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Abstract
It is conjectured by Berge and Fulkerson that every

bridgeless cubic graph has six perfect matchings such that

each edge is contained in exactly two of them. Let G be a

permutation graph with a 2‐factor C Cℱ = { , }1 2 . A circuit

C0 isℱ‐alternating if ⧹ ∪E C E C E C( ) ( ( ) ( ))0 1 2 is a perfect

matching of C0. A permutation graph G with a 2‐factor
C Cℱ = { , }1 2 is C(12)‐linked if it contains an ℱ‐alternating

circuit of length at most 12. It is proved in this paper that

everyC(12)‐linked permutation graph is Berge–Fulkerson
colorable. As an application, the conjecture is verified for

some families of snarks constructed by Abreu et al.,

Brinkmann et al., and Hägglund et al.
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1 | INTRODUCTION

The Berge–Fulkerson conjecture is one of the most famous open problems in graph theory.
Although the statement of the Berge–Fulkerson conjecture is very simple, the solution has
eluded many mathematicians over five decades and remains beyond the horizon.

Conjecture 1 (Berge–Fulkerson Conjecture [B‐F‐conjecture] [9], or see [15,16]). Every bridgeless
cubic graph has six perfect matchings such that each edge belongs to exactly two of them.
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A snark is a cyclically 4‐edge connected cubic graph of girth at least 5 admitting no 3‐edge
coloring. The B‐F‐conjecture, similar to other major open problems, such as, Tutte's 5‐flow con-
jecture, cycle double cover conjecture, is trivial for 3‐edge‐colorable cubic graphs, and remains widely
open for snarks [17]. Among these famous conjectures, the B‐F‐conjecture is less explored than the
other two conjectures and is still open for some known snarks. In [5,6,11,12,14], the conjecture is
verified for some families of snarks. It was shown in [13], a possible minimum counterexample for
the B‐F‐conjecture should have cyclic edge‐connectivity at least 5.

The B‐F‐conjecture is equivalent to the statement that every bridgeless cubic graph has a
family of six cycles such that every edge is covered precisely four times. It was proved by Bermond
et al. [2] that every bridgeless graph has a family of seven cycles such that every edge is covered
precisely four times; and Fan [7] proved that every bridgeless graph has a family of ten cycles
such that every edge is covered precisely six times. The relation between the Berge–Fulkerson
coloring and shortest cycle cover problems has been investigated by Fan and Raspaud [8].

Definition 1. Let G be a permutation graph.

(i) Let C Cℱ = { , }1 2 be a chordless 2‐factor. A circuit C0 of G is ℱ‐alternating if
⧹ ∪E C E C E C( ) ( ( ) ( ))0 1 2 is a perfect matching of C0. This ℱ‐alternating circuit C0 is

called a linked circuit.
(ii) The permutation graphG is C λ( )‐linked if it contains a chordless 2‐factor ℱ admitting

an ℱ‐alternating circuit of length at most λ.

The following is the main theorem of the paper.

Theorem 1. Every C(12)‐linked permutation graph is Berge–Fulkerson colorable.

In [12], the B‐F‐conjecture was verified for all permutation graphs with alternating circuit of
length at most 8. This result is further extended to permutation graphs with alternating circuit of
length 12 (Theorem 1). It is noticed that some families of snarks are C(12)‐linked but not C(8)‐linked.
For example, twelve cyclically 5‐edge connected permutation snarks discovered by Brinkmann,
Goedgebeur, Hägglund, and Markström in [4], an infinite family of cyclically 5‐edge connected
permutation snarks discovered by Hägglund and Hoffmann‐Ostenhof in [10]. As applications of the
main result, the B‐F‐conjecture is further verified for these families of snarks.

In Section 2, some notations and definitions are presented. The proof of the main theorem
(Theorem 1) is presented in Section 3. The applications are presented in Section 4. Further
extensions and remarks are presented and discussed in the last section.

