Berge-Fulkerson coloring for $C_{(12)}$-linked permutation graphs

Siyan Liu ${ }^{1}$ © | Rong-Xia Hao ${ }^{1}$ © | Cun-Quan Zhang ${ }^{2}$ © | Zhang Zhang ${ }^{\text {2,3 }}$

${ }^{1}$ Department of Mathematics, Beijing Jiaotong University, Beijing, China
${ }^{2}$ Department of Mathematics, West Virginia University, Morgantown, West Virginia, USA
${ }^{3}$ Department of Mathematics, Beijing Institute of Technology, Beijing, China

Correspondence

Rong-Xia Hao, Department of Mathematics, Beijing Jiaotong University, Beijing, P.R. China.
Email: rxhao@bjtu.edu.cn

Cun-Quan Zhang, Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.
Email: cqzhang@mail.wvu.edu

Funding information

National Science Foundation, Grant/Award Number: DMS-1700218; National Natural Science Foundation of China, Grant/Award Numbers: 11971054, 11731002

Abstract

It is conjectured by Berge and Fulkerson that every bridgeless cubic graph has six perfect matchings such that each edge is contained in exactly two of them. Let G be a permutation graph with a 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$. A circuit C_{0} is \mathcal{F}-alternating if $E\left(C_{0}\right) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)$ is a perfect matching of C_{0}. A permutation graph G with a 2 -factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ is $C_{(12)}$-linked if it contains an \mathcal{F}-alternating circuit of length at most 12. It is proved in this paper that everyC ${ }_{(12)}$-linked permutation graph is Berge-Fulkerson colorable. As an application, the conjecture is verified for some families of snarks constructed by Abreu et al., Brinkmann et al., and Hägglund et al.

KEYWORDS

Berge-Fulkerson coloring, Berge-Fulkerson conjecture, perfect matching, snark

1 | INTRODUCTION

The Berge-Fulkerson conjecture is one of the most famous open problems in graph theory. Although the statement of the Berge-Fulkerson conjecture is very simple, the solution has eluded many mathematicians over five decades and remains beyond the horizon.

Conjecture 1 (Berge-Fulkerson Conjecture [B-F-conjecture] [9], or see [15,16]). Every bridgeless cubic graph has six perfect matchings such that each edge belongs to exactly two of them.

A snark is a cyclically 4-edge connected cubic graph of girth at least 5 admitting no 3-edge coloring. The B-F-conjecture, similar to other major open problems, such as, Tutte's 5 -flow conjecture, cycle double cover conjecture, is trivial for 3-edge-colorable cubic graphs, and remains widely open for snarks [17]. Among these famous conjectures, the B-F-conjecture is less explored than the other two conjectures and is still open for some known snarks. In [5,6,11,12,14], the conjecture is verified for some families of snarks. It was shown in [13], a possible minimum counterexample for the B-F-conjecture should have cyclic edge-connectivity at least 5.

The B-F-conjecture is equivalent to the statement that every bridgeless cubic graph has a family of six cycles such that every edge is covered precisely four times. It was proved by Bermond et al. [2] that every bridgeless graph has a family of seven cycles such that every edge is covered precisely four times; and Fan [7] proved that every bridgeless graph has a family of ten cycles such that every edge is covered precisely six times. The relation between the Berge-Fulkerson coloring and shortest cycle cover problems has been investigated by Fan and Raspaud [8].

Definition 1. Let G be a permutation graph.
(i) Let $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ be a chordless 2-factor. A circuit C_{0} of G is \mathcal{F}-alternating if $E\left(C_{0}\right) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)$ is a perfect matching of C_{0}. This \mathcal{F}-alternating circuit C_{0} is called a linked circuit.
(ii) The permutation graph G is $C_{(\lambda)}$-linked if it contains a chordless 2-factor \mathcal{F} admitting an \mathcal{F}-alternating circuit of length at most λ.

The following is the main theorem of the paper.
Theorem 1. Every $C_{(12)}$-linked permutation graph is Berge-Fulkerson colorable.
In [12], the B-F-conjecture was verified for all permutation graphs with alternating circuit of length at most 8 . This result is further extended to permutation graphs with alternating circuit of length 12 (Theorem 1). It is noticed that some families of snarks are $C_{(12)}$-linked but not $C_{(8)}$-linked. For example, twelve cyclically 5-edge connected permutation snarks discovered by Brinkmann, Goedgebeur, Hägglund, and Markström in [4], an infinite family of cyclically 5-edge connected permutation snarks discovered by Hägglund and Hoffmann-Ostenhof in [10]. As applications of the main result, the B-F-conjecture is further verified for these families of snarks.

In Section 2, some notations and definitions are presented. The proof of the main theorem (Theorem 1) is presented in Section 3. The applications are presented in Section 4. Further extensions and remarks are presented and discussed in the last section.

2 | PRELIMINARIES

Let $G=(V, E)$ be a graph. A circuit of G is a 2-regular connected subgraph. A cycle (or an even graph) is a graph with even degree at every vertex. The suppressed graph, denoted by \bar{G}, is the graph obtained from G by suppressing all degree-2-vertices. A k-factor of a graph G is a spanning k-regular subgraph of G. The set of edges of a 1 -factor of a graph G is called a perfect matching of G. We refer to [3] for notation and terminologies used but not defined here.

