

Flows on flow-admissible signed graphs

Matt DeVos ${ }^{\text {a }}$, Jiaao Li ${ }^{\text {b, }}$, You Lu ${ }^{\text {c, } 2}$, Rong Luo ${ }^{\text {d }}$, Cun-Quan Zhang ${ }^{\text {d,3 }}$, Zhang Zhang ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
${ }^{\text {b }}$ School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
${ }^{\text {c }}$ School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
d Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

A R T I C L E I N F O

Article history:

Received 20 September 2018
Available online 5 May 2020

Keywords:

Integer flow
Modulo flow
Balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}-$ NZF
Signed graph

A B S TRACT

In 1983, Bouchet proposed a conjecture that every flowadmissible signed graph admits a nowhere-zero 6-flow. Bouchet himself proved that such signed graphs admit nowhere-zero 216-flows and Zýka further proved that such signed graphs admit nowhere-zero 30 -flows. In this paper we show that every flow-admissible signed graph admits a nowhere-zero 11-flow.
© 2020 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Graphs or signed graphs considered in this paper are finite and may have multiple edges or loops. For terminology and notations not defined here we follow [1,4,11].

In 1983, Bouchet [2] proposed a flow conjecture that every flow-admissible signed graph admits a nowhere-zero 6-flow. Bouchet [2] himself proved that such signed graphs admit nowhere-zero 216-flows; Zýka [13] proved that such signed graphs admit nowhere-zero 30 -flows. In this paper, we prove the following result.

Theorem 1.1. Every flow-admissible signed graph admits a nowhere-zero 11-flow.
In fact, we prove a stronger and very structural result as follows, and Theorem 1.1 is an immediate corollary.

Theorem 1.2. Every flow-admissible signed graph G admits a 3 -flow f_{1} and a 5-flow f_{2} such that $f=3 f_{1}+f_{2}$ is a nowhere-zero 11-flow, $|f(e)| \neq 9$ for each edge e, and $|f(e)|=10$ only if $e \in B\left(\operatorname{supp}\left(f_{1}\right)\right) \cap B\left(\operatorname{supp}\left(f_{2}\right)\right)$, where $B\left(\operatorname{supp}\left(f_{i}\right)\right)$ is the set of all bridges of the subgraph induced by the edges of $\operatorname{supp}\left(f_{i}\right)(i=1,2)$.

Theorem 1.2 may suggest an approach to further reduce 11-flows to 9 -flows.
The main approach to prove the 11-flow theorem is the following result, which, we believe, will be a powerful tool in the study of integer flows of signed graphs, in particular to resolve Bouchet's 6 -flow conjecture.

Theorem 1.3. Every flow-admissible signed graph admits a balanced nowhere-zero $\mathbb{Z}_{2} \times$ \mathbb{Z}_{3}-flow.

A $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-flow $\left(f_{1}, f_{2}\right)$ is called balanced if $\operatorname{supp}\left(f_{1}\right)$ contains an even number of negative edges.

The rest of the paper is organized as follows: Basic notations and definitions will be introduced in Section 2. Section 3 will discuss the conversion of modulo flows into integer flows. In particular a new result to convert a modulo 3 -flow to an integer 5 -flow will be introduced and its proof will be presented in Section 5. The proofs of Theorems 1.2 and 1.3 will be presented in Sections 4 and 6, respectively.

2. Signed graphs, switch operations, and flows

Let G be a graph. For $U_{1}, U_{2} \subseteq V(G)$, denote by $\delta_{G}\left(U_{1}, U_{2}\right)$ the set of edges with one end in U_{1} and the other in U_{2}. For convenience, we write $\delta_{G}\left(U_{1}\right)$ and $\delta_{G}(v)$ for $\delta_{G}\left(U_{1}, V(G) \backslash U_{1}\right)$ and $\delta_{G}(\{v\})$, respectively. The degree of v is the number of edges incident with v, where each loop is counted twice. A d-vertex is a vertex with degree d. Let $V_{d}(G)$ be the set of d-vertices in G. The maximum degree of G is denoted by $\Delta(G)$. We use $B(G)$ to denote the set of cut-edges of G.

A signed graph (G, σ) is a graph G together with a signature $\sigma: E(G) \rightarrow\{-1,1\}$. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative otherwise. Denote the set of all negative edges of (G, σ) by $E_{N}(G, \sigma)$. For a vertex v in G, we define a new signature σ^{\prime} by changing $\sigma^{\prime}(e)=-\sigma(e)$ for each $e \in \delta_{G}(v)$. We say that σ^{\prime} is obtained from σ by making a switch at the vertex v. Two signatures are said to be equivalent if one can be obtained from the other by making a sequence of switch operations. Define the negativeness of G by $\epsilon(G, \sigma)=\min \left\{\left|E_{N}\left(G, \sigma^{\prime}\right)\right|: \sigma^{\prime}\right.$ is equivalent to $\left.\sigma\right\}$. A signed graph is balanced if its negativeness is 0 . That is it is equivalent to a graph without negative edges. For a subgraph G^{\prime} of G, denote $\sigma\left(G^{\prime}\right)=\prod_{e \in E\left(G^{\prime}\right)} \sigma(e)$.

For convenience, the signature σ is usually omitted if no confusion arises or is written as σ_{G} if it needs to emphasize G. If there is no confusion from the context, we simply use $E_{N}(G)$ for $E_{N}(G, \sigma)$ and use $\epsilon(G)$ for $\epsilon(G, \sigma)$.

Every edge of G is composed of two half-edges h and \hat{h}, each of which is incident with one end. Denote the set of half-edges of G by $H(G)$ and the set of half-edges incident with v by $H_{G}(v)$. For a half-edge $h \in H(G)$, we use e_{h} to refer to the edge containing h. An orientation of a signed graph (G, σ) is a mapping $\tau: H(G) \rightarrow\{-1,1\}$ such that $\tau(h) \tau(\hat{h})=-\sigma\left(e_{h}\right)$ for each $h \in H(G)$. It is convenient to consider τ as an assignment of orientations on $H(G)$. Namely, if $\tau(h)=1, h$ is a half-edge oriented away from its end and otherwise towards its end. Such an ordered triple (G, σ, τ) is called a bidirected graph.

Definition 2.1. Assume that G is a signed graph associated with an orientation τ. Let A be an abelian group and $f: E(G) \rightarrow A$ be a mapping. The boundary of f at a vertex v is defined as

$$
\partial f(v)=\sum_{h \in H_{G}(v)} \tau(h) f\left(e_{h}\right) .
$$

The pair (τ, f) (or to simplify, f) is an A-flow of G if $\partial f(v)=0$ for each $v \in V(G)$, and is an (integer) k-flow if it is a \mathbb{Z}-flow and $|f(e)|<k$ for each $e \in E(G)$.

Let f be a flow of a signed graph G. The support of f, denoted by $\operatorname{supp}(f)$, is the set of edges e with $f(e) \neq 0$. The flow f is nowhere-zero if $\operatorname{supp}(f)=E(G)$. For convenience, we abbreviate the notions of nowhere-zero A-flow and nowhere-zero k-flow as A-NZF and k-NZF, respectively. Observe that G admits an A-NZF (resp., a k-NZF) under an orientation τ if and only if it admits an A-NZF (resp., a k-NZF) under any orientation τ^{\prime}. A \mathbb{Z}_{k}-flow is also called a modulo k-flow. For an integer flow f of G and a positive integer t, let $E_{f= \pm t}:=\{e \in E(G):|f(e)|=t\}$.

A signed graph G is flow-admissible if it admits a k-NZF for some positive integer k. Bouchet [2] characterized all flow-admissible signed graphs as follows.

Proposition 2.2. ([2]) A connected signed graph G is flow-admissible if and only if $\epsilon(G) \neq$ 1 and there is no cut-edge b such that $G-b$ has a balanced component.