2 | PRELIMINARIES

Let G V E= ( , ) be a graph. A circuit of G is a 2‐regular connected subgraph. A cycle (or an even
graph) is a graph with even degree at every vertex. The suppressed graph, denoted by G , is the
graph obtained from G by suppressing all degree‐2‐vertices. A k‐factor of a graph G is a
spanning k‐regular subgraph of G. The set of edges of a 1‐factor of a graph G is called a perfect
matching of G. We refer to [3] for notation and terminologies used but not defined here.

Let X and Y be two subgraphs ofG. The symmetric difference of X and Y , denoted by �X Y ,
is the subgraph of G induced by the edge set ∪ ⧹ ∩E X E Y E X E Y( ( ) ( )) ( ( ) ( )). The set

n{1, 2, …, } is denoted by n[ ].
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A cubic graph G is Berge–Fulkerson colorable if G2 is 6‐edge‐colorable, where the graph G2
is obtained fromG by replacing every edge with a pair of parallel edges. It is obvious that this is
an equivalent description of the B‐F‐conjecture.

Lemma 1 (Hao et al. [11]). A cubic graph G is Berge–Fulkerson colorable if and only if
there are two edge‐disjoint matchings M1 and M2 such that

(1) ∪M M1 2 is an even subgraph Q in G, and
(2) for each i = 1, 2 and for each component X of G M\ i, either the suppressed graph X is

3‐edge‐colorable, or, X is a circuit.

An equivalent statement of Lemma 1 for cubic graphs can be found in [6].
The following observation (Proposition 1) ensures the existence of an ℱ‐alternating circuit

in any permutation graph.

Proposition 1. Every permutation graph with a chordless 2‐factor C Cℱ = { , }1 2 has an
ℱ‐alternating circuit C0 of length k4 , where ≥Þ Þ Þ ÞV C V C( ) = ( ) 31 2 .

Proof. Let G be a given permutation graph with a chordless 2‐factor C Cℱ = { , }1 2 and a
perfect matching ⧹ ∪M E G E C E C= ( ) ( ( ) ( ))1 2 , where ≥Þ Þ Þ ÞV C V C n( ) = ( ) = 31 2 . Let

⋯C v v v= n1 1 1 and ⋯C u u u= n2 1 1. Without loss of generality, suppose vn is adjacent to un.
Let lG G= if n t= 2 is even, or, lG G v u= − { }n n if n t= 2 + 1 is odd. Let l C Cℱ = { ˆ , ˆ }1 2

be the corresponding chordless 2‐factor of lG , where ⋯C v v vˆ = t1 1 2 1 and ⋯C u u uˆ = t2 1 2 1.

Assign a 3‐edge‐coloring mapping →σ E G: ( ^) {Red, Blue, Yellow} such that
(1) the edges in Ĉ1 and Ĉ2 are alternately colored Red and Blue with u ut2 1 and v vt2 1

colored Red, and
(2) the edges in l ⧹ ∪E G E C E C( ) ( ( ˆ ) ( ˆ ))1 2 are colored with Yellow.

Any Blue‐Yellow bicolored circuit is an ℱ‐alternating circuit of length k4 in G. □

3 | THE PROOF OF THEOREM 1

Let G be a counterexample to the theorem with a chordless 2‐factor C Cℱ = { , }1 2 and a perfect
matching ⧹ ∪M E G E C E C= ( ) ( ( ) ( ))1 2 , where

⋯ ⋯C v v v C u u u= , = .n n1 1 1 2 1 1

Assume that n is odd, otherwise the graph G is 3‐edge‐colorable.
Let →π n n: {1, …, } {1, …, } be a permutation on the set n{1, …, } such that

�M v u i n= { : [ ]}.i π i( )

Let C0 be an ℱ‐alternating circuit of length at most 12.
Since it was proved in [12] that Conjecture 1 holds for the case of C(8)‐linked permutation

graphs, we have the following claim (by Proposition 1).

