
already in B,.

(5) Set f(bc)=1

Step 4a

All edges in B, have been checked. f({ac, ab, bc})=[1,1,1]
Therefore, there are no edges with the flag set to O,
resulting in a “NO”, so that Step 4b is next.

Step 4b

(1) Remove new used edges ac and be from E,,. This results
in B,={de}, as shown in FIG. 21

(2) Set p=3

Step 3a

E,is not empty, so the next step is 3b to process the next
edge

Step 3b

(1) Choose only available edge, e,=de

(2) Potential new community set B;={de}

(3) Set S(de)=[de]; set I(de) set to be empty

(4) Set e'=de

Step 4 (third community)
Step 4-2b
(1) See FIG. 22 for T, +de, which results in C,, as shown in
FIG. 23. The edges E(C,)={de, de}.
(2) (3) (4) No new edge since only edge is de, which is
already in B;.
(5) Set f(de)=1
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Step 4a

Currently f({de})=[1], therefore all edges have been
checked and the community done, resulting in a “NO”.
Step 4b is next.

Step 4b

(1) Remove new used edge de from E,, which results in
BE,={ }. as shown in FIG. 24

(2) Set p=4

Step 3a

E,is empty, which results in a “YES”, leading to Step 5.

Step 5: Merge overlapping communities
B,={ab}, B,={ac, ab, bc}, B,={de}
B, and B, overlap. Merge and renumber.
B,={ac, ab, bc}, B,={de}
No overlap. Merging done.

Step 6: Level check and increment

Step 6a

k=1=3=h, so the clusters need to be further partitioned.
This results in a “NO”, leading to step 6c¢.

Step 6¢: create new graph for next level.

(1) H=G[V(B,)], which means that the new graph is the
sub-graph induced on G by B, as was explained previ-
ously. The new Graph H is shown in FIG. 25.

(2) T={T,IH}, which means that the current tree or trees
are intersected with the new sub-graph, as explained
previously. This results in the tree T, shown in FIG. 26.

k=1

Step 1: Start Main Algorithm again

Step la

(1) Second level call of main algorithm: k=2

(2) w(EM))=w({ab, ac, bc})=[2, 3, 2], c{{ab, ac, bc})=
[1,0,1]. No saturated edges in B(H) yet. Set E,={ab, ac,
be} (not in Figure).

(3) Call algorithm and get maximal spanning forest T,
(shown in FIG. 26). FIGS. 284 and 2854 shows other
possibilities for spanning forests that could have been
used for T,.

Step 1b

(1) Set T={T,, T,}

(2) Set c{E(H))=c,{{ab, ac, bc})=[2,0,2]. Because the
edge coverage for edges ab and bec are equal to the
original weights, c,(ab)=w(ab), and c{bc)=w(bc), ab
and bc are removed from E by setting Bjto {ac}, as
shown in FIG. 27).

Step 2: Initialize Edge Searching Functions
(1) Reset flag f({ab, ac, bc})=[0,0,0]
(2) Get ready for first 2-level community: set p=1

Step 3: Check for unused unsaturated edges and start new
community.

Step 3a

E,is not empty, resulting in a “NO”

Step 3b

(1) Choose any (there is exactly one) unused unsaturated

edge in E: set e,=ac

(2) Potential new community: set B,={ac}

(3) Set S(ac)=ac; Set I(ac) to be empty

(4) Set e'=ac

Step 4: add edge to each tree and check for circuits
Step 4-2b
(1) See FIGS. 29 and 30 for T,+ac=T,+ac=C,=C,. The
edges of E(C,)={ab, ac, bc}.
(2) ab and be are new edges (i.e. not already in B)).
(3) Set S(ab)=|ac, ab], Set S(bc)=[ac, bc]; both edges from
tree 1, Set I(ab)=[1], Set I(bc)=[1].
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(4) Set B,={ac, ab, bc}.

(5) Set f(ac)=1

Step 4a

Currently f({ac, ab, bc})=[1,0,0], therefore e,=ab has not
been checked, resulting in a “YES”

Step 4c

T, is made up of a single component (it is a full spanning
tree, not a disconnected forest) so ab will not be used to
update the spanning forests: “NO”

Step 4-2a

e'=ab

Step 4-2b

(1) See FIG. 31 for T,+ab =T,+ab. C,=C, (not shown).
B(C,)={ab, ab}

(2) No new edges.

(3) (4) (5) Set f(ab)=1

Step 4a

Currently f({ac, ab, bc})=[1,1,0], therefore e,=bc has not
been checked: “YES”

Step 4c

T, is spanning tree, so bc will not be used to update the
spanning forests: “NO”

Step 4-2a

e'=bc

Step 4-2b

(1) See FIG. 32 for T,+bc=T,+bc, C,=C, (not shown).
B(C,)={bc, bc}

(2) no new edges.

(4) (5) Set f(be)=1

Step 4a

Currently f({ac, ab, bc})=[1,1,1], therefore flag is “on™:
(“NO” remaining edges.)