Fig. 1. A signed graph admitting a \mathbb{Z}_{3}-NZF with all edges assigned with 1 , but no 4 -NZF.

3. Modulo flows on signed graphs

Just like in the study of flows of ordinary graphs and as Theorem 1.3 indicates, the key to make further improvement and to eventually solve Bouchet's 6 -flow conjecture is to further study how to convert modulo 2-flows and modulo 3-flows into integer flows. The following lemma converts a modulo 2-flow into an integer 3-flow.

Lemma 3.1 ([3]). If a signed graph is connected and admits a \mathbb{Z}_{2}-flow f_{1} such that $\operatorname{supp}\left(f_{1}\right)$ contains an even number of negative edges, then it also admits a 3 -flow f_{2} such that $\operatorname{supp}\left(f_{1}\right) \subseteq \operatorname{supp}\left(f_{2}\right)$ and $\left|f_{2}(e)\right|=2$ if and only if $e \in B\left(\operatorname{supp}\left(f_{2}\right)\right)$.

Remark. In Lemma 3.1 the conclusion " $\left|f_{2}(e)\right|=2$ if and only if $e \in B\left(\operatorname{supp}\left(f_{2}\right)\right)$ " is not listed in Theorem 1.5 of [3]. However this fact is implicit and follows from the basic property of flows of signed graphs: the flow value of each cut-edge must be even.

In this paper, we will show that one can convert a \mathbb{Z}_{3}-NZF to a very special 5 -NZF.

Theorem 3.2. Let G be a signed graph admitting a $\mathbb{Z}_{3}-N Z F$. Then G admits a 5 -NZF g such that $E_{g= \pm 3}=\emptyset$ and $E_{g= \pm 4} \subseteq B(G)$.

Theorem 3.2 is also a key tool in the proof of the 11-theorem and its proof will be presented in Section 5.

Remark. Theorem 3.2 is sharp in the sense that there is an infinite family of signed graphs that admits a \mathbb{Z}_{3}-NZF but does not admit a 4 -NZF. For example, the signed graph obtained from a tree in which each vertex is of degree one or three by adding a negative loop at each vertex of degree one. An illustration is shown in Fig. 1.

4. Proof of the 11-flow theorem

Now we are ready to prove Theorem 1.2, assuming Theorems 1.3 and 3.2.

Proof of Theorem 1.2. Let G be a connected flow-admissible signed graph. By Theorem 1.3, G admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF $\left(g_{1}, g_{2}\right)$. By Lemma 3.1, G admits a 3-flow f_{1} such that $\operatorname{supp}\left(g_{1}\right) \subseteq \operatorname{supp}\left(f_{1}\right)$ and $\left|f_{1}(e)\right|=2$ if and only if $e \in B\left(\operatorname{supp}\left(f_{1}\right)\right)$.

By Theorem 3.2, G admits a 5 -flow f_{2} such that $\operatorname{supp}\left(f_{2}\right)=\operatorname{supp}\left(g_{2}\right)$ and

$$
\begin{equation*}
E_{f_{2}= \pm 3}=\emptyset \tag{1}
\end{equation*}
$$

Since $\left(g_{1}, g_{2}\right)$ is a $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF of G,

$$
\begin{equation*}
\operatorname{supp}\left(f_{1}\right) \cup \operatorname{supp}\left(f_{2}\right)=\operatorname{supp}\left(g_{1}\right) \cup \operatorname{supp}\left(g_{2}\right)=E(G) \tag{2}
\end{equation*}
$$

We are to show that $f=3 f_{1}+f_{2}$ is a nowhere-zero 11-flow described in the theorem. Since $\left|f_{1}(e)\right| \leq 2$ and $\left|f_{2}(e)\right| \leq 4$, we have

$$
|f(e)|=\left|\left(3 f_{1}+f_{2}\right)(e)\right| \leq 3\left|f_{1}(e)\right|+\left|f_{2}(e)\right| \leq 10 \quad \forall e \in E(G)
$$

Furthermore, by applying Equations (1) and (2),

$$
3 f_{1}(e)+f_{2}(e) \neq 0, \pm 9 \quad \forall e \in E(G)
$$

If $|f(e)|=10$ for some edge $e \in E(G)$, then $\left|f_{1}(e)\right|=2$ and $\left|f_{2}(e)\right|=4$. Thus, by Lemmas 3.1 and 3.2 again, the edge $e \in B\left(\operatorname{supp}\left(f_{1}\right)\right) \cap B\left(\operatorname{supp}\left(f_{2}\right)\right)$ and hence $f=3 f_{1}+f_{2}$ is the 11-NZF described in Theorem 1.2.

5. Proof of Theorem 3.2

As the preparation of the proof of Theorem 3.2, we first need some necessary lemmas.
The first lemma is a stronger form of the famous Petersen's theorem, and here we omit its proof (see Exercise 16.4.8 in [1]).

Lemma 5.1. Let G be a bridgeless cubic graph and $e_{0} \in E(G)$. Then G has two perfect matchings M_{1} and M_{2} such that $e_{0} \in M_{1}$ and $e_{0} \notin M_{2}$.

We also need a splitting lemma due to Fleischner [5].
Let G be a graph and v be a vertex. If $F \subset \delta_{G}(v)$, we denote by $G_{[v ; F]}$ the graph obtained from G by splitting the edges of F away from v. That is, adding a new vertex v^{*} and changing the common end of edges in F from v to v^{*}.

Lemma 5.2. ([5]) Let G be a bridgeless graph and v be a vertex. If $d_{G}(v) \geq 4$ and $e_{0}, e_{1}, e_{2} \in \delta_{G}(v)$ are chosen in a way that e_{0} and e_{2} are in different blocks when v is a cut-vertex, then either $G_{\left[v ;\left\{e_{0}, e_{1}\right\}\right]}$ or $G_{\left[v ;\left\{e_{0}, e_{2}\right\}\right]}$ is bridgeless. Furthermore, $G_{\left[v ;\left\{e_{0}, e_{2}\right\}\right]}$ is bridgeless if v is a cut-vertex.

Let G be a signed graph. A path P in G is called a subdivided edge of G if every internal vertex of P is a 2 -vertex. The suppressed graph of G, denoted by \bar{G}, is the signed graph obtained from G by replacing each maximal subdivided edge P with a single edge e and assigning $\sigma(e)=\sigma(P)$.

The following result is proved in [12] which gives a sufficient condition when a modulo 3 -flow and an integer 3 -flow are equivalent for signed graphs.

Lemma 5.3 ([12]). Let G be a bridgeless signed graph. If G admits a $\mathbb{Z}_{3}-N Z F$, then it also admits a $3-N Z F$.

Lemma 5.3 is strengthened in the following lemma, which will serve as the induction base in the proof of Theorem 3.2.

Lemma 5.4. Let G be a bridgeless signed graph admitting a $\mathbb{Z}_{3}-N Z F$. Then for any $e_{0} \in$ $E(G)$ and for any $i \in\{1,2\}, G$ admits a $3-N Z F$ such that e_{0} has the flow value i.