Let X and Y be two subgraphs of G. The symmetric difference of X and Y, denoted by $X \triangle Y$, is the subgraph of G induced by the edge set $(E(X) \cup E(Y)) \backslash(E(X) \cap E(Y))$. The set $\{1,2, \ldots, n\}$ is denoted by $[n]$.

A cubic graph G is Berge-Fulkerson colorable if $2 G$ is 6-edge-colorable, where the graph $2 G$ is obtained from G by replacing every edge with a pair of parallel edges. It is obvious that this is an equivalent description of the B-F-conjecture.

Lemma 1 (Hao et al. [11]). A cubic graph G is Berge-Fulkerson colorable if and only if there are two edge-disjoint matchings M_{1} and M_{2} such that
(1) $M_{1} \cup M_{2}$ is an even subgraph Q in G, and
(2) for each $i=1$, 2 and for each component X of $G \backslash M_{i}$, either the suppressed graph \bar{X} is 3-edge-colorable, or, X is a circuit.

An equivalent statement of Lemma 1 for cubic graphs can be found in [6].
The following observation (Proposition 1) ensures the existence of an \mathcal{F}-alternating circuit in any permutation graph.

Proposition 1. Every permutation graph with a chordless 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ has an \mathcal{F}-alternating circuit C_{0} of length $4 k$, where $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right| \geq 3$.

Proof. Let G be a given permutation graph with a chordless 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ and a perfect matching $M=E(G) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)$, where $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=n \geq 3$. Let $C_{1}=v_{1} \cdots v_{n} v_{1}$ and $C_{2}=u_{1} \cdots u_{n} u_{1}$. Without loss of generality, suppose v_{n} is adjacent to u_{n}.

Let $\widehat{G}=G$ if $n=2 t$ is even, or, $\widehat{G}=\overline{G-\left\{v_{n} u_{n}\right\}}$ if $n=2 t+1$ is odd. Let $\widehat{\mathcal{F}}=\left\{\hat{C}_{1}, \hat{C}_{2}\right\}$ be the corresponding chordless 2 -factor of \widehat{G}, where $\hat{C}_{1}=v_{1} \cdots v_{2 t} v_{1}$ and $\hat{C_{2}}=u_{1} \cdots u_{2 t} u_{1}$.

Assign a 3-edge-coloring mapping $\sigma: E(\hat{G}) \rightarrow$ \{Red, Blue, Yellow $\}$ such that
(1) the edges in \hat{C}_{1} and \hat{C}_{2} are alternately colored Red and Blue with $u_{2 t} u_{1}$ and $v_{2 t} v_{1}$ colored Red, and
(2) the edges in $E(\widehat{G}) \backslash\left(E\left(\hat{C}_{1}\right) \cup E\left(\hat{C_{2}}\right)\right)$ are colored with Yellow.

Any Blue-Yellow bicolored circuit is an \mathcal{F}-alternating circuit of length $4 k$ in G.

3 | THE PROOF OF THEOREM 1

Let G be a counterexample to the theorem with a chordless 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ and a perfect matching $M=E(G) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)$, where

$$
C_{1}=v_{1} \cdots v_{n} v_{1}, \quad C_{2}=u_{1} \cdots u_{n} u_{1} .
$$

Assume that n is odd, otherwise the graph G is 3-edge-colorable.
Let $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a permutation on the set $\{1, \ldots, n\}$ such that

$$
M=\left\{v_{i} u_{\pi(i)}: i \in[n]\right\}
$$

Let C_{0} be an \mathcal{F}-alternating circuit of length at most 12 .
Since it was proved in [12] that Conjecture 1 holds for the case of $C_{(8)}$-linked permutation graphs, we have the following claim (by Proposition 1).

Claim 1. $\quad C_{0}$ is of length 12 , and G does not have any \mathcal{F}-alternating circuit of length 4 or 8.

Let $J=C_{0} \triangle C_{1} \Delta C_{2}$, and let $\left\{J_{1}, \ldots, J_{\alpha}\right\}$ be the set of all components of J, where α is the number of components of J and

$$
\left|E\left(J_{1}\right) \cap E\left(C_{0}\right)\right| \leq\left|E\left(J_{2}\right) \cap E\left(C_{0}\right)\right| \leq \cdots \leq\left|E\left(J_{\alpha}\right) \cap E\left(C_{0}\right)\right| .
$$

Claim 2. α is either 2 or 3 .

Proof of Claim 2. Since $\left|E\left(C_{0}\right) \cap M\right|=6$ and there is an even number of edges of $E\left(C_{0}\right) \cap M$ in each component J_{i} of J, α must be at most 3.

If $\alpha=1$, then J is a Hamilton circuit of G and, therefore, G is 3-edge-colorable. This contradicts that G is a counterexample, and therefore, the claim is proved.

When $\alpha=2, J$ has two components,

$$
\left|E\left(J_{1}\right) \cap E\left(C_{0}\right)\right|=2 \quad \text { and } \quad\left|E\left(J_{2}\right) \cap E\left(C_{0}\right)\right|=4
$$

When $\alpha=3, J$ has three components, and, similarly,

$$
\left|E\left(J_{i}\right) \cap E\left(C_{0}\right)\right|=2, \quad \forall i=1,2,3 .
$$

Claim 3. Two components of J, say J_{β} and J_{γ}, are of odd orders $(\beta, \gamma \in[\alpha])$.
Proof of Claim 3. Note that $J=C_{0} \Delta C_{1} \Delta C_{2}$ is a 2-factor of G. If all of its components are of even order, then G is 3 -edge-colorable, a contradiction. Since the number of odd components of J must be even, by Claim $2, J$ has precisely two odd components. Without loss of generality, let them be J_{β} and J_{γ}.

