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ABSTRACT

A (1,2)-eulerian weight w of a graph is hamiltonian if every faithful
cover of wis a set of two Hamilton circuits. Let G be a 3-connected
cubic graph containing no subdivision of the Petersen graph. We
prove that if G admits a hamiltonian weight then G is uniguely
3-edge-colorable. @ 1995 John Wiley & Sons, Inc.

1. INTRODUCTION

Most standard graph-theoretic terms that are used in this paper can be found
for instance in [3]. All graphs we considered in this paper may have multiple
edges but no loops. A (1, 2)-eulerian weight w of a 2-connected graph G
is a weight w: E(G) — {1,2} such that the total weight of each edge-cut is
even. A faithful cover of w is a family C of circuits such that each edge e
is contained in precisely w(e) circuits of C. The topic of faithful coverings
of eulerian weights has attracted many mathematicians (see survey papers
[6-9,19], etc.). Some well-known conjectures on this topic (such as the
circuit double cover conjecture due to Szekeres [12] and, Seymour [11]) still
remain open. A cubic graph is uniquely 3-edge-colorable if G has precisely
one l-factorization. The topic of uniquely 3-edge-colorable cubic graphs
is also a very interesting topic in graph theory (see [13,14,17,4, and 10],
etc.). Some well-known conjectures (such as every planar, uniquely 3-edge-
colorable, cubic graph has a triangle due to Fiorini and Wilson [4]) still
remain open. In this paper, we will study the relations between the faithful
coverings and the uniquely 3-edge-colorability of cubic graphs.
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Let w be a (1,2)-eulerian weight of a cubic graph G. A faithful cover C
of w is hamiltonian if C is a set of two Hamilton circuits. A (1,2)-eulerian
weight w of G is hamiltonian if every faithful cover of w is hamiltonian.
Let G be a uniquely 3-edge-colorable cubic graph with the 1-factorization
F ={F\, F,,F3}. Let w: E(G) — {1, 2} such that

)_ 2 ifeEF3,
wie) =1 ife €EF, UF,.

It is obvious that w has a hamiltonian cover {F| U F3, F, U F3}. It is natural
to ask the following question: Let G and w be defined as above. Is every
faithful cover of w hamiltonian (i.e., is w a hamiltonian weight)? The answer
is no. A uniquely 3-edge-colorable graph P(9,2) (see Figure 1) constructed
by Tutte ([17]) does not admit a hamiltonian weight. (A graph P(n, k), called
a generalized Pertersen graph, is defined as follows: P(n, k) has 2n vertices,
namely v, .v,—|., Ug, ..., U,—|, the vertex v; is joined to v;+, v,~1 and u;,u;
is further joined to u;+; and u;—; (where addition is modn).)
The 1-factorization F = {Fy, F,, F,} of P(9,2) is

Fy = {vaus, vsus, Vgug, U3y, UgV7, UgUy, U3y, Ualo, UeH 1},

Fr, = {Uouo, V3lU3, Vele, V1 V2, V4Vs, U7Vg, U Us, U2 U7, u4u8},
and

F; = {Ulul, Vqla, V7U7, V2 V3, UsVe, UgVq, U2Ue, U3US, u5u0}.

FIGURE 1. Tutte's graph A9, 2).
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For the eulerian weight

() = 2 if e € Fs,
W =11 ife € FUF,,

the graph P(9.2) has a non-Hamiltonian faithful cover C = {C,, C;, C3, C4},
where

C1 = VU304U4U0US VS V6U UL V2,
Cy = voUgUsU| V1 V23U UV,

C3 = v UglxU7V7VgV,
and
C4 = V7U7U3UgU4V5VEVT.