Step 4b

(1) Remove new used edges ab, ac, bd from B,,. Set E,={ }

(2) Setp=2

Step 3: Are all edges assigned
Step 3a
E,is empty. “YES”

Step 5: Merge overlapping communities
B,={ac, ab, bc}
No overlap. Merging done.

Step 6: Level check and increment
Step 6a
k=2=3=h, clusters need to be further partitioned, resulting
ina “NO”
Step 6¢
Pass H=G[V(B,)], T={T,IH, T,IH}, k=2 (See FIGS. 33
and 34)

Step 1: Start Main Algorithm again

Step la

Third level call of main algorithm: k=3.

(2) w(E(H))=w({ab, ac, bc})=[2, 3, 2], c,({ab, ac, bc})=
[2,0,2]. Edges ab and be are saturated so E,={ac}, as
shown in FIG. 35.

(3) Call algorithm and get maximal spanning forest T,
(shown in FIG. 34).

Step 1b

(1) Set T={T,, T,, T;}

(2) Set c {E(TH)=c{ab, ac, bc})=[2,1,2]. Bdge c(ac)=w
(ac) so no change to E,,.

Step 2: Initialize Edge Searching Functions
(1) Reset flag f({ab, ac, bc})=[0,0,0]
(2) Get ready for first 3-level community: set p=1
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Step 3: Check for unused unsaturated edges and start new
community.

Step 3a

Eynot empty. “NO”

Step 3b

(1) Choose any (there is exactly one) unused unsaturated

edge in E: set e =ac

(2) Potential new community: set B,={ac}

(3) Set S(ac)=ac; Set I(ac) to be empty

(4) Set e'=ac

Step 4: add edge to each tree and check for circuits

Step 4-2b

(1) See FIG. 36 for T,+ac=T,+ac=C,=C,. See FIGS. 37
and 38 for T,+ac=C,. The edges E(C,)={ab, ac, bc}.

(2) ab and bc are new edges.

(3) Set S(ab)=|ac, ab], Set S(bc)=[ac, bc]; both edges from
tree 1, Set I(ab)=[1], Set I(bc)=[1].

(4) Set B,={ac, ab, bc}.

(5) Set f(ac)=1

Step 4a

Currently f({ac, ab, bc})=[1,0,0], therefore e,=ab has not

been checked, resulting in a “YES”

Step 4c

T, is made up of two components, ac (and the associated
vertices) and b. Adding ab would connect the discon-
nected component. Therefore the tree should be
updated: “YES”

Step 4-1a See FIG. 39

(1) S(ab)=ac, ab], I(ab)=[1].

Update by updating T, (because 1 is the first and only index
element in I(ab)) by adding the ac (it is the correspond-
ing first edge element of S(ab)) and subtracting ab (the
next edge element of S(ab)). Update last forest T by
adding ab (last edge of S(ab)). (See left of FIG. 40.)

(2) Add 1 to coverage of edge ac, the edge added to the
spanning forests from E,,.

Set c{ac)=1+1=2

(3) w(EM))=w({ab, ac, bc})=[2, 3, 2], c¢,{{ab, ac, bc})=
[2,2,2]. Since c(ac)=2<3=w(ac), edge ac is not satu-
rated, and thus is not removed from E,. The unchanged
E,is shown in FIG. 41

Step 4-1b

(1) Reset B,={ac, ab, bc} by first setting f({ac, ab, bc})=
[0,0,0].

(2)SetB, to{ }.

Step 3: Check for unused unsaturated edges and start new
community.

Step 3a

E,is not empty, resulting in a “NO”

Step 3b

(1) Choose any (there is exactly one) unused unsaturated

edge in E: set e,=ac

(2) Potential new community: set B,={ac}

(3) Set S(ac)=ac; Set I(ac) to be empty

(4) Set e'=ac

Step 4: add edge to each tree and check for circuits

Step 4-2b

(1) See FIG. 42 for T,+ac, T,+ac, T;+ac. Circuits (not
shown) C,=C;={ac, ac} and C,={ab, ac, bc}.

(2) As with the previous attempt to build B,, ab and be are
new edges.

(3) Set S(ab)=|ac, ab], Set S(bc)=[ac, bc]; both edges from
tree 1, Set I(ab)=[1], Set I(bc)=[1].
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Set B,={ac, ab, bc}.
(5) Set f(ac)=1

Remaining Step 4:

Both ab and be are processed, but neither adds any edges to
potential group, since it already contains everything, and
neither improves T; since it is already a full tree. The
potential group B, is finished.

Step 3a and Step 5
No unsaturated edges remain. There is no overlapping
since only one B,,.

Step 6: Level Check
Step 6a
k=3=h is TRUE, resulting in a “YES”
Step 6b
Output B,.
(end of first k=3)
Step 6¢
(end of first k=2)
Step 6¢ (k=1 Continues)
Pass H=G[V(B,)]={de}), T={T,IH}, k=1 (See FIG. 43).