Notation. Let $E\left(C_{0}\right) \cap E\left(C_{1}\right)=\left\{v_{t} v_{t+1}, v_{s} v_{s+1}, v_{k} v_{k+1}\right\}$, and denote

$$
E\left(C_{0}\right) \cap M=\left\{v_{\mu} u_{\pi(\mu)}: \mu=t, t+1, s, s+1, k, k+1\right\} .
$$

Let L_{1}, L_{2}, and L_{3} be the components of $E\left(C_{1}\right) \backslash E\left(C_{0}\right)$, each of which is a path with end vertices $v_{t}, v_{k+1}, v_{k}, v_{s+1}$, and v_{s}, v_{t+1}, respectively, as can be seen in Figure 1.

2-1

2-2

FIGURE 1 The types of connections when $\alpha=2$, with R_{1}, R_{2}, R_{3} shown as dotted lines

Let $X=V\left(C_{0}\right) \cap V\left(C_{2}\right)$. The circuit C_{2} is the union of six segments of C_{2} separated by X, in which three of them belonging to C_{0} are single edges, and the other three paths are components of $E\left(C_{2}\right) \backslash E\left(C_{0}\right)$. Denote them by $e_{1}, e_{2}, e_{3}, R_{1}, R_{2}$, and R_{3}, respectively.

Without loss of generality, let L_{1} of C_{1}, R_{1} of C_{2} be contained in J_{β} (together with two edges of C_{0}). That is,

$$
J_{\beta}=L_{1} \cup R_{1} \cup\left\{v_{k+1} u_{\pi(k+1)}, v_{t} u_{\pi(t)}\right\}
$$

By Claim 3, the circuit J_{β} is of odd length. That is, the lengths of L_{1} and R_{1} are of different parity. Without loss of generality, we assume that

Assumption. $\quad L_{1}$ is of odd length, and R_{1} is of even length.
(Note that if L_{1} is of even length, and R_{1} is of odd length. One may interchange C_{1} and C_{2}). With all these claims and the above assumption, we are ready to find all possible configurations (up to isomorphism) in the next two claims.

Claim 4. If $\alpha=2$, there are five configurations T_{j} for $j \in[5]$ (see Figure 2).
Proof of Claim 4. As $\alpha=2$, we notice that, up to isomorphism, $\left\{R_{2}, R_{3}\right\}$ has precisely two types of connections, see Figure 1. Call them Type 2-1 (the left one), and Type 2-2 (the right one).

FIGURE 2 The five configurations when $\alpha=2$

FIGURE 3 The types of connections when $\alpha=3$, with R_{1}, R_{2}, R_{3} shown as dotted lines

FIGURE 4 The two configurations when $\alpha=3$

Furthermore, for Type 2-1, by applying Claim 1 (avoiding \mathcal{F}-alternating 4-circuit and 8 -circuit), edges e_{1}, e_{2}, and e_{3} have precisely three different distributions, denoted by T_{1}, T_{2}, and T_{3}. For Type 2-2, edges e_{1}, e_{2}, and e_{3} are distributed in two ways, denoted by T_{4} and T_{5} (see Figure 2).

Claim 5. If $\alpha=3$, there are two configurations T_{6} and T_{7} (see Figure 4).
Proof of Claim 5. As $\alpha=3$, we notice that, up to isomorphism, the connection of each of R_{2} and R_{3} is uniquely determined, call it Type 3-1 (see Figure 3). Then, by applying Claim 1 (avoiding \mathcal{F}-alternating 4 -circuit and 8 -circuit), edges e_{1}, e_{2}, and e_{3} have precisely two different distributions, denoted by T_{6} and T_{7} (see Figure 4).

Since C_{1} is of odd length, the total length of L_{1}, L_{2}. and L_{3} is even. Moreover, since L_{1} is of odd length in the odd component J_{β} (by the Assumption), we have the following obvious claim.

Claim 6. The lengths of L_{2} and L_{3} are of different parity.

By Claim 6, there are two cases. (Now, we are ready to apply Lemma 1 by finding the circuit Q).
Case I. If L_{2} is of even length and L_{3} is of odd length.
Let

$$
Q= \begin{cases}v_{s+1} L_{2} v_{k} v_{k+1} u_{\pi(k+1)} u_{\pi(s+1)} v_{s+1}, & \text { if } G \text { is one of } T_{1} \text { and } T_{4} ; \tag{1}\\ v_{t} v_{t+1} u_{\pi(t+1)} u_{\pi(k)} v_{k} v_{k+1} L_{1} v_{t}, & \text { if } G \text { is one of } T_{2}, T_{3} \text { and } T_{7} ; \\ v_{t} v_{t+1} L_{3} v_{s} v_{s+1} u_{\pi(s+1)} u_{\pi(t)} v_{t}, & \text { if } G \text { is one of } T_{5} \text { and } T_{6}\end{cases}
$$

Case II. If L_{2} is of odd length and L_{3} is of even length.
Let

$$
Q= \begin{cases}v_{t} v_{t+1} u_{\pi(t+1)} u_{\pi(s)} v_{s} v_{s+1} L_{2} v_{k} v_{k+1} L_{1} v_{t}, & \text { if } G \text { is one of } T_{1} \text { and } T_{4} \tag{2}\\ v_{t} v_{t+1} u_{\pi(t+1)} u_{\pi(k)} v_{k} v_{k+1} L_{1} v_{t}, & \text { if } G \text { is one of } T_{2}, T_{3} \text { and } T_{7} \\ v_{t+1} L_{3} v_{s} v_{s+1} u_{\pi(s+1)} u_{\pi(t)} v_{t} L_{1} v_{k+1} u_{\pi(k+1)} u_{\pi(t+1)} v_{t+1}, & \text { if } G \text { is one of } T_{5} \text { and } T_{6}\end{cases}
$$

Let M_{1}, M_{2} be a pair of edge-disjoint perfect matchings of Q. Without loss of generality, let $E(Q) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right) \subseteq M_{2}$.