Claim 1. C0 is of length 12, andG does not have any ℱ‐alternating circuit of length 4 or 8.
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Let � �J C C C= 0 1 2, and let J J{ , …, }α1 be the set of all components of J , where α is the
number of components of J and

∩ ≤ ∩ ≤ ⋯ ≤ ∩Þ Þ Þ Þ Þ ÞE J E C E J E C E J E C( ) ( ) ( ) ( ) ( ) ( ) .α1 0 2 0 0

Claim 2. α is either 2 or 3.

Proof of Claim 2. Since ∩Þ ÞE C M( ) = 60 and there is an even number of edges of
∩E C M( )0 in each component Ji of J α, must be at most 3.

If α = 1, then J is a Hamilton circuit of G and, therefore, G is 3‐edge‐colorable. This
contradicts that G is a counterexample, and therefore, the claim is proved. □

When α J= 2, has two components,

∩ ∩Þ Þ Þ ÞE J E C E J E C( ) ( ) = 2 and ( ) ( ) = 4.1 0 2 0

When α J= 3, has three components, and, similarly,

∩ ∀Þ ÞE J E C i( ) ( ) = 2, = 1, 2, 3.i 0

Claim 3. Two components of J , say Jβ and Jγ, are of odd orders ( �β γ α, [ ]).

Proof of Claim 3. Note that � �J C C C= 0 1 2 is a 2‐factor ofG. If all of its components are
of even order, then G is 3‐edge‐colorable, a contradiction. Since the number of odd
components of J must be even, by Claim 2, J has precisely two odd components. Without
loss of generality, let them be Jβ and Jγ. □

Notation. Let ∩E C E C v v v v v v( ) ( ) = { , , }t t s s k k0 1 +1 +1 +1 , and denote

∩E C M v u μ t t s s k k( ) = { : = , + 1, , + 1, , + 1}.μ π μ0 ( )

Let L L,1 2, and L3 be the components of E C E C( ) \ ( )1 0 , each of which is a path with end
vertices v v v v, , ,t k k s+1 +1, and v v,s t+1, respectively, as can be seen in Figure 1.

FIGURE 1 The types of connections when α = 2, with R R R, ,1 2 3 shown as dotted lines
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Let ∩X V C V C= ( ) ( )0 2 . The circuit C2 is the union of six segments of C2 separated by X , in
which three of them belonging toC0 are single edges, and the other three paths are components
of ⧹E C E C( ) ( )2 0 . Denote them by e e e R R, , , ,1 2 3 1 2, and R3, respectively.

Without loss of generality, let L1 of C R,1 1 of C2 be contained in Jβ (together with two edges
of C0). That is,

∪ ∪J L R v u v u= { , }.β k π k t π t1 1 +1 ( +1) ( )

By Claim 3, the circuit Jβ is of odd length. That is, the lengths of L1 and R1 are of different
parity. Without loss of generality, we assume that

Assumption. L1 is of odd length, and R1 is of even length.

(Note that if L1 is of even length, and R1 is of odd length. One may interchange C1 and C2).
With all these claims and the above assumption, we are ready to find all possible config-

urations (up to isomorphism) in the next two claims.

Claim 4. If α = 2, there are five configurations Tj for �j [5] (see Figure 2).

Proof of Claim 4. As α = 2, we notice that, up to isomorphism, R R{ , }2 3 has precisely two
types of connections, see Figure 1. Call them Type 2‐1 (the left one), and Type 2‐2
(the right one).

FIGURE 2 The five configurations when α = 2
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Furthermore, for Type 2‐1, by applying Claim 1 (avoiding ℱ‐alternating 4‐circuit and
8‐circuit), edges e e,1 2, and e3 have precisely three different distributions, denoted by T T,1 2,
and T3. For Type 2‐2, edges e e,1 2, and e3 are distributed in two ways, denoted by T4 and T5
(see Figure 2). □

Claim 5. If α = 3, there are two configurations T6 and T7 (see Figure 4).