Step 1: See FIG. 43

Step la

(1) Second, second level call of main algorithm: k=2

(2) wEM))=w({de})=[2], c({de})=[1]. No saturated
edges in B(H) yet. Set E,={de} (not in Figure).

(3) Call algorithm and get maximal spanning forest T,
(shown in FIG. 44).

Step 1b

(1) Set T={T,, T,}

(2) Set c (E(H))=c({de})=[2]. Edge c(de)=w(de), there-
fore no edges in E,,.

Step 2, Step 3
No unused unsaturated edges.

Step 5: Merge overlapping communities
No level-2 communities

Step 6: Level Check
Step 6a
k=2=h. “NO”
Step 6¢
No level-2 communities
(end of second k=2)
Step 6¢
(end of original k=1)

(END OF ALGORITHM)
OUTPUT CLUSTERS

Level 0 Level 1 Level 2 Level 3

{a,b,c,d, e} {a,b,c}

{d, e}

{a,b,c}
{d}
{e}

{a, b, c}
{d}
{e}

An Alternative Algorithm for Implementation

The above described algorithm shows the most basic and
fundamental ideas of the processing approach according to
the present invention. Following the same ideas, it can be
further modified and improved for a lower complexity. Algo-
rithm 2, shown in FIG. 45, and introduced in this section, is
one of several modified versions of the basic algorithm with
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the complexity O(n’h?) where n is the number of vertices of
the input graph G and the goal of the processing is to find all
level-h communities in G.

Notation and Label System

In order to have a lower complexity, an alternative version
has a more complicated data structure and the corresponding
label system than the basic one.

The following is a list of a brief description of the data
structure and the corresponding label system in this alterna-
tive algorithm.

1. The set B, in the Algorithm of FIG. 7 collects edges that
are replaceable with an unsaturated edge e,. In the following
algorithm (Algorithm 2, FIG. 45), the set B, collects vertices
that edges of G[B,] are replaceable with e,

Furthermore, for the purpose of reducing the complexity,
the set B, is created as a sequence (in Substep 4-1) so that the
ordering of elements of B, clearly indicates when and how
those vertices were selected into the set B,

2. The adjustment sequences S(e) and I(e) will be created
when they are needed (in the Substep 4-2) based on the
information generated in Substep 4-1.

3. For the purpose of reducing complexity, the forests of T
are all considered as rooted forests. An end-vertex of an
unsaturated edge e,is the root.

Main Program of Algorithm 2

Input: A graph G with w(e) as the multiplicity for each edge
e and an integer h.

Goal: find all level-h communities in G.

Step 0. Start at k=0 (the program runs until k=h level is
complete), HeG (a level-0 community), T<—@ (the set of
spanning trees in H) and ¢ {e)=0 for all e in E(G).

Step 1.

kek+1.

(Note: if k=1, T={T,, .. .,T,_,} is a set of edge-disjoint
spanning trees of H, and c{e) is the coverage of each edge.
These are outputs of Step 6 in the previous iteration of the
main loop of the algorithm. When k=1, no spanning tree
preexists).

Let E be the set of edges (unsaturated edges) e with c{(e)
<w(e).

Find a maximum spanning forest T, in H consisting of
edges of E,.

Let T<T+{T,} and update the coverage c,(e) and E,as
follows: c(e)=—c(e)+] if e is an edge of T,, otherwise,
c{e)=c;(e) (no change), and delete all edges e in E,such that
ce)=w(e).

Go to Step 2.

Step 2.
Let p<—1 and go to Step 3.

Step 3. If E,=@ then go to Step 5.
Otherwise, go to Step 4.

Step 4.

Pick any e,=xy € E,,. Let B,<=b,b, where bus x and b,<-y.

Let Q be the component of T, containing xy.

Let x be the root of each T, (i>0) and Q.

Go to Substep 4-1.

Substep 4-1 (The Substep for searching of replaceable
edges.) (See Subprogram 4-1 for detail.)

Outline and description. For eachi€ {0, 1, ..., k-1}, and
for each b, B,, add all vertices of the directed path in T, from
b,=x to b, into B,,.

For every new vertex b, added into B, always check:
whether or not b& Q. If NOT, then stop the iteration of
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Substep 4-1 and go to Substep 4-2. Repeat this Substep until
no new vertex can be added into B,, then

H<H/B,, Eq-EolH, p<—p+1

and go to Step 3 (starting a new search for another level-k
community). (Note, H/B,, is the graph obtained from H by
identifying all vertices of B, as a single vertex; ByIH is the set
ofedges of e,contained in the newly contracted graph H.) The
new vertex of H created by contracting B,, is denoted by z,,.

Note, during the iteration, each new vertex b, added into B,,
is labeled with m(b,), €(b,) and A(b,), which are to be used in
creating the adjustment sequences S and I in Substep 4-2 in
case that the spanning forest T, can be expanded. (For defi-
nitions of labels m, € and A, see Subprogram 4-2 for detail.)