Let

$$
N_{1}=Q \Delta\left(C_{1} \cup C_{2}\right), \quad \text { and } \quad N_{2}=C_{0} \Delta N_{1} .
$$

Note that each N_{i} is a Hamilton circuit in $\overline{G \backslash M_{i}}$ for each $i \in[2]$.
We deal with the configuration T_{1} in Case I as an example. The Hamilton circuit N_{i} in $\overline{G \backslash M_{i}}$ is highlighted as bold lines/curves in Figure 5.

Consequently, the suppressed cubic graph $\overline{G \backslash M_{i}}$ is 3-edge-colorable for every configuration $T_{j}(j \in[7])$ and each matching $M_{i}(i \in[2])$. By Lemma 1, the graph G admits a Berge-Fulkerson coloring, a contradiction. Therefore every $C_{(12)}$-linked permutation graph is Berge-Fulkerson colorable.

This completes the proof of Theorem 1.

4 | APPLICATIONS: BERGE-FULKERSON COLORINGS OF SOME FAMILIES OF SNARKS

In this section, the conjecture is verified for some infinite families of snarks.

4.1 | Hägglund-Hoffmann-Ostenhof (HHO) snarks

In [10], an infinite family of cyclically 5 -edge connected permutation snarks, denoted by HHO snarks, was presented by Hägglund and Hoffmann-Ostenhof. As a corollary of the main result in this paper, the B-F-conjecture is verified for HHO -snarks.

Notation. Denote by P_{10} the Pertersen graph.

FIGURE 5 Illustration of Hamilton circuits N_{i} in $\overline{G \backslash M_{i}}$ of T_{1} for Case I

FIGURE 6 Illustration of P_{10} and $\widetilde{P_{10}}$
The edges which are associated with just one vertex are called semiedges. Denote by \widetilde{u} the semiedge which is adjacent to vertex u. A multipole is a graph in which semiedges are allowed. Define a join between two semiedges \widetilde{u} and \widetilde{v} as the removal of semiedges \widetilde{u} and \widetilde{v}, and the addition of edge $u v$.

Definition 2. Let G be a permutation graph with a chordless 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$, where $C_{1}=v_{0} v_{1} v_{2} \cdots v_{n} v_{0}$ and $C_{2}=u_{0} u_{1} u_{2} \cdots u_{n} u_{0}$. Let $v_{0} u_{0}$ be an edge of G with $v_{0} \in C_{1}$ and $u_{0} \in C_{2}$. Note that v_{1}, v_{n} and u_{1}, u_{n} be the other neighbours of v_{0} and u_{0}, respectively. Let u_{2} be the neighbour in C_{2} of u_{1} and $u_{2} \neq u_{0}$. Let \widetilde{G} be the graph obtained from G by removing vertices v_{0} and u_{0} and the edge $u_{1} u_{2}$, and adding one semiedge to vertices v_{1}, v_{n}, u_{2} and u_{n}, and adding two semiedges to vertex u_{1}. We shall refer to \widetilde{G} as the multipole of G with respect to the edge $v_{0} u_{0}$.

Let P_{10} be a Petersen graph with a chordless 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$, where $C_{1}=v_{0} v_{1} v_{2} v_{3} v_{4} v_{0}$ and $C_{2}=u_{0} u_{1} u_{2} u_{3} u_{4} u_{0}$. The graph P_{10} and the multipole $\widetilde{P_{10}}$ with respect to the edge $v_{0} u_{0}$ are shown in Figure 6.

The permutation graphs H_{i}, for $i \geq 1$, are given in [10] and are constructed recursively as follows.

Let H_{1} be the graph obtained from four copies of multipole $\widetilde{P_{10}}$ and from two new adjacent vertices p_{1} and q_{1} by joining semiedges of the multipoles and the vertices p_{1} and q_{1} to the rest of the graph as in Figure 7. H_{1} is a permutation graph with a chordless 2-factor $\mathcal{F}_{1}=\left\{C_{1}^{1}, C_{1}^{2}\right\}$, where $C_{1}^{1}=v_{3} v_{4} y_{2} y_{3} y_{4} n_{4} n_{3} n_{2} a_{4} a_{3} a_{2} a_{1} n_{1} q_{1} y_{1} v_{1} v_{2} v_{3}$ and $C_{1}^{2}=H_{1} \backslash V\left(C_{1}^{1}\right)$. In fact $q_{1} \in C_{1}^{1}, \quad p_{1} \in C_{1}^{2}$.

The graph H_{1}, shown in Figure 7, is denoted by $H\left(P_{10}, P_{10}, P_{10}, P_{10}\right)$.
H_{n} is recursively constructed as follows.