Proof of Claim 5. As α = 3, we notice that, up to isomorphism, the connection of each
of R2 and R3 is uniquely determined, call it Type 3‐1 (see Figure 3). Then, by applying
Claim 1 (avoidingℱ‐alternating 4‐circuit and 8‐circuit), edges e e,1 2, and e3 have precisely
two different distributions, denoted by T6 and T7 (see Figure 4). □

Since C1 is of odd length, the total length of L L,1 2. and L3 is even. Moreover, since L1 is of
odd length in the odd component Jβ (by the Assumption), we have the following obvious claim.

Claim 6. The lengths of L2 and L3 are of different parity.

FIGURE 3 The types of connections when α = 3, with R R R, ,1 2 3 shown as dotted lines

FIGURE 4 The two configurations when α = 3

6 | LIU ET AL.



By Claim 6, there are two cases. (Now, we are ready to apply Lemma 1 by finding the circuitQ).

Case I. If L2 is of even length and L3 is of odd length.
Let OPRRRRRQRRRRRQ

v L v v u u v G T T
v v u u v v L v G T T T
v v L v v u u v G T T

=
, if is one of and ;

, if is one of , and ;
, if is one of and .

s k k π k π s s

t t π t π k k k t

t t s s π s π t t

+1 2 +1 ( +1) ( +1) +1 1 4

+1 ( +1) ( ) +1 1 2 3 7

+1 3 +1 ( +1) ( ) 5 6

(1)

Case II. If L2 is of odd length and L3 is of even length.
Let OPRRRRRQRRRRRQ

v v u u v v L v v L v G T T
v v u u v v L v G T T T
v L v v u u v L v u u v G T T

=
, if is one of and ;

, if is one of , and ;
, if is one of and .

t t π t π s s s k k t

t t π t π k k k t

t s s π s π t t k π k π t t

+1 ( +1) ( ) +1 2 +1 1 1 4

+1 ( +1) ( ) +1 1 2 3 7

+1 3 +1 ( +1) ( ) 1 +1 ( +1) ( +1) +1 5 6
(2)

Let M M,1 2 be a pair of edge‐disjoint perfect matchings of Q. Without loss of generality,
let ⧹ ∪ ⊆E Q E C E C M( ) ( ( ) ( ))1 2 2.

Let
∪� �N Q C C N C N= ( ), and = .1 1 2 2 0 1

Note that each Ni is a Hamilton circuit in G M\ i for each �i [2].
We deal with the configuration T1 in Case I as an example. The Hamilton circuit Ni inG M\ i

is highlighted as bold lines/curves in Figure 5.
Consequently, the suppressed cubic graph G M\ i is 3‐edge‐colorable for every configuration

Tj ( �j [7]) and each matchingMi ( �i [2]). By Lemma 1, the graphG admits a Berge–Fulkerson
coloring, a contradiction. Therefore every C(12)‐linked permutation graph is Berge–Fulkerson
colorable.

This completes the proof of Theorem 1.

4 | APPLICATIONS: BERGE–FULKERSON COLORINGS OF
SOME FAMILIES OF SNARKS

In this section, the conjecture is verified for some infinite families of snarks.

4.1 | Hägglund–Hoffmann‐Ostenhof (HHO) snarks

In [10], an infinite family of cyclically 5‐edge connected permutation snarks, denoted by HHO‐
snarks, was presented by Hägglund and Hoffmann‐Ostenhof. As a corollary of the main result
in this paper, the B‐F‐conjecture is verified for HHO‐snarks.

Notation. Denote by P10 the Pertersen graph.
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The edges which are associated with just one vertex are called semiedges. Denote by u͠ the
semiedge which is adjacent to vertex u. A multipole is a graph in which semiedges are allowed.
Define a join between two semiedges u͠ and v͠ as the removal of semiedges u͠ and v͠ , and the
addition of edge uv.