Proof. Let G be a counterexample with $\beta(G):=\sum_{v \in V(G)}\left|d_{G}(v)-2.5\right|$ minimum. Since G admits a \mathbb{Z}_{3}-NZF, there is an orientation τ of G such that for each $v \in V(G)$,

$$
\begin{equation*}
\partial \tau(v):=\sum_{h \in H_{G}(v)} \tau(h) \equiv 0 \quad(\bmod 3) . \tag{3}
\end{equation*}
$$

We claim $\Delta(G) \leq 3$. Suppose to the contrary that G has a vertex v with $d_{G}(v) \geq 4$. By Lemma 5.2, we can split a pair of edges $\left\{e_{1}, e_{2}\right\}$ from v such that the new signed graph $G^{\prime}=G_{\left[v ;\left\{e_{1}, e_{2}\right\}\right]}$ is still bridgeless. In G^{\prime}, we consider τ as an orientation on $E\left(G^{\prime}\right)$ and denote the common end of e_{1} and e_{2} by v^{*}. If $\partial \tau\left(v^{*}\right)=0$, then $\beta\left(G^{\prime}\right)<\beta(G)$ and by Eq. (3), $\partial \tau(u) \equiv 0(\bmod 3)$ for each $u \in V\left(G^{\prime}\right)$, a contradiction to the minimality of $\beta(G)$. If $\partial \tau\left(v^{*}\right) \neq 0$, then we further add a positive edge $v v^{*}$ to G^{\prime} and denote the resulting signed graph by $G^{\prime \prime}$. Let $\tau^{\prime \prime}$ be the orientation of $G^{\prime \prime}$ obtained from τ by assigning $v v^{*}$ with a direction such that $\partial \tau^{\prime \prime}\left(v^{*}\right) \equiv 0(\bmod 3)$. Then by Eq. (3), $\partial \tau^{\prime \prime}(u) \equiv 0(\bmod 3)$ for each $u \in V\left(G^{\prime \prime}\right)$. Since $\beta\left(G^{\prime \prime}\right)<\beta(G)$, we obtain a contradiction to the minimality of $\beta(G)$ again. Therefore $\Delta(G) \leq 3$.

Since G is bridgeless, every vertex of G is of degree 2 or 3 . Note that the existence of the desired 3 -flows is preserved under the suppressing operation. Then the suppressed signed graph \bar{G} of G is also a counterexample, and $\beta(\bar{G})<\beta(G)$ when G has some 2-vertices. Therefore G is cubic by the minimality of $\beta(G)$.

Since G is cubic, by Eq. (3), either $\partial \tau(v)=d_{G}(v)$ or $\partial \tau(v)=-d_{G}(v)$ for each $v \in V(G)$. By Lemma 5.1, we can choose two perfect matchings M_{1} and M_{2} such that $e_{0} \notin M_{1}$ and $e_{0} \in M_{2}$. For $i=1,2$, let τ_{i} be the orientation of G obtained from τ by reversing the directions of all edges of M_{i}, and define a mapping $f_{i}: E(G) \rightarrow\{1,2\}$ by setting $f_{i}(e)=2$ if $e \in M_{i}$ and $f_{i}(e)=1$ if $e \notin M_{i}$. Then f_{1} and f_{2} are two desired nowhere-zero 3 -flows of G under τ_{1} and τ_{2}, respectively, a contradiction.

Now we are ready to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. We will prove by induction on $t=|B(G)|$, the number of cutedges in G. If $t=0$, then G is bridgeless and it is a direct corollary of Lemma 5.4. This establishes the base of the induction.

Assume $t>0$. Let $e=v_{1} v_{2}$ be a cut-edge in $B(G)$ such that one component, say B_{1}, of $G-e$ is minimal. Let B_{2} be the other component of $G-e$. We may assume the bridge e is a positive edge (by possibly some switch operations). Since G admits a \mathbb{Z}_{3}-NZF, $\delta(G) \geq 2$. Thus B_{1} is bridgeless and nontrivial. WLOG assume $v_{i} \in B_{i}(i=1,2)$. Let B_{i}^{\prime} be the graph obtained from B_{i} by adding a negative loop e_{i} at v_{i}. Then B_{i}^{\prime} admits a \mathbb{Z}_{3}-NZF since G admits a \mathbb{Z}_{3}-NZF. By induction hypothesis, B_{2}^{\prime} admits a 5 -NZF g_{2} with $g_{2}\left(e_{2}\right)=a \in\{1,2\}$. By Lemma 5.4, B_{1}^{\prime} admits a $3-$ NZF g_{1} such that $g_{1}\left(e_{1}\right)=a$. Hence we can extend g_{1} and g_{2} to a 5 -NZF g of G by setting $g(e)=2 a$ with appropriate orientation of e. Clearly g is a desired 5 -NZF of G.

6. Proof of Theorem 1.3

In this section, we will complete the proof of Theorem 1.3, which is divided into two steps: first to reduce it from general flow-admissible signed graphs to cubic shrubberies (see Lemma 6.6); and then prove that every cubic shrubbery admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3^{-}}$ NZF by showing a stronger result (see Lemma 6.13).

We first need some terminology and notations. Let G be a graph. For an edge $e \in$ $E(G)$, contracting e is done by deleting e and then (if e is not a loop) identifying its ends. Note that all resulting loops generated from the parallel edges of e are kept. For $S \subseteq E(G)$, we use G / S to denote the resulting graph obtained from G by contracting all edges in S.

For a path P, let $\operatorname{End}(P)$ and $\operatorname{Int}(P)$ be the sets of the ends and internal vertices of P, respectively. For $U_{1}, U_{2} \subseteq V(G)$, a $\left(U_{1}, U_{2}\right)$-path is a path P satisfying $\left|\operatorname{End}(P) \cap U_{i}\right|=1$ and $\operatorname{Int}(P) \cap U_{i}=\emptyset$ for $i=1,2$; if G_{1} and G_{2} are subgraphs of G, we write $\left(G_{1}, G_{2}\right)$-path instead of $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$-path. Let $C=v_{1} \cdots v_{r} v_{1}$ be a circuit. A segment of C is the path $v_{i} v_{i+1} \cdots v_{j-1} v_{j}(\bmod r)$ contained in C and is denoted by $v_{i} C v_{j}$ or $v_{j} C^{-} v_{i}$. An ℓ-circuit is a circuit with length ℓ.

For a plane graph G embedded in the plane Π, a face of G is a connected topological region (an open set) of $\Pi \backslash G$. If the boundary of a face is a circuit of G, it is called a facial circuit of G. Denote $[1, k]=\{1,2, \ldots, k\}$.

6.1. Shrubberies

Now we start to introduce shrubberies and removable circuits, which are key concepts for induction purpose.

Let G be a signed graph and H be a connected signed subgraph of G. An edge $e \in E(G) \backslash E(H)$ is called a chord of H if both ends of e are in $V(H)$. We denote the
set of chords of H by $\mathcal{C}_{G}(H)$ or simply $\mathcal{C}(H)$, and partition $\mathcal{C}(H)$ into $\mathcal{U}(H)=\mathcal{U}_{G}(H)=\{e \in \mathcal{C}(H): H+e$ is unbalanced $\}$ and $\overline{\mathcal{U}}(H)=\overline{\mathcal{U}_{G}}(H)=\mathcal{C}(H) \backslash \mathcal{U}(H)$.

A circuit C is called removable if either it is unbalanced or it satisfies $|\mathcal{U}(C)|+\mid V_{2}(G) \cap$ $V(C) \mid \geq 2$.

A signed graph G is called a shrubbery if it satisfies the following requirements:
(S1) $\Delta(G) \leq 3$;
(S2) every signed cubic subgraph of G is flow-admissible;
(S3) $\left|\delta_{G}(V(H))\right|+\sum_{x \in V(H)}\left(3-d_{G}(x)\right)+2|\mathcal{U}(H)| \geq 4$ for any balanced and connected signed subgraph H with $|V(H)| \geq 2$;
(S4) G has no balanced 4-circuits.

The following proposition shows that shrubberies form a nice graph class which is closed under deletion, a crucial fact for induction.

Proposition 6.1. Every signed subgraph of a shrubbery is still a shrubbery.

Proof. Let G^{\prime} be an arbitrary signed subgraph of a shrubbery G. Obviously, G^{\prime} satisfies (S1), (S2) and (S4). We will show that G^{\prime} satisfies (S3).