Substep 4-2 (The Substep for expanding T,,.) (See Subpro-
gram 4-2 for detail.) Outline and description. Create the
adjustment sequences S(e) and I(e) based on the labels m(b,),
€(b,) and A(b,) generated in Substep 4-1 (See Subprogram
4-1).

Follow the adjustment sequences S and I to adjust and
expand the forests of T.

And update the coverage ¢, for the edge e,.

Let B, <—@ and erase labels m(b,), e(b,) and A(b,) for all
vertices of H.

Go to Step 3.

Step 5.

Let {vi, ..., v,} be the vertex set of the resulting graph H
(which has gone through a series of contractions in Step
4-1-2). Each vertex v, is a child of H in the hierarchical tree,
some of which are single vertices, while others represent
non-trivial level-k communities.

If v, is not a contracted vertex, then it is a child of H in the
hierarchical tree, and no further action is needed for this
vertex.

For a contracted vertex v,=z,, replace v, with the corre-
sponding community B,, and go to Step 6 for further iteration.
Note that it is possible that some vertex of B,, is also a con-
tracted vertex z,,.. In this case, all vertices of B, should be
added into B,. This procedure should be repeated for all
possible contracted vertices in B,,.

Step 6.

If k=h, output all B,, each of which induces a level-h
community of G.

Ifk<h, then repeat Step 1 for H«—G[B,] foreveryi, T,< T,
and T={T,IH, T,IH,...,T,IH} which is a set of edge-disjoint
spanning trees in H (as inputs of Step 1 for the next iteration
of the algorithm at level (k+1)).

Subprogram 4-1: The Search of Replaceable Edges (Substep
4-1)

The subprogram in this subsection is the detailed Substep
4-1 of Algorithm 2.

Some notation and labels used in this subprogram are to be
introduced:

For the sake of convenience, non-negative integers |L are
represented by an ordered integer pair (c, §) where p=ck+f
with 0=8=k-1 and a=0. In order to distinguish the different
presentation of integer numbers, let M, be the set of all those
ordered integer pairs (that is M,={0,1,2, . . . }x{0,1, . . .,
k-1}=7"x7Z,).

B,=b,b, .. .b, isa sequence consisting of vertices of H
that are already selected for the p-th potential community. b,
is the last vertex of the sequence at the current stage. ’

m(b,)(E M,) is an integer label of b, € B,: If m(b)=(a,, B),
then the second component § of m(b,) indicates that the vertex
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b, is contained in the circuit of Tg+e where e is an edge joining
two vertices by, b, of B, for some pair of indices h, j<i.
€(b,)(EZ")is an integer label of' b, in B,,: b, is a vertex in
B, and is also a child of b, in a rooted tree T such that b, is
addedinto B, because one of its children, b, ,, was already in
B,. The edge b,b,,,, is to be used for possible expansion of T,
AMb)(E Z7) is also an integer label of b,& B,;:
A(b)=min {j: b€ D(Ty; b))}

where m(b,)=(c., #) and D(T}; b;) is the set of all descendants
of' b, in the rooted tree T Then the vertex b, is in the circuit of
Tg+b,b, where h=A(b,) and b, is not a descendant of b,. Fur-
thermore, j=€(b,,) and b,b; is an edge contained in a tree Tp,
where m(b,)=(c', f").

Labels m, e and A are to be used in Substep 4-2 for creating
the adjustment sequences S and 1.

There are some other auxiliary notation in the subprogram
for the purpose of generating labels m, € and A, and the
purpose of reduction of complexity.

Current status m. (€ M,) is an indicator that indicates the
current working status. At the initial situation, m_~(0,0).
When m=(a., ), the second component [} indicates that the
tree T is currently in the iteration of Substeps 4-1-3, 4-1-4,
4-1-5 and 4-1-6.

A “working zone” of Subprogram 4-1 is a subsequence b, ,
bpeis - - -2 by of Bt D=min{j:m(b)>m~(1,0)}. )

The Substep 4-1-5 is to be processed along the working
zone instead of entire sequence B,. The use of “working
zone” will eliminate some unnecessary search along the
sequence B, and therefore, reduce the complexity of the algo-
rithm.

c(b,): a (temporary) carry-on label for generating A.

Subprogram 4-1 (The expansion of B,)

Subsubstep 4-1-1.

D=2, D <2,

m(x)=m(y)<(0,0),

and m<—(0,1).
Subsubstep 4-1-2. (Check whether the expansion of B, is
ended.)

Ifm(b,, )=m~(1,0) then

H<-H/B,, Eg<—E,IH, p<—p+1

and go to Step 3 of Algorithm 2 (starting a new search for
another level-k community). (Note, H/B, is the graph
obtained from H by identifying all vertices of B as a single
vertex; EyIH is the set of edges of E,contained in the newly
contracted graph H.) The new vertex of H created by contract-
ing B, is denoted by z,,.

Otherwise, go to Substep 4-1-3 and continue.
Subsubstep 4-1-3.