Definition 2. Let G be a permutation graph with a chordless 2‐factor C Cℱ = { , }1 2 ,
where ⋯C v v v v v= n1 0 1 2 0 and ⋯C u u u u u= n2 0 1 2 0. Let v u0 0 be an edge of G with �v C0 1
and �u C0 2. Note that v v, n1 and u u, n1 be the other neighbours of v0 and u0, respectively.
Let u2 be the neighbour in C2 of u1 and ≠u u2 0. Let

∼G be the graph obtained from G by
removing vertices v0 and u0 and the edge u u1 2, and adding one semiedge to vertices
v v u, ,n1 2 and un, and adding two semiedges to vertex u1. We shall refer to ∼G as the
multipole of G with respect to the edge v u0 0.

Let P10 be a Petersen graph with a chordless 2‐factor C Cℱ = { , }1 2 , where C v v v v v v=1 0 1 2 3 4 0

and C u u u u u u=2 0 1 2 3 4 0. The graph P10 and the multipole∼P10 with respect to the edge v u0 0 are
shown in Figure 6.

The permutation graphs Hi, for ≥i 1, are given in [10] and are constructed recursively as
follows.

Let H1 be the graph obtained from four copies of multipole∼P10 and from two new adjacent
vertices p1 and q1 by joining semiedges of the multipoles and the vertices p1 and q1 to the rest of the

graph as in Figure 7. H1 is a permutation graph with a chordless 2‐factor C Cℱ = { , }1 1
1

1
2 , where

C v v y y y n n n a a a a n q y v v v=1
1

3 4 2 3 4 4 3 2 4 3 2 1 1 1 1 1 2 3 and C H V C= \ ( )1
2

1 1
1 . In fact � �q C p C,1 1

1
1 1

2.

The graph H1, shown in Figure 7, is denoted by H P P P P( , , , )10 10 10 10 .
Hn is recursively constructed as follows.

FIGURE 5 Illustration of Hamilton circuits Ni in G M\ i of T1 for Case I

FIGURE 6 Illustration of P10 and∼P10
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For a given Hn−1 with a chordless 2‐factor C Cℱ = { , }n n n−1 −1
1

−1
2 , let
∼Hn−1 be the multipole of

Hn−1 (see Definition 2). Hn is constructed from∼Hn−1, three copies of
∼P10 and two new adjacent

vertices p q,n n by joining semiedges in a similar manner as in Figure 7, and the vertices p q,n n to
the rest of the graph, which is denoted by H H P P P( , , , )n−1 10 10 10 and is shown in Figure 8. The
structure of Hn is exactly the same as H1, except that one copy of P10 is replaced by Hn−1. The
details are referred to [10].

Lemma 2 (Hägglund and Hoffmann‐Ostenhof [10]). Let ≔ ∞¿ Hℋ { }n n=0 be the HHO‐
snarks family with ≔H P0 10 and for ≥ ≔n H H H P P P1, ( , , , )n n−1 10 10 10 . Then, ℋ is an
infinite family of cyclically 5‐edge connected permutation snarks, where �H ℋn has

n10 + 24 vertices.

According to the construction of Hn, each Hi for �i n[ ] has the same structure which is shown
inside the dotted line in Figures 7 and 8. This same structure is also shown in Figure 9 which is the
local structure of Hn with a C(12)‐linked circuit C m m n a b b a n m m n n m=(12) 1 2 1 1 3 2 4 2 4 3 4 3 1 between
the 2‐factor C Cℱ = { , }1 2 of the permutation graph Hn. Thus, each Hn for �i n[ ] is a C(12)‐linked
permutation graph.

As a corollary of Theorem 1, every member of the infinite family snarks ℋ is
Berge–Fulkerson colorable. That is as follows.