Let H be a balanced and connected signed subgraph of G^{\prime} with $|V(H)| \geq 2$. Let $A_{1}=\delta_{G}(V(H)) \backslash \delta_{G^{\prime}}(V(H))$ and $A_{2}=\mathcal{C}_{G}(H) \backslash \mathcal{C}_{G^{\prime}}(H)$. Then

$$
\sum_{x \in V(H)}\left(3-d_{G^{\prime}}(x)\right)-\sum_{x \in V(H)}\left(3-d_{G}(x)\right)=\sum_{x \in V(H)}\left(d_{G}(x)-d_{H}(x)\right)=\left|A_{1}\right|+2\left|A_{2}\right| .
$$

Since $\mathcal{U}_{G^{\prime}}(H) \subseteq \mathcal{U}_{G}(H)$ and $\mathcal{C}_{G^{\prime}}(H) \subseteq \mathcal{C}_{G}(H)$, we have

$$
\left|\mathcal{U}_{G}(H)\right|-\left|\mathcal{U}_{G^{\prime}}(H)\right| \leq\left|A_{2}\right| .
$$

Hence

$$
\begin{aligned}
& \left|\delta_{G^{\prime}}(V(H))\right|+\sum_{x \in V(H)}\left(3-d_{G^{\prime}}(x)\right)+2\left|\mathcal{U}_{G^{\prime}}(H)\right| \\
\geq & \left(\left|\delta_{G}(V(H))\right|-\left|A_{1}\right|\right)+\left[\sum_{x \in V(H)}\left(3-d_{G}(x)\right)+\left|A_{1}\right|+2\left|A_{2}\right|\right]+2\left(\left|\mathcal{U}_{G}(H)\right|-\left|A_{2}\right|\right) \\
= & \left|\delta_{G}(V(H))\right|+\sum_{x \in V(H)}\left(3-d_{G}(x)\right)+2\left|\mathcal{U}_{G}(H)\right| \geq 4,
\end{aligned}
$$

since G is a shrubbery.
Therefore G^{\prime} satisfies (S3) and thus is a shrubbery.

Proposition 6.1 will be applied frequently in the proof of Lemma 6.13 and thus it will not be referenced explicitly.

Next we will apply the following two theorems and Lemma 6.5 to reduce Theorem 1.3 for general signed graphs to cubic shrubberies.

Theorem 6.2. ([8]) Every ordinary bridgeless graph admits a 6-NZF.
Theorem 6.3. ([9]) Let A be an abelian group of order k. Then an ordinary graph admits a k-NZF if and only if it admits an $A-N Z F$.

Let G be an ordinary oriented graph, $T \subseteq E(G)$ and A be an abelian group. For any function $\gamma: T \rightarrow A$, let $\mathcal{F}_{\gamma}(G)$ denote the number of A-NZF ϕ of G with $\phi(e)=\gamma(e)$ for every $e \in T$. For every $X \subseteq V(G)$, let $\alpha_{X}: E(G) \rightarrow\{-1,0,1\}$ be given by the rule

$$
\alpha_{X}(e)=\left\{\begin{aligned}
1 & \text { if } e \in \delta_{G}(X) \text { is directed toward } X \\
-1 & \text { if } e \in \delta_{G}(X) \text { is directed away } X \\
0 & \text { otherwise }
\end{aligned}\right.
$$

For any two functions γ_{1}, γ_{2} from T to A, we call γ_{1}, γ_{2} similar if for every $X \subseteq V(G)$, the following holds

$$
\sum_{e \in T} \alpha_{X}(e) \gamma_{1}(e)=0 \text { if and only if } \sum_{e \in T} \alpha_{X}(e) \gamma_{2}(e)=0 .
$$

Lemma 6.4. (Seymour - Personal communication). Let G be an ordinary oriented graph, $T \subseteq E(G)$ and A be an abelian group. If the two functions $\gamma_{1}, \gamma_{2}: T \rightarrow A$ are similar, then $\mathcal{F}_{\gamma_{1}}(G)=\mathcal{F}_{\gamma_{2}}(G)$.

Proof. We proceed by induction on the number of edges in $E(G) \backslash T$. If this set is empty, then $\mathcal{F}_{\gamma_{i}}(G) \leq 1$ and $\mathcal{F}_{\gamma_{i}}(G)=1$ if and only if γ_{i} is an A-NZF of G for $i=1,2$. Thus, the result follows by the assumption. Otherwise, choose an edge $e \in E(G) \backslash T$. If e is a cut-edge, then $\mathcal{F}_{\gamma_{i}}(G)=0$ for $i=1,2$. If e is a loop, then we have inductively that

$$
\mathcal{F}_{\gamma_{1}}(G)=(|A|-1) \mathcal{F}_{\gamma_{1}}(G-e)=(|A|-1) \mathcal{F}_{\gamma_{2}}(G-e)=\mathcal{F}_{\gamma_{2}}(G)
$$

Otherwise, applying induction to $G-e$ and G / e we have

$$
\mathcal{F}_{\gamma_{1}}(G)=\mathcal{F}_{\gamma_{1}}(G / e)-\mathcal{F}_{\gamma_{1}}(G-e)=\mathcal{F}_{\gamma_{2}}(G / e)-\mathcal{F}_{\gamma_{2}}(G-e)=\mathcal{F}_{\gamma_{2}}(G)
$$

The following lemma directly follows from Lemma 6.4.
Lemma 6.5. Let G be an ordinary oriented graph and A be an abelian group. Assume that G has an $A-N Z F$. If G has a vertex v with $d_{G}(v) \leq 3$ and $\gamma: \delta_{G}(v) \rightarrow A \backslash\{0\}$ satisfies $\partial \gamma(v)=0$, then there exists an $A-N Z F \phi$ such that $\left.\phi\right|_{\delta_{G}(v)}=\gamma$.

Proof. Let f be an A-NZF of G. Since $d_{G}(v) \leq 3,\left.f\right|_{\delta_{G}(v)}$ is similar to γ. Thus by Lemma 6.4, we have $\mathcal{F}_{\gamma}(G)=\mathcal{F}_{\left.f\right|_{\delta_{G}(v)}}(G) \neq 0$. Therefore there exists an A-NZF ϕ such that $\left.\phi\right|_{\delta_{G}(v)}=\gamma$.

Now we can reduce Theorem 1.3 to cubic shrubberies.

Lemma 6.6. The following two statements are equivalent.
(i) Every flow-admissible signed graph admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF.
(ii) Every cubic shrubbery admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}-N Z F$.

Proof. "(i) \Rightarrow (ii)": By (S2), every cubic shrubbery is flow-admissible, and thus (ii) follows from (i).
"(ii) $\Rightarrow(\mathrm{i}) "$: Let G be a counterexample to (i) with $\beta(G)=\sum_{v \in V(G)}\left|d_{G}(v)-2.5\right|$ minimum. Since G is flow-admissible, it admits a k-NZF (τ, f) for some positive integer k and thus $V_{1}(G)=\emptyset$. Furthermore, by the minimality of $\beta(G), G$ is connected and $V_{2}(G)=\emptyset$ otherwise the suppressed signed graph \bar{G} of G is also flow-admissible and has smaller $\beta(\bar{G})$ than $\beta(G)$. We are going to show that G is a cubic shrubbery and thus admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF by (ii), which is a contradiction to the fact that G is a counterexample. By the definition of shrubberies, we only need to prove (I)-(III) in the following.
(I) G is cubic.