<D,

and let m ~(c.c, Pe)-

(In the rooted tree Ty , all ancestors of vertices in the

working zone will be added into the sequence B,, in Subsub-
step 4-1-6.)

Subsubstep 4-1-4. (Update D, for the next iteration in the tree

Tecers)
pC+1
If m(b,)<m-—(0, k-2), then D =i, otherwise, D, remains
the same.

Continue.

Subsubstep 4-1-5. (Update c(b;,) if it does not exist.)
If ¢(b,) does not exist, then

c(b,)=1i.
Otherwise, do nothing.
Continue.
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Subsubstep 4-1-6. (Adding vertices into B, and labeling new
vertices with &)

Find the parent v of b, in the rooted tree T, .
Case 1. vé&B,,. (This vertex v is to be added into B,,.)

Subcase 1-1. If v&Q then the spanning forest T, is now
ready for expansion (and the expansion of B, stops): go to
Substep 4-2 of Algorithm 2.

Subcase 1-2. If v& Q then this new vertex v is to be added
at the end of the sequence B, and all labels are to be updated
for this new vertex as follows:

DD +1, by, <=V, Mbp J<=¢(b,), c(bp, )<—c(b,), (bp, )<i.

And

i—+1
and go to Substep 4-1-4 (repeating for the next b, in the
sequence).

Case 2. v&€ B, say v=b, and j>i.

¢(b))<-min{c(b)), c(b)}

if c(b,) exists; or

c(by)<—c(b,)

if ¢(b,) does not exist.

And

i—i+]

and go to Subsubstep 4-1-4.
Case 3. v& B, say v=b, and j<i.

Check whether b, has reached the end of the working zone
as follows.

Ifi=D,, then

me<me+(0,1),

and erase all of “carry-on” label ¢, and go to Subsubstep
4-1-2.

Ifi<D,, then

i—i+]

and go to Subsubstep 4-1-4.
Remarks about Subprogram 4-1

Fact. The label m of vertices in the sequence B, form an
non-decreasing sequence. That is,

m(b)=m(b,)= ... =m(by).

Fact. Whenever the Subsubstep 4-1-3 starts, the induced
subgraph G[B,] is connected, and, furthermore, B,, induces a
connected subtree of TBc—l'

Fact. During Substep 4-1-6, those vertices b, with m(b,)
=m.~(1,0) induces a connected subtree of T .

Fact. During Substep 4-1-6 Case 1, new vertices added into
B, are along a path in T from a pre-existing vertex by of B, to
the root b,=x, where,

me—(0,k-1)=m(b)=m~(0,1).

Fact. A vertex b,& B, with i=3 is added into B, because it
isinthe circuit of Tp+b,b, where h=A(b,), b,is a descendant of
b, in the rooted tree Ty with the smallest subscript h, and b, is
not a descendant of b, in the tree Tp,. Furthermore, j= (b,,)
and b,,b; is an edge contained in a tree T, where m(b,)=(c!',8").

Subprogram 4-2: Expansion of T (for Substep 4-2, Expansion
for T,)

At this stage, the inputs are (outputs of Substep 4-1-6,
Subcase 1-1): m ~(c.., B ), a vertex v&Q and is the parent of
b,E€ B, in the rooted tree Tj .

Subsubstep 4-2-1. Let
bD,_,+leVs }\’(bD,_,+l)eC(bi)s € (bD,_,+1)ei'
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Subsubstep 4-2-2.

Set an edge-sequence S and an index-sequence I as fol-
lows:

S:(bilbil*)a (bizbiz*)a s (bi,bit*);
I:ﬁila ﬁiza s ﬁi,,l
where

ir*=e(by), ir,1=Mb;) and m(b;)=(c;, By)
foreach =1, ..., t-1, and
by =bpye1s biy«=by and (b; by )=(byb ).

(That is, for each I=t-1, each b, . is a child of b, in the rooted
tree

Tﬁi( >

eachb, isadescendent of b, in the rooted tree

Tﬁi(

with the smallest subscript i;,, in B,,.)

Subsubstep 4-2-3.
For each p=(t-1), (t-2), ..., 3, 2, 1 (note, in the reversed
order):

Tp, « Tgy, + (bwb‘-:”l)— (biﬂb;/*l).

And

ToeTo+(by by ).

Subsubstep 4-2-4. Update the coverage:

cre——c e)+] if e=e, (and delete e from Eif c,(e,)=w(e,)),
and c,<—c,{e) otherwise. Brase labels: B,, D, D_, m, m, A,
€, ¢ and back to Step 3.

Remarks about Subprogram 4-2

In Subsubstep 4-2-2 (the construction of adjustment
sequences S and 1),

SIS I I

And

(b; b‘/*l) € Tﬁiﬂ

for each =1, . . ., t-1, and is an edge contained in

b=

Tﬁiﬂ + (bip+1 t,ﬁl)'
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Similar to the basic Algorithm (with the argument of replace-
ability and fixed frame of references), we are also able to
show that each

1

in Subsubstep 4-2-3 remains as a tree/forest.