Corollary 1. Every Hn in the infinite set of cyclically 5‐edge connected permutation snarks
≔ ∞¿ Hℋ { }n n=0 is Berge–Fulkerson colorable.

4.2 | Brinkmann–Goedgebeur–Hägglund–Markström snarks

In [4], 12 cyclically 5‐edge connected permutation snarks on 34 vertices have been discovered
by Brinkmann, Goedgebeur, Hägglund, and Markström using a computer search and denoted
them by BGHM34‐snarks. The B‐F‐conjecture was also verified for all of them in [4] by finding a
Petersen coloring. Note that finding a Petersen coloring is not a straightforward process. In this

FIGURE 7 Illustration of the graph H1
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paper, as a different approach, the B‐F‐conjecture is verified again for those snarks by applying
our main theorem, as each of them is a C(12)‐linked permutation graph.

LetGi be a BGHM34‐snark ( �i [12]). A chordless 2‐factor C Cℱ = { , }i i i
1 2 ofGi is listed as follows:

C v v v v v v v v v v v v v v v v v v=1
1

25 26 19 20 30 32 18 22 14 11 7 23 8 4 16 6 2 25,
C v v v v v v v v v v v v v v v v v v=1

2
1 9 10 12 3 31 21 5 27 28 33 34 24 13 29 15 17 1.

C v v v v v v v v v v v v v v v v v v=2
1

9 30 10 12 16 11 7 20 34 26 22 21 28 5 31 6 4 9,
C v v v v v v v v v v v v v v v v v v=2

2
1 13 14 2 15 24 32 23 25 8 33 3 29 18 17 19 27 1.

C v v v v v v v v v v v v v v v v v v=3
1

12 16 22 21 14 13 27 31 32 24 20 18 15 6 4 8 3 12,
C v v v v v v v v v v v v v v v v v v=3

2
1 9 23 10 29 30 33 34 19 5 26 28 25 2 7 11 17 1.

C v v v v v v v v v v v v v v v v v v=4
1

9 10 12 22 16 11 7 19 20 18 17 33 34 5 31 6 4 9,
C v v v v v v v v v v v v v v v v v v=4

2
1 21 30 29 3 27 28 8 25 32 26 15 2 14 13 24 23 1.

C v v v v v v v v v v v v v v v v v v=5
1

22 21 31 5 19 28 27 33 34 24 26 30 25 11 7 8 4 22,
C v v v v v v v v v v v v v v v v v v=5

2
1 9 17 20 18 14 29 32 13 6 23 2 10 12 3 16 15 1.

C v v v v v v v v v v v v v v v v v v=6
1

19 23 24 11 22 21 30 3 5 32 31 27 28 25 6 13 2 19,
C v v v v v v v v v v v v v v v v v v=6

2
1 15 16 14 12 26 10 9 4 8 7 29 33 34 20 18 17 1.

C v v v v v v v v v v v v v v v v v v=7
1

12 24 14 13 25 30 26 22 33 34 32 31 19 17 28 18 10 12,
C v v v v v v v v v v v v v v v v v v=7

2
1 9 27 29 4 8 20 16 3 5 6 23 2 7 11 15 21 1.

C v v v v v v v v v v v v v v v v v v=8
1

32 10 26 12 14 16 22 15 5 6 19 20 18 8 34 33 2 32,
C v v v v v v v v v v v v v v v v v v=8

2
1 9 4 27 28 13 30 29 21 3 24 23 7 11 17 25 31 1.

C v v v v v v v v v v v v v v v v v v=9
1

9 10 16 15 5 18 20 21 31 32 27 11 7 24 23 6 4 9,
C v v v v v v v v v v v v v v v v v v=9

2
1 19 34 33 29 30 8 3 12 14 22 13 2 17 26 28 25 1.