FIGURE 7 Illustration of the graph H_{1}

For a given H_{n-1} with a chordless 2-factor $\mathcal{F}_{n-1}=\left\{C_{n-1}^{1}, C_{n-1}^{2}\right\}$, let $\widetilde{H_{n-1}}$ be the multipole of H_{n-1} (see Definition 2). H_{n} is constructed from $\widetilde{H_{n-1}}$, three copies of $\widetilde{P_{10}}$ and two new adjacent vertices p_{n}, q_{n} by joining semiedges in a similar manner as in Figure 7, and the vertices p_{n}, q_{n} to the rest of the graph, which is denoted by $H\left(H_{n-1}, P_{10}, P_{10}, P_{10}\right)$ and is shown in Figure 8. The structure of H_{n} is exactly the same as H_{1}, except that one copy of P_{10} is replaced by H_{n-1}. The details are referred to [10].

Lemma 2 (Hägglund and Hoffmann-Ostenhof [10]). Let $\mathcal{H}:=\bigcup_{n=0}^{\infty}\left\{H_{n}\right\}$ be the HHOsnarks family with $H_{0}:=P_{10}$ and for $n \geq 1, \quad H_{n}:=H\left(H_{n-1}, P_{10}, P_{10}, P_{10}\right)$. Then, \mathcal{H} is an infinite family of cyclically 5-edge connected permutation snarks, where $H_{n} \in \mathcal{H}$ has $10+24 n$ vertices.

According to the construction of H_{n}, each H_{i} for $i \in[n]$ has the same structure which is shown inside the dotted line in Figures 7 and 8. This same structure is also shown in Figure 9 which is the local structure of H_{n} with a $C_{(12)}$-linked circuit $C_{(12)}=m_{1} m_{2} n_{1} a_{1} b_{3} b_{2} a_{4} n_{2} m_{4} m_{3} n_{4} n_{3} m_{1}$ between the 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ of the permutation graph H_{n}. Thus, each H_{n} for $i \in[n]$ is a $C_{(12)}$-linked permutation graph.

As a corollary of Theorem 1, every member of the infinite family snarks \mathcal{H} is Berge-Fulkerson colorable. That is as follows.

Corollary 1. Every H_{n} in the infinite set of cyclically 5-edge connected permutation snarks $\mathcal{H}:=\bigcup_{n=0}^{\infty}\left\{H_{n}\right\}$ is Berge-Fulkerson colorable.

4.2 | Brinkmann-Goedgebeur-Hägglund-Markström snarks

In [4], 12 cyclically 5 -edge connected permutation snarks on 34 vertices have been discovered by Brinkmann, Goedgebeur, Hägglund, and Markström using a computer search and denoted them by $B G H M_{34}$-snarks. The B-F-conjecture was also verified for all of them in [4] by finding a Petersen coloring. Note that finding a Petersen coloring is not a straightforward process. In this

FIGURE 8 Illustration of the graph H_{n}

FIGURE 9 A $C_{(12)}$-alternating circuit in H_{n}
paper, as a different approach, the B-F-conjecture is verified again for those snarks by applying our main theorem, as each of them is a $C_{(12)}$-linked permutation graph.