Additional Aspects of Invention

Various aspects of the present invention have been
described above as an algorithm or mathematical approach.
Embodiments of the present invention further include a
method incorporating the algorithm as a step or steps, and
further including input and output of data or results. The
present invention also includes a computer program incorpo-
rating the algorithm or method, as well as a computing device
running such a program and/or a processor programmed to
perform the algorithm or method and/or output of data or
results in a tangible form, such as on machine readable
medium and/or use of such results to manipulate further
devices or operations.

FIG. 46 is a schematic representation of a system according
to a further aspect of the present invention. The system 10
includes a processor 12, a memory 14, an output device 16
and a computer readable medium 18. The system may take the
form of or include a general or special purpose computer. The
processor 12 may take any form and the memory 14 may be
separate or integrated therewith. The output device 16 may be
a display, a printer, a recording or storage device, or may take
other forms. The computer readable medium 18 may take any
form and preferably has computer executable instructions
embodied thereon for performing the method of one or more
of'the algorithms described therein. The computer executable
instructions are carried out by the processor. The medium 18
may be integrated with the rest of the system, or may be
separate therefrom. The invention yet further includes a com-
puter readable medium, such as a magnetic or optical storage
medium, having a program such as described herein embod-
ied on the medium.

Embodiments of the present invention include a method of
analysis of data sets, such as genomic data, social science
data, pharmaceutical data, chemical data and other data, using
a computer or processor to analyze the data, resulting in
identification of relationships, as described herein, such as
relatedness of genomic, social science or chemical data and/
or output of such results.

The various patents, patent applications, publications and
other references mentioned herein are incorporated herein, in
their entirety, by reference, as if reproduced herein. Those of
skill in the art will appreciate that these incorporated refer-
ences may provide additional approaches to accomplishing
some steps of the present invention and provide teaching to
assist in practicing the present invention.

Further variations on the herein discussed embodiments of
the present invention will be clear to those of skill in the art.
Such variations fall within the scope and teaching of the
present invention. It is the following claims, including all
equivalents, which define the scope of the present invention.

What is claimed is:

1. A computer based method of clustering related data
representing a plurality of objects of interest and information
about levels of relatedness between pairs of the objects, the
computer based method comprising:

establishing on a computer a weighted graph G having a

plurality of vertices and a plurality of weighted edges
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each joining a pair of the vertices, each vertex represent-
ing an object of interest and each edge having an integer
weight w(e) representing a level of relatedness between
the corresponding objects of interest and representing a
set of w(e) parallel edges e joining the pair of vertices;

finding, on the computer, for a given integer k, exactly all
possible subgraphs H of G satisfying the following
dynamic “edge-to-vertex” ratio:

. |EH/P)
min
vP P -1

where the minimum is taken over all possible partitions
P of the vertex set of H, and E(H/P) is the set of edges
crossing between parts of P;

identifying each subgraph H found as a level-k community
if it is maximal, wherein a subgraph H is defined as
maximal if there are no larger subgraphs containing it
that satisfy the dynamic “edge-to-vertex” ratio for the
same k; and

outputting from the computer all level-k communities,

wherein the level of relatedness between all pairs of the
objects of interest within each level-k community is
greater than k.

2. The computer based method of claim 1, wherein the level
of relatedness between objects of interest represents a simi-
larity or closeness between the objects of interest.

3. The computer based method according to claim 1,
wherein finding all possible subgraphs H of G further com-
prises:

finding maximal subgraph H that, for every edge e, H-e

contains k edge-disjoint spanning trees.

4. The computer based method according to claim 1,
wherein G is the only level-0 community and finding all
possible subgraphs H of G further comprises:

finding all level-k communities within a previously found

level-(k-1) community; and

repeating the finding step for k<—k+1 until only single

vertices remain.

5. The computer based method according to claim 4
wherein finding all level-k communities within a level-(k-1)
community H comprises:

a)letting T;, T,, ..., T,_, be edge-disjoint spanning trees

of H;
b) finding a spanning forest T, in

k-1
H-|_JET);
i=1

¢) finding an edge e that is not used up in the set of T, for all
i=1, ..., k, the edge being a seed edge;

d) establishing an edge subset B, starting with p=1, which
initially contains the seed edge e;

e) expanding the subset B, recursively, for each T, and
each 'S B, by adding all edges e* of any circuit in
T,+e';

f) repeating step (e) until either;

(Case 1) B, connects two unconnected portions of T,; or

(Case 2) B, does not connect two unconnected portions
of T and, for every T, and every e'E B,,, the circuit in
T,+e' contains no edge joining the same vertices as
any edge in B,;

20

25

30

35

40

45

50

55

60

38
g) if Case 1 of'step () occurs, adjusting the set of spanning
forests {T,, T, . .., T,} and expanding the spanning

forest T, and, thereafter, repeating step (c) for the
adjusted set of forests {T,, T,, ..., T.};

h) if Case 2 of step (f) occurs, storing the subset B, and
setting p<—p+1 and repeating step (¢) with an edge e that
also does not join the same vertices as any edge in any of
B,,B,...B, i

1) merging B,s that overlap; and

j) outputting the set of subgraphs induced by stored subsets
B, resulting from step (i), each of which is a level-k
community of G and contained in H.