Suppose to the contrary that G has a vertex v with $d_{G}(v) \neq 3$. Then $d_{G}(v) \geq 4$. Let $\left\{e_{1}, e_{2}\right\} \subset \delta_{G}(v)$ and let $G^{\prime}=G_{\left[v ;\left\{e_{1}, e_{2}\right\}\right]}$. Denote the new common end of e_{1} and e_{2} in G^{\prime} by v^{*}. If $\partial f\left(v^{*}\right)=0$, let $G^{\prime \prime}=G^{\prime}$. If $\partial f\left(v^{*}\right) \neq 0$, we further add a positive edge $v v^{*}$ with direction from v to v^{*} and assign $v v^{*}$ with flow value $\partial f\left(v^{*}\right)$. Let $G^{\prime \prime}$ be the resulting signed graph. In both cases, $G^{\prime \prime}$ is flow-admissible and $\beta\left(G^{\prime \prime}\right)<\beta(G)$. By the minimality of $\beta(G), G^{\prime \prime}$ admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF, and so does G, a contradiction. This proves (I).
(II) $\left|\delta_{G}(V(H))\right|+2|\mathcal{U}(H)| \geq 4$ for any balanced and connected signed subgraph H with $|V(H)| \geq 2$.

Suppose to the contrary that H is such a subgraph with $\left|\delta_{G}(V(H))\right|+2|\mathcal{U}(H)| \leq 3$. Let $X=V(H)$. Then $H^{\prime}=G[X]-\mathcal{U}(H)$ is a balanced and connected signed subgraph of G. WLOG assume that all edges of H^{\prime} are positive. Let $G_{1}=G / E\left(H^{\prime}\right)$. Then G_{1} is also flow-admissible.

Since $\left|\delta_{G}(X)\right|+2|\mathcal{U}(H)| \leq 3$, it follows from the choice of G and Proposition 2.2 that either $|\mathcal{U}(H)|=0$ and $\left|\delta_{G}(X)\right| \in\{2,3\}$ or $|\mathcal{U}(H)|=1$ and $\left|\delta_{G}(X)\right|=1$. Let x be the contracted vertex in $G_{1}=G / E\left(H^{\prime}\right)$ corresponding to $E\left(H^{\prime}\right)$. Then $d_{G_{1}}(x)=$ $\left|\delta_{G}(X)\right|+2|\mathcal{U}(H)| \in\{2,3\}$ and $\beta\left(G_{1}\right)<\beta(G)$ since $|X|=|V(H)| \geq 2$. By the minimality of $\beta(G), G_{1}$ admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF $\left(\tau_{1}, f_{1}\right)$, where τ_{1} is the restriction of τ on G_{1}.

Let H_{X} be the set of the half edges of each edge in $\delta_{G}(X) \cup \mathcal{U}(H)$ whose end is in X. Then $\left|H_{X}\right|=\left|\delta_{G}(X)\right|+2|\mathcal{U}(H)|=2$ or 3 . Construct a new graph G_{2} from $H^{\prime}+H_{X}$ by identifying the non-ends of all half edges in H_{X} into a new vertex y. Now in G_{2}, y is the common end of all $h \in H_{x}$. Then in G_{2}, y is the vertex incident with all $h \in H_{X}$. Since G is flow-admissible, G_{2} is a bridgeless ordinary graph and thus admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF by Theorems 6.2 and 6.3. Let τ_{2} be the restriction of τ on G_{2} and define $\gamma(h)=f_{1}\left(e_{h}\right)$ for each $h \in H_{X}$. Note that $\tau_{2}(h)=\tau_{1}(h)$ for each $h \in H_{X}$. Since $\left(\tau_{1}, f_{1}\right)$ is a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF of G_{1}, we have $\partial \gamma(y)=-\partial f_{1}(x)=0$. By Lemma 6.5, there is a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF $\left(\tau_{2}, f_{2}\right)$ of G_{2} such that $\left.f_{2}\right|_{\delta_{G_{2}}(y)}=\gamma=\left.f_{1}\right|_{\delta_{G_{1}}(x)}$. Thus $\left(\tau_{1}, f_{1}\right)$ can be extended to a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF of G, a contradiction. This proves (II).
(III) G has no balanced 4-circuits.

Suppose to the contrary that G has a balanced 4 -circuit C. Then we may assume that all edges of C are positive. Let $G^{\prime}=G / E(C)$. Then $\beta\left(G^{\prime}\right)<\beta(G)$. By the minimality of $\beta(G), G^{\prime}$ admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF, say $\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$. Since C is a circuit with all positive edges and $|E(C)|=4$ and since $\left|\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right|=6$, it is easy to extend $\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ to a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF of G, a contradiction. This proves (III) and thus completes the proof of the lemma.

6.2. Nowhere-zero watering

In this subsection, we will prove that every cubic shrubbery admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3^{-}}$ NZF. In fact, we will prove a stronger result that every shrubbery admits a nowhere-zero watering as in Lemma 6.13 below. Here a nowhere-zero watering (see Definition 6.10) involves flows with certain boundaries at vertices of degree one or two, which provides some flexibility for induction and makes some reduction arguments on removable circuits possible. Before proceeding, we need some preparations.

Theorem 6.7. ([10]) Let G be a 2-connected graph with $\Delta(G) \leq 3$ and let $y_{1}, y_{2}, y_{3} \in$ $V(G)$. Then either there exists a circuit of G containing y_{1}, y_{2}, y_{3}, or there is a partition of $V(G)$ into $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, Y_{3}\right\}$ with the following properties:
(1) $y_{i} \in Y_{i}$ for $i=1,2,3$;
(2) $\delta_{G}\left(X_{1}, X_{2}\right)=\delta_{G}\left(Y_{i}, Y_{j}\right)=\emptyset$ for $1 \leq i<j \leq 3$;
(3) $\left|\delta_{G}\left(X_{i}, Y_{j}\right)\right|=1$ for $i=1,2$ and $j=1,2,3$.

Let H be a contraction of G and let $x \in V(G)$. We use \hat{x} to denote the vertex in H which x is contracted into.

Theorem 6.8. ([7]) Let G be a 2-connected signed graph with $\left|E_{N}(G)\right|=\epsilon(G)=k \geq 2$, where $E_{N}(G)=\left\{x_{1} x_{k+1}, \ldots, x_{k} x_{2 k}\right\}$. Then the following two statements are equivalent.
(i) G does not contain two edge-disjoint unbalanced circuits.
(ii) The graph G can be contracted to a cubic graph G^{\prime} such that either $G^{\prime}-$ $\left\{\hat{x}_{1} \hat{x}_{k+1}, \ldots, \hat{x}_{k} \hat{x}_{2 k}\right\}$ is a $2 k$-circuit C_{1} on the vertices $\hat{x}_{1}, \ldots, \hat{x}_{k}, \hat{x}_{k+1}, \ldots, \hat{x}_{2 k}$ or can be obtained from a 2-connected cubic plane graph by selecting a facial circuit C_{2} and inserting the vertices $\hat{x}_{1}, \ldots, \hat{x}_{k}, \hat{x}_{k+1}, \ldots, \hat{x}_{2 k}$ on the edges of C_{2} in such a way that for every pair $\{i, j\} \subseteq[1, k]$, the vertices $\hat{x_{i}}, \hat{x_{j}}, x_{\hat{k+i}}, x_{\hat{k+j}}$ are around the circuit C_{1} or C_{2} in this cyclic order.

Lemma 6.9. ([6]) Let G be an ordinary oriented graph and A be an abelian group. Then G is connected if and only if for every function $\beta: V(G) \rightarrow$ A satisfying $\sum_{v \in V(G)} \beta(v)=0$, there exists $\phi: E(G) \rightarrow A$ such that $\partial \phi=\beta$.

Definition 6.10. Let G be a signed graph with $\Delta(G) \leq 3$ and a given orientation. A nowhere-zero watering (briefly, NZW) of G is a mapping $f: E(G) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{3}-\{(0,0)\}$ such that

$$
\partial f(v)=(0,0) \text { if } d_{G}(v)=3 \text { and } \partial f(v)=(0, \pm 1) \text { if } d_{G}(v)=1,2
$$

Similar to flows, the existence of an NZW is also an invariant under switch operation. The following reductions/extensions of NZW on removable circuits play an important role in later proofs.