Let G_{i} be a $B G H M_{34}$-snark $(i \in[12])$. A chordless 2-factor $\mathcal{F}_{i}=\left\{C_{i}^{1}, C_{i}^{2}\right\}$ of G_{i} is listed as follows:
$C_{1}^{1}=v_{25} v_{26} v_{19} v_{20} v_{30} v_{32} v_{18} v_{22} v_{14} v_{11} v_{7} v_{23} v_{8} v_{4} v_{16} v_{6} v_{2} v_{25}$,
$C_{1}^{2}=v_{1} v_{9} v_{10} v_{12} v_{3} v_{31} v_{21} v_{5} v_{27} v_{28} v_{33} v_{34} v_{24} v_{13} v_{29} v_{15} v_{17} v_{1}$.
$C_{2}^{1}=v_{9} v_{30} v_{10} v_{12} v_{16} v_{11} v_{7} v_{20} v_{34} v_{26} v_{22} v_{21} v_{28} v_{5} v_{31} v_{6} v_{4} v_{9}$,
$C_{2}^{2}=v_{1} v_{13} \nu_{14} \nu_{2} v_{15} \nu_{24} \nu_{32} \nu_{23} \nu_{25} \nu_{8} \nu_{33} \nu_{3} \nu_{29} v_{18} \nu_{17} v_{19} \nu_{27} \nu_{1}$.
$C_{3}^{1}=v_{12} v_{16} v_{22} v_{21} v_{14} v_{13} v_{27} v_{31} v_{32} v_{24} v_{20} v_{18} v_{15} v_{6} v_{4} v_{8} v_{3} v_{12}$,
$C_{3}^{2}=v_{1} v_{9} v_{23} \nu_{10} v_{29} v_{30} v_{33} \nu_{34} v_{19} v_{5} v_{26} v_{28} \nu_{25} v_{2} v_{7} v_{11} v_{17} v_{1}$.
$C_{4}^{1}=v_{9} v_{10} v_{12} v_{22} v_{16} v_{11} v_{7} v_{19} v_{20} v_{18} v_{17} v_{33} \nu_{34} v_{5} v_{31} v_{6} v_{4} v_{9}$,
$C_{4}^{2}=v_{1} v_{21} v_{30} \nu_{29} v_{3} v_{27} v_{28} v_{8} v_{25} \nu_{32} v_{26} \nu_{15} \nu_{2} v_{14} v_{13} \nu_{24} v_{23} v_{1}$.
$C_{5}^{1}=v_{22} v_{21} v_{31} v_{5} v_{19} v_{28} v_{27} v_{33} v_{34} v_{24} v_{26} v_{30} v_{25} v_{11} v_{7} v_{8} v_{4} v_{22}$,
$C_{5}^{2}=v_{1} v_{9} v_{17} v_{20} v_{18} v_{14} v_{29} v_{32} v_{13} v_{6} v_{23} v_{2} v_{10} v_{12} v_{3} v_{16} v_{15} v_{1}$.
$C_{6}^{1}=v_{19} v_{23} \nu_{24} v_{11} v_{22} v_{21} v_{30} v_{3} v_{5} v_{32} v_{31} v_{27} v_{28} v_{25} v_{6} v_{13} v_{2} v_{19}$,
$C_{6}^{2}=v_{1} v_{15} v_{16} v_{14} v_{12} v_{26} v_{10} v_{9} v_{4} v_{8} v_{7} v_{29} v_{33} v_{34} v_{20} v_{18} v_{17} v_{1}$.
$C_{7}^{1}=v_{12} v_{24} v_{14} v_{13} v_{25} v_{30} v_{26} v_{22} v_{33} v_{34} v_{32} v_{31} v_{19} v_{17} v_{28} v_{18} v_{10} v_{12}$,
$C_{7}^{2}=v_{1} v_{9} v_{27} v_{29} v_{4} v_{8} v_{20} v_{16} v_{3} v_{5} v_{6} v_{23} v_{2} v_{7} v_{11} v_{15} v_{21} v_{1}$.
$C_{8}^{1}=v_{32} v_{10} v_{26} v_{12} v_{14} v_{16} v_{22} v_{15} v_{5} v_{6} v_{19} v_{20} v_{18} v_{8} v_{34} v_{33} v_{2} v_{32}$,
$C_{8}^{2}=v_{1} v_{9} v_{4} v_{27} v_{28} v_{13} v_{30} v_{29} v_{21} v_{3} v_{24} v_{23} v_{7} v_{11} v_{17} v_{25} v_{31} v_{1}$.
$C_{9}^{1}=v_{9} v_{10} v_{16} v_{15} v_{5} v_{18} v_{20} v_{21} v_{31} v_{32} v_{27} v_{11} v_{7} v_{24} v_{23} v_{6} v_{4} v_{9}$,
$C_{9}^{2}=v_{1} v_{19} v_{34} v_{33} v_{29} v_{30} v_{8} v_{3} v_{12} v_{14} v_{22} v_{13} v_{2} v_{17} v_{26} v_{28} v_{25} v_{1}$.
$C_{10}^{1}=v_{27} v_{28} v_{11} v_{14} v_{13} v_{32} v_{23} v_{4} v_{17} v_{9} v_{10} v_{22} v_{21} v_{19} v_{5} v_{29} v_{3} v_{27}$,
$C_{10}^{2}=v_{1} v_{15} v_{16} v_{8} v_{7} v_{2} v_{6} v_{25} v_{26} v_{30} v_{20} v_{24} v_{18} v_{31} v_{12} v_{34} v_{33} v_{1}$.
$C_{11}^{1}=v_{29} v_{8} v_{23} v_{4} v_{9} v_{10} v_{25} v_{28} v_{26} v_{22} v_{34} v_{33} v_{14} v_{32} v_{18} v_{17} v_{3} v_{29}$,
$C_{11}^{2}=v_{1} v_{11} v_{21} v_{7} v_{2} \nu_{13} v_{6} v_{31} v_{5} v_{15} v_{16} v_{27} v_{12} v_{30} v_{24} v_{20} v_{19} v_{1}$.
$C_{12}^{1}=v_{31} v_{21} v_{22} v_{17} v_{28} v_{27} v_{14} v_{30} v_{29} v_{16} v_{24} v_{23} v_{8} v_{4} v_{6} v_{5} v_{3} v_{31}$,
$C_{12}^{2}=v_{1} v_{9} v_{34} v_{33} v_{7} v_{32} v_{11} v_{12} v_{10} v_{2} v_{25} v_{26} v_{15} v_{18} v_{20} v_{19} v_{13} v_{1}$.
Lemma 3. The twelve $B G H M_{34}$-snarks are $C_{(12)}$-linked permutation graphs.
Proof. Let G_{i} be a $B G H M_{34}$-snark ($i \in[12]$), and \mathcal{F}_{i} be described as above. An $\mathcal{F}_{i^{-}}$ alternating circuit C_{i}^{0} in G_{i} is listed as follows for each i. It can be checked that each C_{i}^{0} is a $C_{(12)}$-linked circuit, as required.