6. The computer based method according to claim 5,

wherein expanding the forest T, in step (g) further comprises:
recording a track of replacement for every edge of B,; and
following the recording of the track of replacement: adjust-
ing the set of forests {T,, T,, ... T,} by adding the seed
edge, thereby expanding the spanning forest T, by con-
necting unconnected portions of T,.

7. The computer based method according to claim 6,
wherein recording the track of replacement for every edge of
B, comprises:

recording the track of replacement for the seed edge e by
initializing sequences I(e)=0 and S(e)={e}; and

recording the track of replacement for each edge e* in the
circuit of T,+e' by sequences I(e*)=I(e')i and
S(e*)=S(e')e".

8. The computer based method according to claim 6

wherein expanding the spanning forest T, further comprises:

letting €' be the edge of B, joining two unconnected por-

tions of T, and letting I(e"=i;i, . . . i,_, and
S(e")=e,e, . . . e, where e,~the seed edge; and

setting T,<—T,+e' and for each r=1, . . . , h-1, setting
Ti,eTi,+er_er+t'

9. A system for determining a level of relatedness of data

within a dataset, comprising:
a computer processor;
a memory in communication with the processor;
an output device in communication with the processor; and
a computer readable medium having computer-executable
instructions embodied therein for performing a method
comprising:
establishing a weighted graph G having a plurality of
vertices and a plurality of weighted edges each join-
ing a pair of the vertices, each vertex representing an
object of interest and each edge having an integer
weight w(e) representing a level of relatedness
between the corresponding objects and representing a
set of w(e) parallel edges e joining the pair of vertices;

finding, for a given integer k, exactly all possible sub-
graphs H of G satisfying the following dynamic
“edge-to-vertex” ratio:

. |E(H[P)

o H

where the minimum is taken over all possible parti-
tions P of the vertex set of H, and E(H/P) is the set of
edges crossing between parts of P;

identifying each subgraph H found as a level-k commu-
nity if it is maximal, wherein a subgraph H is defined
as maximal if there are no larger subgraphs containing
it that satisfy the dynamic “edge-to-vertex” ratio for
the same k; and
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outputting, on the output device, all level-k communi-
ties, wherein the level of relatedness between all pairs
of the objects of interest within each level-k commu-
nity is greater than k
the processor being operable to execute the computer-ex-
ecutable instructions embodied on the computer read-
able medium.

10. The system of claim 9, wherein the level of relatedness
between objects of interest represents a similarity or close-
ness between the objects of interest.

11. The system of claim 9, wherein finding all possible
subgraphs H of G further comprises:

finding maximal subgraph H that, for every edge e, H-e

contains k edge-disjoint spanning trees.

12. The system of claim 9, wherein G is the only level-0
community and finding all possible subgraphs H of G further
comprises:

finding all level-k communities within a previously found

level-(k-1) community; and

repeating the finding step for k<—k+1 until only single

vertices remain.

13. The system of claim 12, wherein finding all level-k
communities within a level-(k-1) community H comprises:

a)letting T;, T,, ..., T,_, be edge-disjoint spanning trees

of H;
b) finding a spanning forest T, in

k-1
H-| JED):
i=1

¢) finding an edge e that is not used up in the set of T, for all
i=1, ..., k, the edge being a seed edge;

d) establishing an edge subset B, starting with p=1, which
initially contains the seed edge e;

e) expanding the subset B, recursively, for each T, and
each 'S B, by adding all edges e* of any circuit in
T,+e';

f) repeating step (e) until either;

(Case 1) B, connects two unconnected portions of T,; or

(Case 2) B, does not connect two unconnected portions
of T and, for every T, and every e'E B,,, the circuit in
T,+e' contains no edge joining the same vertices as
any edge in B,;

g) if Case 1 of step (f) occurs, adjusting the set of spanning
forests {T;, Ts, . . ., T,} and expanding the spanning
forest T, and, thereafter, repeating step (c) for the
adjusted set of forests {T,, T, . .., T.};

h) if Case 2 of step (f) occurs, storing the subset B, and
setting p<—p+1 and repeating step (c) with an edge e that
also does not join the same vertices as any edge in any of
B, B,,...B,_;;
i) merging B,s that overlap; and
j) outputting the set of subgraphs induced by stored subsets

B, resulting from step (i), each of which is a level-k
community of G and contained in H.
14. The system of claim 13, wherein expanding the forest