The study of hamiltonian weights and uniquely 3-edge-colorable cubic
graphs are motivated by the circuit double cover conjecture that every
2-edge-connected graph has a family of circuits that covers each edge
precisely twice. Let a cubic graph G be a minimal counterexample to
the circuit double cover conjecture. For each ey € E(G), the graph G\ey
has a circuit double cover. Choose a circuit double cover C such that
C contains the maximum number of circuits. Let C;, C, € C such that
E(C)) N E(C,) # ¢. Let H be the underlying (cubic) graph of the induced
subgraph G[E(C;) U E(C,)]. Let w be the (1, 2)-eulerian weight on E(H)
such that w(e) is the number of circuits of {C|, C»} containing the edge e,
for each edge ¢ € E(H). It is not hard to see that {C;, C,} is a hamiltonian
cover of w and w is a hamiltonian weight of H. Hopefully, some results
about cubic graphs admitting hamiltonian weight will provide some new
tools to attack the circuit double cover conjecture.

2. LEMMAS AND THEOREMS

A subgraph H of a graph G is even if the degree of each vertex of H is even.
Let w be a (1,2)-eulerian weight of G. Denote E; = {¢ € E(G): w(e) = i}.
Since w is an eulerian weight, it is obvious that the subgraph of G induced
by E; is an even subgraph of G. The following lemma is straightforward.

Lemma 2.1. Let G be a cubic graph with a I-factorization F =
{F(,F,,F3} and w be a (1,2)-eulerian weight of G. Then

(i) The set of even subgraphs {L;; : {i, j} C {1,2,3} and i # j} covers
each edge ¢ € E(G) precisely w(e) times, where L;; = E1A(F; U F)).
(ii) One of {Li5, L3, Ly} is empty if and only if E, € F.
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Theorem 2.2. Let G be a cubic graph admitting a hamiltonian weight w.
Then the following statements are equivalent:

(i) G is uniquely 3-edge-colorable.

(i) G has precisely three Hamilton circuits.

(iii) the hamiltonian weight w has precisely one faithful cover.
(iv) E, is a Hamilton circuit of G.

Proof: (1) = (ii). Itis well known and easy to prove (even without the
assumption of admitting a hamiltonian weight).

(ii)) = (). If the hamiltonian weight w has at least two distinct
hamiltonian covers, then G has at least four distinct Hamilton circuits, which
is a contradiction.

(iii) = (iv). Let {H,, H} be the unique hamiltonian cover of w. Let C be
a component of E;. If C is not a Hamilton circuit of G, then {H,AC, H,AC}
is also a faithful cover of w and distinct from {H,, H,}. This contradicts that
w is a hamiltonian weight with only one faithful cover.

(iv) = (i). Since E; is a Hamilton circuit and E, is a l-factor, G
has a 1-factorization F, = {F,, F, F3}, where F; U F, = E, and F3 = E,.
Assume that G is not uniquely 3-edge-colorable. Let >, = {Fy, Fs, F¢} be
a l-factorization distinct from . By (i) of Lemma 2.1, the set of even
subgraphs

C ={E\A(F, U F): {i,j} C {4,5,6} and i # j}

covers each edge ¢ € E(G) precisely w(e) times. Thus, the set of circuits
of circuit decompositions of the members of C is a faithful circuit cover of
w. Since w is a hamiltonian weight, one member of C is empty. By (ii) of
Lemma 2.1, E;, € . Without loss of generality, let E; = Fg. Therefore,
Fo=F;and Fq U Fs = E; = F; U F,. Since E; is a Hamilton circuit,
we have that {F|, F,} = {F4, Fs} and this is a contradiction since F, is a
1-factorization distinct from ;. Then G is uniquely 3-edge-colorable. 1

Note that (i) and (ii) are not always equivalent (see [13]) without the
assumption that G admits a hamiltonian weight. It was conjectured by
Greenwell and Kronk ([5], also see [13]) that if a cubic graph G has
exactly three Hamilton circuits, then G is uniquely 3-edge-colorable. This
conjecture was disproved by A. Thomason ([13]), who found a family of
counterexamples: P(6k + 3,2) for k = 2, each of which has exactly three
Hamilton circuits, but is not uniquely 3-edge-colorable. By Theorem 2.2,
those graphs constructed by Thomason do not admit hamiltonian weights.