$$
\begin{aligned}
& C_{1}^{0}=v_{19} v_{26} v_{5} v_{27} v_{6} v_{16} v_{15} v_{17} v_{20} v_{30} v_{29} v_{13} v_{19} . \\
& C_{2}^{0}=v_{12} v_{10} v_{14} v_{13} v_{21} v_{22} v_{19} v_{17} v_{9} v_{30} v_{29} v_{18} v_{12} . \\
& C_{3}^{0}=v_{14} v_{21} v_{10} v_{23} v_{32} v_{24} v_{17} v_{1} v_{31} v_{27} v_{28} v_{25} v_{14} . \\
& C_{4}^{0}=v_{12} v_{22} v_{21} v_{30} v_{9} v_{4} v_{25} v_{32} v_{31} v_{5} v_{3} v_{29} v_{12} . \\
& C_{5}^{0}=v_{33} v_{34} v_{23} v_{2} v_{7} v_{11} v_{14} v_{18} v_{26} v_{24} v_{12} v_{10} v_{33} . \\
& C_{6}^{0}=v_{22} v_{21} v_{12} v_{26} v_{28} v_{25} v_{4} v_{8} v_{3} v_{30} v_{29} v_{7} v_{22} . \\
& C_{7}^{0}=v_{14} v_{13} v_{4} v_{8} v_{26} v_{22} v_{21} v_{15} v_{34} v_{33} v_{7} v_{11} v_{14} . \\
& C_{8}^{0}=v_{26} v_{12} v_{29} v_{21} v_{22} v_{16} v_{30} v_{13} v_{2} v_{32} v_{31} v_{25} v_{26} . \\
& C_{9}^{0}=v_{16} v_{15} v_{19} v_{1} v_{11} v_{7} v_{26} v_{28} v_{27} v_{32} v_{14} v_{12} v_{16} . \\
& C_{10}^{0}=v_{11} v_{14} v_{18} v_{24} v_{23} v_{32} v_{31} v_{12} v_{3} v_{27} v_{16} v_{15} v_{11} . \\
& C_{11}^{0}=v_{8} v_{23} v_{24} v_{30} v_{29} v_{3} v_{20} v_{19} v_{34} v_{22} v_{21} v_{7} v_{8} \\
& C_{12}^{0}=v_{22} v_{17} v_{1} v_{13} v_{27} v_{28} v_{20} v_{19} v_{5} v_{3} v_{12} v_{11} v_{22} .
\end{aligned}
$$

As an example, the snark G_{1} is shown in Figure 10, in which the 2-factor $\mathcal{F}_{1}=\left\{C_{1}^{1}, C_{1}^{2}\right\}$ of G_{1} is shown inside the dotted line.

As a consequence of Theorem 1, we have the following corollary.
Corollary 2. The 12 BGHM $_{34}$-snarks are Berge-Fulkerson colorable.

4.3 | Abreu-Labbate-Rizzi--heehan snark

In this section, a snark of order 26, denoted by $A L R S_{26}$ and discovered in [1] (see Figure 11) is verified for the B-F-conjecture.

FIGURE 10 Illustration of the $B G H M_{34}$-snark G_{1}

FIGURE 11 Illustration of the snark $A L R S_{26}$
Actually, due to a special substructure of the $A L R S_{26}$-snark, we are able to verify the B-Fconjecture for a larger family of cubic graphs, and the $A L R S_{26}$-snark is a member of this family.

Definition 3. Let G^{\prime} be a permutation graph with a 2-factor $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ and let $M=E\left(G^{\prime}\right) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)$ be the perfect matching between C_{1} and C_{2} such that $v_{1} v_{2} \cdots v_{5}$ and $u_{1} u_{2} \cdots u_{5}$ are paths in C_{1} and C_{2}, respectively, and $v_{i} u_{i} \in M$ for $i \in[5]$. Let G be a graph obtained from G^{\prime} by inserting one vertex, say w_{i}, in the edge $v_{i} u_{i}$ for each $i \in[5]$, a new vertex w and edges $w_{1} w_{5}, \quad w_{i} w$ for $i=2,3,4$ (see Figure 12).

Every graph G defined in Definition 3 is called an ALRS-cubic graph.
Corollary 3. Every ALRS-cubic graph G is Berge-Fulkerson colorable.
Proof. Let M_{1} and M_{2} be two distinct matchings such that $M_{1} \cup M_{2}$ is the 6 -circuit $v_{2} v_{3} v_{4} w_{4} w w_{2} v_{2}$ (see Figure 12). Then, each of $\overline{G \backslash M_{1}}$ and $\overline{G \backslash M_{2}}$ contains a Hamilton circuit and so is 3-edge-colorable. By Lemma 1, the graph G is Berge-Fulkerson colorable.

5 | EXTENSIONS AND REMARKS

The notion of an \mathcal{F}-alternating circuit in Definition 1 was defined for permutation graphs, in which each component of a 2 -factor is chordless. However, we note that the existence of chord in a 2 -factor has little impact on the proof of Theorem 1 . Thus, we may modify Definition 1 and extend Theorem 1 as follows.

Definition 4. Let \mathcal{F} be a 2 -factor of a cubic graph G with the set of components $\left\{C_{1}, C_{2}\right\}$. A circuit $C_{0}=e_{1} e_{2} \cdots e_{2 t}$ is \mathcal{F}-alternating if, for every $i \in[t], e_{2 i}$ is an edge of the

FIGURE 12 Illustration of $A L R S$-cubic graphs
matching $M \subseteq E(G) \backslash\left(E\left(C_{1}\right) \cup E\left(C_{2}\right)\right)$ joining C_{1} and C_{2}, but not a chord of any component of \mathcal{F}.

With Definition 4, Theorem 1 is extended as follows.

Theorem 2. Let $\mathcal{F}=\left\{C_{1}, C_{2}\right\}$ be a 2-factor of a cubic graph G. If G contains an \mathcal{F}-alternating circuit of length at most 12, then G is Berge-Fulkerson colorable.