T, in step (g) further comprises:
recording a track of replacement for every edge of B,; and
following the recording of the track of replacement: adjust-

ing the set of forests {T,, T», . .., T,} by adding the seed
edge, thereby expanding the spanning forest T, by con-
necting unconnected portions of T,.
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15. The computer based method according to claim 14,
wherein recording the track of replacement for every edge of
B, comprises:
recording the track of replacement for the seed edge e by
initializing sequences I(e)=0 and S(e)={e}; and

recording the track of replacement for each edge e* in the
circuit of T,+e' by sequences I(e*)=I(e')i and
S(e*)=S(e')e".
16. The system of claim 14, wherein expanding the span-
ning forest T, further comprises:
letting €' be the edge of B, joining two unconnected por-
tions of T, and letting I(e"=i;i, . . . i,_, and
S(e")=e,e, . . . e, where e,=the seed edge; and

setting T,<—T,+e' and for each r=1, . . . , h-1, setting
Ti,eTi,+er_er+1"
17. A computer readable medium having computer-execut-
able instructions embodied therein for performing a method
of clustering related data representing a plurality of objects of
interest and information about levels of relatedness between
pairs of the objects, the method comprising:
establishing on a computer a weighted graph G having a
plurality of vertices and a plurality of weighted edges
each joining a pair of the vertices, each vertex represent-
ing an object of interest and each edge having an integer
weight w(e) representing a level of relatedness between
the corresponding objects of interest and representing a
set of w(e) parallel edges e joining the pair of vertices;

finding, on the computer, for a given integer k, all possible
subgraphs H of G satisfying the following dynamic
“edge-to-vertex” ratio:

. |E(H[P)

o H

where the minimum is taken over all possible partitions
P of the vertex set of H, and E(H/P) is the set of edges
crossing between parts of P;

identifying each subgraph H found as a level-k community
if it is maximal, wherein a subgraph H is defined as
maximal if there are no larger subgraphs containing it
that satisfy the dynamic “edge-to-vertex” ratio for the
same k; and

outputting from the computer all level-k communities,

wherein the level of relatedness between all pairs of the
objects of interest within each level-k community is
greater than k.

18. The computer readable medium of claim 17, wherein
the level of relatedness between objects of interest represents
a similarity or closeness between the objects of interest.

19. The computer readable medium of claim 17, wherein
finding all possible subgraphs H of G further comprises:

finding maximal subgraph H that, for every edge e, H-e

contains k edge-disjoint spanning trees.

20. The computer readable medium of claim 17, wherein G
is the only level-0 community and finding all possible sub-
graphs H of G further comprises:

finding all level-k communities within a previously found

level-(k-1) community; and

repeating the finding step for k<—k+1 until only single

vertices remain.

21. The computer readable medium of claim 20 wherein
finding all level-k communities within a level-(k-1) commu-
nity H comprises:
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a)letting T,, T,, ... T,_, be edge-disjoint spanning trees of

b) finding a spanning forest T, in

k-1
H-| JET);
i=1

¢) finding an edge e that is not used up in the set of T, for all
i=1, ..., k, the edge being a seed edge;

d) establishing an edge subset B, starting with p=1, which
initially contains the seed edge e;

e) expanding the subset B, recursively, for each T, and
each e'€ B, by adding all edges e* of any circuit in
T,+e';

f) repeating step (e) until either;

(Case 1) B, connects two unconnected portions of T,; or

(Case 2) B, does not connect two unconnected portions
of T and, for every T, and every e'E B,,, the circuit in
T,+¢' contains no edge joining the same vertices as
any edge in B,;

g) if Case 1 of step (f) occurs, adjusting the set of spanning
forests {T,, T, . .., T,} and expanding the spanning
forest T, and, thereafter, repeating step (c) for the
adjusted set of forests {T,, T, ..., T,};

h) if Case 2 of step (f) occurs, storing the subset B, and
setting p<—p+1 and repeating step (c) with an edge e that
also does not join the same vertices as any edge in any of
By, B,, ... B,;
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1) merging B,s that overlap; and
j) outputting the set of subgraphs induced by stored subsets
B, resulting from step (i), each of which is a level-k
community of G and contained in H.

22. The computer readable medium of claim 21, wherein
expanding the forest T, in step (g) further comprises:

recording a track of replacement for every edge of B,,; and

following the recording of the track of replacement: adjust-
ing the set of forests {T;, T», . . ., T,} by adding the seed
edge, thereby expanding the spanning forest T, by con-
necting unconnected portions of T,.
23. The computer readable medium of claim 22, wherein
recording the track of replacement for every edge of B, com-
prises:
recording the track of replacement for the seed edge e by
initializing sequences I(e)=0 and S(e)={e}; and

recording the track of replacement for each edge e* in the
circuit of T,+e' by sequences I(e*)=I(e')i and
S(e*)=S(e')e".
24. The computer readable medium of claim 22, wherein
expanding the spanning forest T, further comprises:
letting €' be the edge of B, joining two unconnected por-
tions of T, and letting I(e"=i;i, . . . i,_, and
S(e")=e,e, . . . e, where e,~the seed edge; and

setting T,<T,+¢' and for each r=1, . . . , h-1, setting
TireTir+er_er+l .