Lemma 2.3 (Alspach and Zhang [1] or see [2]). Let G be a 2-connected
cubic graph containing no subdivision of the Petersen graph. Then G has a
faithful cover for every (1, 2)-eulerian weight of G.
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Theorem 2.4. If a 3-connected cubic graph G admits a hamiltonian weight
and contains no subdivision of the Petersen graph, then G is uniquely
3-edge-colorable.

Proof. Let w be a hamiltonian weight of G and {H|, H,} be a hamiltonian
cover of w.

1. Each component of the 2-factor E; = H{AH, is a circuit of even length
since {H,, H,} induces a 3-edge-coloring {H|\H,, H,\H, H, N H,} of G.

2. For each weight two edge eg = xy, by Lemma 2.3, G’ = G\{eg} has
a faithful cover C with respect to the restriction of w to E(G’). Define an
auxiliary graph A(C) with the vertex set C and two vertices C; and C; re
adjacent in A(C) if and only if the corresponding circuits C; and C; have
a nonempty intersection. A circuit chain P = C| --- C, joining the vertices
x and y of G is a shortest path in A(C) joining a circuit C; containing x
and a circuit C, containing y.

Let H be the graph induced by edges covered by circuits of P and the
edge eq, and let w’ be a (1,2)-eulerian weight on E(H) such that w'(e)
is the number of circuits of P containing the edge ¢, and w'(ey) = 2. By
Lemma 2.3, H has a faithful cover C’. Then C’ U [C\7P] is a faithful
cover of G. If C # P, then the faithful cover C’ U [C\P] of w is not
hamiltonian. This contradicts that w is hamiltonian and therefore C = P.

Color the edges of [E(C)) U E(C3)---\[E(C,) U E(C4)---] red, the
edges of [E(Cy) U E(Cy4)---I\[E(C{) U E(C3)---] blue and the edges con-
tained in the intersections of two circuits of C yellow. The graph H is
3-edge-colored. Here each component of E; is colored red and blue. Since
x and y are the only degree two vertices of H, each component of E,
containing neither x nor y is a circuit of even length. If the vertices x and
y are contained in distinct circuits of E;, then F; has two components of
odd lengths. But by 1, every component of E| is of even length. Therefore,
x and y must be in the same component of E;.

Since e¢q = xy is an arbitrary weight two edge of G, we have that every
weight two edge of G must join two vertices on the same component of E|.
Thus E| has only one component, which is, therefore, a Hamilton circuit of
G. By (iv) of Theorem 2.2, G is uniquely 3-edge-colorable. §

Theorem 2.5. Let G be cubic graph. If G admits at least two hamiltonian
weights, then G is uniquely 3-edge-colorable.

Proof. Let w and w' be two distinct hamiltonian weights of G and
{H\,H,}, {H{, H5} be hamiltonian covers of w and w’, respectively. Both
hamiltonian covers induce 1-factorizations F = {H\H>, H,\H,, H, N H,}
and F' = {H\H5, H)\H|, H{ N H}}. Denote E,,_; (and E,_;), the set of
edges ¢ of G with weight w(e) = i (and w'(e) = i, respectively), for i =
1,2. Since w and w' are two distinct eulerian weights, E,,_y # E,.—. By
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(ii) of Lemma 2.1, H, N H, = E,,.—, € F' and H{ N H; = E,,—, € F.
Without loss of generality, we assume that H; N H, = E,—, = H{\H3.
Thus E,,—; = Hj is a Hamilton circuit of G. By (iv) of Theorem 2.2, G is
uniquely 3-edge-colorable. |

3. A— Y OPERATION AND EQUIVALENCE
CLASSES OF CUBIC GRAPHS

Definition. The A— Y operation of a cubic graph is either (i) contracting
the edges of a triangle, or (ii) replacing a vertex of the graph by a triangle
(see Figure 2).