C v v v v v v v v v v v v v v v v v v=10
1

27 28 11 14 13 32 23 4 17 9 10 22 21 19 5 29 3 27,
C v v v v v v v v v v v v v v v v v v=10

2
1 15 16 8 7 2 6 25 26 30 20 24 18 31 12 34 33 1.

FIGURE 8 Illustration of the graph Hn

FIGURE 9 A C(12)‐alternating circuit in Hn

10 | LIU ET AL.



C v v v v v v v v v v v v v v v v v v=11
1

29 8 23 4 9 10 25 28 26 22 34 33 14 32 18 17 3 29,
C v v v v v v v v v v v v v v v v v v=11

2
1 11 21 7 2 13 6 31 5 15 16 27 12 30 24 20 19 1.

C v v v v v v v v v v v v v v v v v v=12
1

31 21 22 17 28 27 14 30 29 16 24 23 8 4 6 5 3 31,
C v v v v v v v v v v v v v v v v v v=12

2
1 9 34 33 7 32 11 12 10 2 25 26 15 18 20 19 13 1.

Lemma 3. The twelve BGHM34‐snarks are C(12)‐linked permutation graphs.

Proof. Let Gi be a BGHM34‐snark ( �i [12]), and ℱi be described as above. An ℱi‐
alternating circuit Ci0 inGi is listed as follows for each i. It can be checked that each Ci0 is
a C(12)‐linked circuit, as required.

C v v v v v v v v v v v v v=1
0

19 26 5 27 6 16 15 17 20 30 29 13 19.
C v v v v v v v v v v v v v=2

0
12 10 14 13 21 22 19 17 9 30 29 18 12.

C v v v v v v v v v v v v v=3
0

14 21 10 23 32 24 17 1 31 27 28 25 14.
C v v v v v v v v v v v v v=4

0
12 22 21 30 9 4 25 32 31 5 3 29 12.

C v v v v v v v v v v v v v=5
0

33 34 23 2 7 11 14 18 26 24 12 10 33.
C v v v v v v v v v v v v v=6

0
22 21 12 26 28 25 4 8 3 30 29 7 22.

C v v v v v v v v v v v v v=7
0

14 13 4 8 26 22 21 15 34 33 7 11 14.
C v v v v v v v v v v v v v=8

0
26 12 29 21 22 16 30 13 2 32 31 25 26.

C v v v v v v v v v v v v v=9
0

16 15 19 1 11 7 26 28 27 32 14 12 16.
C v v v v v v v v v v v v v=10

0
11 14 18 24 23 32 31 12 3 27 16 15 11.

C v v v v v v v v v v v v v=11
0

8 23 24 30 29 3 20 19 34 22 21 7 8.
C v v v v v v v v v v v v v=12

0
22 17 1 13 27 28 20 19 5 3 12 11 22.

As an example, the snarkG1 is shown in Figure 10, in which the 2‐factor C Cℱ = { , }1 1
1

1
2

of G1 is shown inside the dotted line. □

As a consequence of Theorem 1, we have the following corollary.

Corollary 2. The 12 BGHM34‐snarks are Berge–Fulkerson colorable.

4.3 | Abreu–Labbate–Rizzi‐–heehan snark

In this section, a snark of order 26, denoted by ALRS26 and discovered in [1] (see Figure 11) is
verified for the B‐F‐conjecture.

FIGURE 10 Illustration of the BGHM34‐snark G1
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Actually, due to a special substructure of the ALRS26‐snark, we are able to verify the B‐F‐
conjecture for a larger family of cubic graphs, and the ALRS26‐snark is a member of this family.

Definition 3. Let G′ be a permutation graph with a 2‐factor C Cℱ = { , }1 2 and let
⧹ ∪M E G E C E C= ( ) ( ( ) ( ))′

1 2 be the perfect matching between C1 and C2 such that
⋯v v v1 2 5 and ⋯u u u1 2 5 are paths in C1 and C2, respectively, and �v u Mi i for �i [5]. LetG

be a graph obtained from G′ by inserting one vertex, say wi, in the edge v ui i for each
�i [5], a new vertex w and edges w w w w, i1 5 for i = 2, 3, 4 (see Figure 12).