Note that the proof of Theorem 1 is based on the subgraph of G induced by the edges of C_{1}, C_{2}, and an \mathcal{F}-alternating circuit C_{0}. Therefore, the condition of chordless is not used at all in the proof of Theorem 1. Thus, the proof of Theorem 1 can be adapted here.

For a 2-factor with more than two components, Theorems 1 and 2 can also be further extended after giving the following definitions.

Definition 5. Let \mathcal{F} be a 2 -factor of a cubic graph G.
(A) Let \mathcal{F}^{\prime} be a subset of components of \mathcal{F} such that $\mathcal{F}^{\prime}=\left\{C_{1}, C_{2}, \ldots, C_{\tau}\right\}$ contains precisely two odd components C_{1} and C_{2}, and all others components C_{i}, for $i \neq 1,2$, are of even order. The subset \mathcal{F}^{\prime} is $C_{(12+)}$-linked if there is a circuit $C_{0}=e_{1} \cdots e_{r}$ such that
(1) $V\left(C_{0}\right) \subseteq \bigcup_{C \in \mathcal{F}^{\prime}} V(C)$;
(2) $E\left(C_{0}\right) \cap E\left(C_{1}\right)=\left\{e_{e_{1}}, e_{e_{3}}, e_{e_{5}}\right\}$, and, $E\left(C_{0}\right) \cap E\left(C_{2}\right)=\left\{e_{e_{2}}, e_{e_{4}}, e_{e_{6}}\right\}$ with

$$
1 \leq \ell_{1}<\ell_{2}<\ell_{3}<\ell_{4}<e_{5}<\ell_{6} \leq r
$$

$$
\begin{equation*}
\left|E\left(C_{0}\right) \cap E\left(C_{i}\right)\right| \leq 1 \tag{3}
\end{equation*}
$$

for every $i>2$.
(B) The graph G is $\mathcal{F}-C_{(12+)}$-linked if the set of components of \mathcal{F} has a partition $\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{\omega}\right\}$ such that every member \mathcal{F}_{i} of the partition is $C_{(12+)}$-linked.

Theorems 1 and 2 can be further extended as follows.
Theorem 3. Every $\mathcal{F}-C_{(12+)}$-linked cubic graph is Berge-Fulkerson colorable.
The proof of Theorem 3 is omitted in this paper since it is almost the same as the proof of Theorems 1 and 2 with a slightly lengthy discussions when edges of M in C_{0} are replaced with paths of odd length, each of which consists of some edges in M and some edges of even components.

ACKNOWLEDGMENTS

This study was supported by the National Science Foundation (No. DMS-1700218) and the National Natural Science Foundation of China (Nos. 11971054, 11731002).

ORCID

Siyan Liu (ㅁ) http://orcid.org/0000-0001-6265-0429
Rong-Xia Hao (D) http://orcid.org/0000-0001-8714-8750
Cun-Quan Zhang (D) http://orcid.org/0000-0001-5583-4481

REFERENCES

1. M. Abreu, D. Labbate, R. Rizzi, and J. Sheehan, Odd 2-factored snarks, European J. Combin. 36 (2014), 460-472.
2. J. C. Bermond, B. Jackson, and F. Jaeger, Shortest coverings of graphs with cycles, J. Combin. Theory Ser. B 35 (1983), 297-308.
3. J. A. Bondy and U. S. R. Murty, Graph theory, Springer, New York, 2007.
4. G. Brinkmann, J. Goedgebeur, J. Hägglund, and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013), 468-488.
5. U. A. Celmins, A study of three conjecture on an infinite family of snarks, Technical Report CORR-79-19, University of Waterloo, 1979.
6. F. Chen and G. Fan, Fulkerson-covers of hypohamiltonian graphs, Discrete Appl. Match. 186 (2015), 66-73.
7. G. Fan, Covering graphs by cycles, SIAM J. Discrete Math. 5 (1992), no. 4, 491-496.
8. G. Fan and A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory Ser. B 61 (1994), 133-138.
9. D. R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1 (1971), 168-194.
10. J. Hägglund and A. Hoffmann-Ostenhof, Construction of permutation snarks, J. Combin. Theory Ser. B 122 (2017), 55-67.
11. R. Hao, J. Niu, X. Wang, C.-Q. Zhang, and T. Zhang, A note on Berge-Fulkerson coloring, Discrete Math. 309 (2009), 4235-4240.
12. R. Hao, C.-Q. Zhang, and T. Zheng, Berge-Fulkerson coloring for $C_{(8)}$-linked graphs, J. Graph Theory 88 (2018), 46-60.
13. E. Máčajová and G. Mazzuoccolo, Reduction of the Berge-Fulkerson conjecture to cyclically 5-edge-connected snarks, Proc. Amer. Math. Soc. 148 (2020), 4643-4652.
14. P. Manuel and A. S. Shanthi, Berge-Fulkerson conjecture on certain snarks, Math. Comput. Sci. 9 (2015), 209-220.
15. G. Mazzuoccolo, The equivalence of two conjectures of Berge and Fulkerson, J. Graph Theory 68 (2011), 125-128.
16. P. D. Seymour, On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. Lond. Math. Soc. 38 (1979), 423-460.
17. C. -Q. Zhang, Integer flows and cycle covers of graphs, Marcel Dekker Inc., New York, 1997.

How to cite this article: S. Liu, R. Hao, C. Zhang, and Z. Zhang, Berge-Fulkerson coloring for $C_{(12)}$-linked permutation graphs, J. Graph. Theory. (2021), 1-14. https://doi.org/10.1002/jgt. 22720