Let 7 be a graph with the vertex set V(T') being the collection of all
connected cubic graphs. Two vertices G, and G, € V(7T') are adjacent in
T if and only if G, can be obtained from G, by a A— Y operation. V(7T)
has a partition into equivalence classes: each class is a component of the
graph T . That is, G, = G, if and only if G| can be obtained from G, by
a series of A— Y operations. In each class, there is only one triangle-free
element that is the element with the least number of vertices in the class.
Denote by T the class containing K3, which is the graph with two vertices
and three parallel edges, and by T, the class containing P(9,2).

Remarks. The A — Y operation preserves each of the following
properties:

planarity,

3-edge-colorability,

number of 1-factorizations,

number of Hamilton circuits,

number of hamiltonian weights,

number of hamiltonian covers of a (1,2)-eulerian weight.

AR e

4. CONJECTURES AND REMARKS

In this section, all graphs we consider are 3-connected cubic graphs. Let
S: be the collection of all uniquely 3-edge-colorable graphs, S, be the

O

&

FIGURE 2. A — Y operation.



HAMILTONIAN WEIGHTS AND 3-EDGE-COLORINGS 97

collections of all graphs admitting hamiltonian weights, PL be the collection
of all planar graphs, and P, be the collection of all graphs containing no
subdivision of the Petersen graph. (Here, PL C Pio). It was conjectured
by Greenwell and Kronk ([5], also see [13]) that §; = T,. (That is, every
uniquely 3-edge-colorable cubic graph is planar and has a triangle.) This
conjecture was disproved by Tutte, who found the counterexample P(9,2)
(see Figure 1). Since the generalized Petersen graph P(9,2) is not planar,
the conjecture was later modified as follows,

Conjecture 4.1 (Fiorini and Wilson [4]). Let G be a 3-connected planar
cubic graph with at least 4 vertices. If G is uniquely 3-edge-colorable cubic
graph, then G has a triangle. That is,

PLﬂSl =T1.

The author believes that in the construction of a triangle-free, uniquely
3-edge-colorable cubic graph other than K3, a non-3-edge-colorable cubic
graph (snark) must be somehow involved. Based on the famous 4-flow
conjecture of Tutte ([16]) that no snark belongs to Py, the author proposes
the following conjecture.

Conjecture 4.2. Let G be a 3-connected cubic graph containing no

subdivision of the Petersen graph. If G is uniquely 3-edge-colorable, then
G must contain a triangle. That is,

FIO N S] = T].

Recall Theorem 2.4: | Po N S, C ;. Note that T,, which contains P(9, 2)
is a subset of neither P o nor S,. We propose the following conjecture:

Conjecture 4.3. Let G be a 3-connected cubic graph containing no

subdivision of the Petersen graph. If G is uniquely 3-edge-colorable, then
G must admit a hamiltonian weight. That is,

PoNnN S CS,.

By Theorem 2.4, we have the following equivalent version of
Conjecture 4.3.

Conjecture 4.4. If G is a 3-connected cubic graph containing no subdivi-

sion of the Petersen graph, then G admits a hamiltonian weight if and only
if G is uniquely 3-edge-colorable. That is,

FIO N S] = Fm N Sz.
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Since T, C §,, Conjecture 4.3, as well as Conjecture 4.4, is implied by
Conjecture 4.2. Similar to Conjecture 4.1, we propose

Conjecture 4.5. Every 3-connected cubic graph admitting a hamiltonian
weight contains a triangle. That is,

The following conjecture is a generalization of Theorem 2.4,

Conjecture 4.6. Every 3-connected cubic graph admitting a hamiltonian
weight is uniquely 3-edge-colorable. That is,

S, C 8§

Note that the 3-connectivity in most conjectures of this section cannot be
relaxed, since the 2-connected cubic graph H with four vertices {a, b, ¢, d}
and the six edges {ab,ab,ac,bd,cd,cd} admits a hamiltonian weight w
with E,—, = {ac, bd} but contains no triangle, and all cubic graphs obtained
from H by A — Y operations admit hamiltonian weights but are not uniquely
3-edge-colorable.
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