Lemma 6.11. Let G be a shrubbery and C be a removable circuit of G. Then for every $N Z W f^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ of $G^{\prime}=G-V(C)$, there exists an $N Z W f=\left(f_{1}, f_{2}\right)$ of G so that $f(e)=f^{\prime}(e)$ for every $e \in E\left(G^{\prime}\right)$ and $\operatorname{supp}\left(f_{1}\right)=\operatorname{supp}\left(f_{1}^{\prime}\right) \cup E(C)$.

Proof. We first extend f^{\prime} to $f: E(G) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ as follows where α_{e} is a variable in \mathbb{Z}_{3} for every $e \in \mathcal{U}(C)$.

$$
f(e)= \begin{cases}(0, \pm 1) & \text { if } e \in \delta(V(C)) \\ (1,0) & \text { if } e \in E(C) \\ (0,1) & \text { if } e \in \overline{\mathcal{U}}(C) \\ \left(0, \alpha_{e}\right) & \text { if } e \in \mathcal{U}(C)\end{cases}
$$

Since every $v \in V(G) \backslash V(C)$ adjacent to a vertex in $V(C)$ has degree less than three in G^{\prime}, we may choose values $f(e)$ for each edge $e \in \delta(V(C))$ so that f satisfies the boundary condition for a watering at every vertex in $V(G) \backslash V(C)$. Obviously by the construction $\partial f_{1}(v)=0$ for every $v \in V(C)$. So we need only adjust $\partial f_{2}(v)$ for $v \in V(C)$ to obtain a watering. We distinguish the following two cases.

Case 1: C is unbalanced.
In this case $\overline{\mathcal{U}}(C)=\emptyset$. Choose arbitrary ± 1 assignments to the variables α_{e}. Since C is unbalanced, for every vertex $u \in V(C)$, there is a function $\eta_{u}: E(C) \rightarrow \mathbb{Z}_{3}$ so that $\partial \eta_{u}(u)=1$ and $\partial \eta_{u}(v)=0$ for any $v \in V(C) \backslash\{u\}$. Now we may adjust f_{2} by adding a suitable combination of the η_{u} functions so that f is an NZW of G, as desired.

Case 2: C is balanced.
WLOG we may assume that every edge of C is positive and every unbalanced chord is oriented so that each half edge is directed away from its end. In this case, each negative chord e contributes $2 f_{2}(e)=\alpha_{e}$ to the sum $\sum_{v \in V(C)} \partial f_{2}(v)$. For every $v \in V(C) \cap$ $V_{2}(G)$, let β_{v} be a variable in \mathbb{Z}_{3}. Since $|\mathcal{U}(C)|+\left|V_{2}(G) \cap V(C)\right| \geq 2$, we can choose ± 1 assignments to all of the variables α_{e} and β_{v} so that the following equation is satisfied:

$$
\sum_{v \in V(C)} \partial f_{2}(v)=\sum_{v \in V(C) \cap V_{2}(G)} \beta_{v} .
$$

By Lemma 6.9, we may choose a function $\phi: E(C) \rightarrow \mathbb{Z}_{3}$ so that

$$
\partial \phi(v)=\left\{\begin{array}{cl}
\beta_{v}-\partial f_{2}(v) & \text { if } v \in V(C) \cap V_{2}(G) \\
-\partial f_{2}(v) & \text { if } v \in V(C) \backslash V_{2}(G)
\end{array}\right.
$$

Now modify f by adding ϕ to f_{2} and then f is an NZW of G, as desired.

A theta is a graph consisting of two distinct vertices and three internally disjoint paths between them. A theta is unbalanced if it contains an unbalanced circuit. By the definition, the following observation is straightforward.

Observation 6.12. Let G be a signed graph containing no unbalanced thetas and $\Delta(G) \leq 3$. Then for any unbalanced circuit C and any $x \in V(G) \backslash V(C), G$ does not contain two internally disjoint (x, C)-paths.

Now we present our main result of this subsection.
Lemma 6.13. Every shrubbery has an NZW. Furthermore, if G is a shrubbery with an unbalanced theta or a negative loop and $\varepsilon \in\{-1,1\}$, then G has an $N Z W f=\left(f_{1}, f_{2}\right)$ such that $\sigma\left(\operatorname{supp}\left(f_{1}\right)\right)=\varepsilon$.

Before we go through the details of the proof, we first present the outline of the proof.
Outline of the proof of Lemma 6.13: Consider G the minimum counterexample to the lemma. If G does not contain an unbalanced theta or a negative loop, by Lemma 6.11, all removable circuits are forbidden from G (See Claim 2-(1)). However due to the requirement of ϵ, if G has an unbalanced theta or a negative loop, only removable circuits with certain properties can be forbidden from G (See Claim 2-(2a) and (2b)).

Thus, in order to avoid "forbidden circuits", certain structures of G are determined step-by-step in Claims 3-8, especially, the non-existence of edge-disjoint unbalanced circuits (Claim 6). With those structures and the application of Theorem 6.8, we are able to lead the final contradiction that some forbidden circuit does exist in the remaining part of the proof (Claims 9-11 and the final step).

Proof. Let G be a minimum counterexample with respect to $|E(G)|$. Then G is connected.

Claim 1. $\Delta(G)=3$ and G is 2-connected. Thus G does not contain loops.

Proof of Claim 1. It is obvious that both a circuit (balanced or unbalanced) and a path have NZWs. Since $\Delta(G) \leq 3$ by (S1), we have $\Delta(G)=3$.

Now we show that G is 2 -connected. Suppose to the contrary that G has a cut vertex. Since $\Delta(G)=3, G$ contains a cut-edge $e=v_{1} v_{2}$. Let G_{i} be the component of $G-e$ containing v_{i}. By the minimality of G, each G_{i} admits an NZW $f^{i}=\left(f_{1}^{i}, f_{2}^{i}\right)$, and $\partial f_{2}^{i}\left(v_{i}\right) \neq 0$ since $d_{G_{i}}\left(v_{i}\right) \leq 2$. Thus we can obtain an NZW $f=\left(f_{1}, f_{2}\right)$ of G by setting $f(e)=(0,1)$ and $\left.f\right|_{E\left(G_{i}\right)}=f^{i}$ or $-f^{i}$ according to the orientation of e and the values of $\partial f_{2}^{1}\left(v_{1}\right)$ and $\partial f_{2}^{2}\left(v_{2}\right)$. Further, if G contains an unbalanced theta or a negative loop, so does one component of $G-e$, say G_{1}. By the minimality of G, we choose f^{1} such that $\sigma\left(\operatorname{supp}\left(f_{1}^{1}\right)\right)=\epsilon \cdot \sigma\left(\operatorname{supp}\left(f_{1}^{2}\right)\right)$. Hence $\sigma\left(\operatorname{supp}\left(f_{1}\right)\right)=\sigma\left(\operatorname{supp}\left(f_{1}^{1}\right)\right) \cdot \sigma\left(\operatorname{supp}\left(f_{1}^{2}\right)\right)=$ $\epsilon \cdot \sigma\left(\operatorname{supp}\left(f_{1}^{2}\right)\right) \cdot \sigma\left(\operatorname{supp}\left(f_{1}^{2}\right)\right)=\epsilon$, a contradiction.

Claim 2. (1) If G does not contain an unbalanced theta, then G does not contain a removable circuit.
(2) If G contains an unbalanced theta, then G has no removable circuit C with one of the following properties:
(2a) $G-V(C)$ contains an unbalanced theta;
(2b) $G-V(C)$ is balanced and $\sigma(C)=\epsilon$.

Proof of Claim 2. Note that G does not contain a negative loop.
(1) is straightforward from Lemma 6.11.