Every graph G defined in Definition 3 is called an ALRS‐cubic graph.

Corollary 3. Every ALRS‐cubic graph G is Berge–Fulkerson colorable.

Proof. Let M1 and M2 be two distinct matchings such that ¿M M1 2 is the 6‐circuit
v v v w ww v2 3 4 4 2 2 (see Figure 12). Then, each of G M\ 1 and G M\ 2 contains a Hamilton circuit
and so is 3‐edge‐colorable. By Lemma 1, the graph G is Berge‐Fulkerson colorable. □

5 | EXTENSIONS AND REMARKS

The notion of an ℱ‐alternating circuit in Definition 1 was defined for permutation graphs, in
which each component of a 2‐factor is chordless. However, we note that the existence of chord
in a 2‐factor has little impact on the proof of Theorem 1. Thus, we may modify Definition 1 and
extend Theorem 1 as follows.

Definition 4. Let ℱ be a 2‐factor of a cubic graph G with the set of components
C C{ , }1 2 . A circuit ⋯C e e e= t0 1 2 2 is ℱ‐alternating if, for every �i t[ ], e i2 is an edge of the

FIGURE 11 Illustration of the snark ALRS26
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matching ⊆ ⧹ ∪M E G E C E C( ) ( ( ) ( ))1 2 joining C1 and C2, but not a chord of any
component of ℱ .

With Definition 4, Theorem 1 is extended as follows.

Theorem 2. Let C Cℱ = { , }1 2 be a 2‐factor of a cubic graph G. If G contains an
ℱ‐alternating circuit of length at most 12, then G is Berge‐Fulkerson colorable.

Note that the proof of Theorem 1 is based on the subgraph of G induced by the edges of
C C,1 2, and anℱ‐alternating circuitC0. Therefore, the condition of chordless is not used at all in
the proof of Theorem 1. Thus, the proof of Theorem 1 can be adapted here.

For a 2‐factor with more than two components, Theorems 1 and 2 can also be further
extended after giving the following definitions.

Definition 5. Let ℱ be a 2‐factor of a cubic graph G.

(A) Let ℱ′ be a subset of components of ℱ such that C C Cℱ = { , , …, }τ′
1 2 contains pre-

cisely two odd components C1 and C2, and all others components Ci, for ≠i 1, 2, are
of even order. The subset ℱ′ is C(12+)‐linked if there is a circuit ⋯C e e= r0 1 such that

(1) ⊆ �¿V C V C( ) ( )C0 ℱ′ ;
(2) ∩E C E C e e e( ) ( ) = { , , }0 1 ℓ ℓ ℓ1 3 5 , and, ∩E C E C e e e( ) ( ) = { , , }0 2 ℓ ℓ ℓ2 4 6 with

≤ ≤ r1 ℓ < ℓ < ℓ < ℓ < ℓ < ℓ ;1 2 3 4 5 6

(3) ∩ ≤Þ ÞE C E C( ) ( ) 1i0

for every i > 2.
(B) The graph G is ℱ‐C(12+)‐linked if the set of components of ℱ has a partition

{ℱ , ℱ , …, ℱ }ω1 2 such that every member ℱi of the partition is C(12+)‐linked.

FIGURE 12 Illustration of ALRS‐cubic graphs
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Theorems 1 and 2 can be further extended as follows.

Theorem 3. Every ℱ‐C(12+)‐linked cubic graph is Berge‐Fulkerson colorable.

The proof of Theorem 3 is omitted in this paper since it is almost the same as the proof of
Theorems 1 and 2 with a slightly lengthy discussions when edges of M inC0 are replaced with paths
of odd length, each of which consists of some edges in M and some edges of even components.
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