Suppose that (2) is not true. Then G contains an unbalanced theta. Let C be a removable circuit satisfying (2a) or (2b). By the minimality of G, there exists an NZW $f^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ of $G-V(C)$ such that $\sigma\left(\operatorname{supp}\left(f_{1}^{\prime}\right)\right)=\epsilon \cdot \sigma(C)$ in Case $(2 \mathrm{a})$ and $\sigma\left(\operatorname{supp}\left(f_{1}^{\prime}\right)\right)=$ 1 in Case (2b). By Lemma 6.11, f^{\prime} can be extended to an NZW $f=\left(f_{1}, f_{2}\right)$ of G such that $\operatorname{supp}\left(f_{1}\right)=\operatorname{supp}\left(f_{1}^{\prime}\right) \cup E(C)$. In particular for Cases $(2 \mathrm{a})$ and $(2 \mathrm{~b}), \sigma\left(\operatorname{supp}\left(f_{1}\right)\right)=$ $\sigma\left(\operatorname{supp}\left(f_{1}^{\prime}\right)\right) \cdot \sigma(C)=\epsilon$, a contradiction.

Claim 3. Let $X \subset V(G)$ such that $|X| \geq 2, G[X]$ is balanced, and $\left|\delta_{G}(X)\right|=2$. If $G-X$ either contains an unbalanced theta, or is balanced and contains a circuit, then $X \subseteq V_{2}(G)$ and thus $G[X]$ is a path.

Proof of Claim 3. The conclusion that $G[X]$ is a path directly follows from the properties of X and the first conclusion that $X \subseteq V_{2}(G)$.

Suppose the claim fails. Let $X \subset V(G)$ be a minimal set with the above properties such that $X \cap V_{3}(G) \neq \emptyset$. Then $G[X]$ is 2-connected by the minimality of X. Since $G[X]$
is balanced and $\mathcal{U}(G[X])=\emptyset$, by (S3), we have

$$
2+\sum_{x \in X}\left(3-d_{G}(x)\right)=\left|\delta_{G}(X)\right|+\sum_{x \in X}\left(3-d_{G}(x)\right)+2|\mathcal{U}(G[X])| \geq 4
$$

The above inequality implies that X contains at least two 2-vertices. Since $G[X]$ is 2 -connected, let C be a circuit in $G[X]$ containing at least two 2-vertices. Then C is removable and thus by Claim 2-(2a), $G-V(C)$ does not contain a unbalanced theta, which implies that $G-X$ does not contain unbalanced theta either. By the hypothesis, $G-X$ is balanced and $G-X$ contains a circuit too.

Denote $\delta_{G}(X)=\left\{e_{1}, e_{2}\right\}$. Since both $G[X]$ and $G-X$ are balanced, by possibly replacing σ_{G} with an equivalent signature, we may assume that $\sigma_{G}\left(e_{1}\right) \in\{-1,1\}$ and that $\sigma_{G}(e)=1$ for every other edge $e \in E(G)$. Since C is a removable circuit of G, G contains an unbalanced theta by Claim 2-(1), and so G is unbalanced. Therefore $\sigma_{G}\left(e_{1}\right)=-1$ and thus e_{1} is the only negative edge in G.

Let C^{\prime} be an unbalanced circuit and $C^{\prime \prime}$ be a circuit in $G-X$. Then $C^{\prime \prime}$ is balanced and C^{\prime} contains e_{1} and e_{2}.

Now we show that $C^{\prime} \cup(G-X)$ contains an unbalanced theta. Denote $e_{1}=x_{1} y_{1}$ and $e_{2}=x_{2} y_{2}$, where $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in V(G) \backslash X$. Since G is 2-connected and $\Delta(G)=3$, there are two disjoint $\left(x_{1}, C^{\prime \prime}\right)$-paths P_{1} and P_{2} with $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\left\{x_{1}\right\}$. Since C^{\prime} contains both e_{1} and e_{2}, we may choose P_{1} and P_{2} such that $P_{1} \cup P_{2}$ contains the segment of C^{\prime} in $G[X]$ from x_{1} to x_{2}. Since e_{1} is the only negative edge, $P_{1} \cup P_{2} \cup C^{\prime \prime}$ is an unbalanced theta.

Since C^{\prime} is unbalanced, it is removable. Since $G-V\left(C^{\prime}\right)$ is balanced and $\sigma\left(C^{\prime}\right)=$ -1 , by Claim $2-(2 \mathrm{~b})$, we have $\epsilon=1$. On the other hand, since C is removable and $\sigma_{G}(C)=1=\epsilon, G-V(C)$ is unbalanced by Claim 2-(2b) again. Thus we may choose the unbalanced circuit C^{\prime} in $G-V(C)$. Hence $V\left(C^{\prime}\right) \cap V(C)=\emptyset$. Therefore $P_{1} \cup P_{2} \cup C^{\prime \prime}$ is an unbalanced theta in $G-V(C)$, a contradiction to Claim 2-(2a).

Claim 4. Let $X \subset V(G)$ such that $|X| \geq 2, G[X]$ is balanced, and $\left|\delta_{G}(X)\right| \leq 3$. For any two distinct ends x_{1}, x_{2} in X of $\delta_{G}(X)$, there is an $\left(x_{1}, x_{2}\right)$-path in $G[X]$ containing at least one vertex in $V_{2}(G)$.

Proof of Claim 4. Suppose that the claim fails. Let $x_{1} x_{1}^{\prime}, x_{2} x_{2}^{\prime} \in \delta_{G}(X)$, and B_{i} be the maximal 2-connected subgraph of $G[X]$ containing x_{i} for $i=1,2$. Since G is 2-connected and $\Delta(G)=3$ by Claim 1 and $\left|\delta_{G}(X)\right| \leq 3$, we have that $G[X]$ is connected and $d_{G}\left(x_{1}\right)=d_{G}\left(x_{2}\right)=3$. Moreover every edge in $\delta_{G[X]}\left(V\left(B_{i}\right)\right)$ is a cut-edge of $G[X]$ by the maximality of B_{i}. Thus $\left|\delta_{G[X]}\left(V\left(B_{i}\right)\right)\right|$ is equal to the number of components of $G[X]-V\left(B_{i}\right)$. Since G is 2-connected, we have
(a) for each component A of $G[X]-V\left(B_{i}\right), \delta_{G}(V(A), V(G) \backslash X) \geq 1$ and thus
(b) $\left|\delta_{G}\left(V\left(B_{i}\right)\right)\right| \leq\left|\delta_{G}(X)\right| \leq 3$.

Moreover, since $G[X]$ is balanced, B_{i} is balanced for $i=1,2$. Thus we further have (c) $\mathcal{U}\left(B_{i}\right)=\emptyset$ for $i=1,2$.

We first show that for each $i=1,2 B_{i}$ does not contain a 2 -vertex and is trivial.
WLOG, suppose to the contrary that B_{1} contains a 2 -vertex y.
If $x_{2} \in V\left(B_{1}\right)$, then there are two internally disjoint $\left(y,\left\{x_{1}, x_{2}\right\}\right)$-paths P_{1} and P_{2}. Then $P_{1} \cup P_{2}$ is an $\left(x_{1}, x_{2}\right)$-path in $G[X]$ containing one 2-vertex.

If $x_{2} \notin V\left(B_{1}\right)$, then B_{1} and B_{2} are disjoint since $\Delta(G)=3$. Since $G[X]$ is connected, let P_{3} be an $\left(x_{2}, B_{1}\right)$-path and y_{1} be the other end of P_{3}. Then $y_{1} \in V\left(B_{1}\right)$. Again since B_{1} is 2-connected and $d_{G}\left(x_{1}\right)=3, y_{1} \neq x_{1}$ and there are two internally disjoint $\left(y,\left\{y_{1}, x_{1}\right\}\right)$-paths, P_{1}^{\prime} and P_{2}^{\prime}. Then $P_{3} \cup P_{1}^{\prime} \cup P_{2}^{\prime}$ is a desired $\left(x_{1}, x_{2}\right)$-path. This proves that B_{1} (and B_{2}) doesn't contain a 2 -vertex.

By (b) and (c), we have $\left|\delta_{G}\left(V\left(B_{i}\right)\right)\right| \leq 3$ and $\mathcal{U}\left(B_{i}\right)=\emptyset$ for $i=1,2$. If B_{i} is nontrivial, then by (S3), we have

$$
4 \leq \sum_{x \in V\left(B_{i}\right)}\left(3-d_{G}(x)\right)+\left|\delta_{G}\left(V\left(B_{1}\right)\right)\right| \leq \sum_{x \in V\left(B_{i}\right)}\left(3-d_{G}(x)\right)+3 .
$$

The above inequality implies that B_{i} contains a 2-vertex, a contradiction. Therefore B_{i} is trivial.

Since $d_{G}\left(x_{1}\right)=3, d_{G[X]}\left(x_{1}\right)=2$ and thus $G[X]-x_{1}$ has two components, say A_{1} and A_{2}. WLOG, we may assume $x_{2} \in V\left(A_{2}\right)$. Since G is 2 -connected, there exists $x_{3} x_{3}^{\prime} \in \delta_{G}\left(V\left(A_{1}\right), V(G) \backslash X\right)$ with $x_{3} \in V\left(A_{1}\right)$. Similarly, $G[X]-x_{2}$ has two components A_{3} and A_{4}. Since $G[X]$ is connected, the subgraph induced by $V\left(A_{1}\right)$ together with x_{1} must be contained in one of A_{3} and A_{4}, say A_{4}. Thus $\delta_{G}\left(V\left(A_{4}\right), V(G) \backslash X\right)=$ $\left\{x_{1} x_{1}^{\prime}, x_{3} x_{3}^{\prime}\right\}$. Note that $\delta_{G}(X)=\left\{x_{1} x_{1}^{\prime}, x_{2} x_{2}^{\prime}, x_{3} x_{3}^{\prime}\right\}$ since $\left|\delta_{G}(X)\right| \leq 3$. Since $x_{2} \notin$ $V\left(A_{3}\right), \delta\left(V\left(A_{3}\right), V(G) \backslash X\right)=0<1$, a contradiction to (a). This proves the claim.

Claim 5. G does not contain two disjoint unbalanced circuits C_{1} and C_{2} such that $V_{3}(G) \subseteq V\left(C_{1}\right) \cup V\left(C_{2}\right)$.

Proof of Claim 5. Suppose the claim fails. Let C_{1} and C_{2} be two disjoint unbalanced circuits such that $V_{3}(G) \subseteq V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Then every vertex of $G^{\prime}=G-E\left(C_{1} \cup C_{2}\right)$ is of degree at most 2. By Claim 2-(2a), $G-V\left(C_{i}\right)$ does not contain unbalanced theta for each $i=1,2$. Thus by Observation 6.12, every nontrivial component of G^{\prime} is a path with one end in $V\left(C_{1}\right)$ and the other end in $V\left(C_{2}\right)$. Since G is 2-connected and $\Delta(G)=3$, there are at least two 3 -vertices in each C_{i}.

When $\epsilon=-1$, choose x_{1}, x_{2} from $V_{3}(G) \cap V\left(C_{1}\right)$ such that the segment $P=x_{1} C_{1} x_{2}$ contains all vertices of $V_{3}(G) \cap V\left(C_{1}\right)$. Let P_{i} be the path in G^{\prime} with one end x_{i} and y_{i} be the other end of P_{i} for $i=1,2$. Since C_{2} is unbalanced, there is a segment, say $y_{1} C_{2} y_{2}$, of C_{2} such that the circuit $C=P \cup P_{1} \cup P_{2} \cup y_{1} C_{2} y_{2}$ is unbalanced, and thus C is removable. This contradicts Claim 2-(2b) since $G-V(C)$ is a forest (which is balanced).

When $\epsilon=1$, by the minimality of G and since $G^{\prime \prime}=G-V\left(C_{1} \cup C_{2}\right)$ is a forest, $G^{\prime \prime}$ admits an NZW $f^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ with $\operatorname{supp}\left(f_{1}^{\prime}\right)=\emptyset$. By applying Lemma 6.11 twice, we extend $f^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ to an NZW $f=\left(f_{1}, f_{2}\right)$ of G such that $\operatorname{supp}\left(f_{1}\right)=E\left(C_{1}\right) \cup E\left(C_{2}\right)$. So $\sigma\left(\operatorname{supp}\left(f_{1}\right)\right)=\sigma\left(C_{1}\right) \cdot \sigma\left(C_{2}\right)=1=\epsilon$, a contradiction.

Claim 6. G does not contain two disjoint unbalanced circuits.

Proof of Claim 6. Suppose to the contrary that C_{1} and C_{2} are two disjoint unbalanced circuits of G. By Claim $5, V_{3}(G) \backslash V\left(C_{1} \cup C_{2}\right) \neq \emptyset$.

Let $x \in V_{3}(G) \backslash V\left(C_{1} \cup C_{2}\right)$. By Claim 2-(2a), for each $C_{i}, G-V\left(C_{i}\right)$ does not contain an unbalanced theta. Thus by Observation 6.12, there exists a 2 -edge-cut of G separating x from $V\left(C_{1} \cup C_{2}\right)$. Let $\left\{e_{1}, e_{2}\right\}$ be such a 2-edge-cut. Let

$$
\mathcal{F}=\left\{e_{1}\right\} \cup\left\{e \in E(G):\left\{e, e_{1}\right\} \text { is a 2-edge-cut of } G\right\}
$$

and \mathcal{B} be the set of all nontrivial components of $G-\mathcal{F}$. Then every member of \mathcal{B} is 2 -connected. Since $d_{G}(x)=3$, there is a $B_{0} \in \mathcal{B}$ containing x.

We claim that \mathcal{B} has the following properties:
(a) Each $B \in \mathcal{B}$ contains a removable circuit. In particular, if B is balanced, then B contains at least one 2-vertex.
(b) Each $B \in \mathcal{B}$ is either balanced or is an unbalanced circuit.
(c) $|\mathcal{B}| \geq 3$.

Let $B \in \mathcal{B}$. Then $\left|\delta_{G}(V(B))\right|=2$ and $\mathcal{U}(B)=\emptyset$. If B is balanced, then by (S3), B contains at least two 2 -vertices and thus contains a circuit containing at least two 2 -vertices which is removable. If B is unbalanced, then B contains an unbalanced circuit which is also removable. This proves (a).

Since B_{0} doesn't contain C_{1} or $C_{2},|\mathcal{B}| \geq 2$. By (a) each member B in \mathcal{B} contains a removable circuit. Thus by Claim 2-(2a), each member of \mathcal{B} does not contain unbalanced theta and so is an unbalanced circuit if it is unbalanced. This proves (b).

By (b), C_{1} and C_{2} belong to distinct members in \mathcal{B}. Note that B_{0} doesn't contain C_{1} or C_{2}. Thus $|\mathcal{B}| \geq 3$. This proves (c).

Since G is 2-connected, there is a circuit that contains all edges in \mathcal{F} and goes through every $B \in \mathcal{B}$. We choose such a circuit C with the following properties:
(1) $\sigma(C)=\epsilon$ (the existence of C is guaranteed since C_{1} is unbalanced);
(2) subject to (1), $\left|V_{2}(G) \cap V\left(C-V\left(C_{1}\right)\right)\right|$ is as large as possible;
(3) subject to (1) and (2), $\left|E_{N}(G) \cap E\left(C-V\left(C_{1}\right)\right)\right|$ is as small as possible.

We claim that C is removable.
Let $B \in \mathcal{B} \backslash\left\{C_{1}\right\}$. If B is balanced, then by (a), B contains a 2-vertex. Since B is 2 -connected, by (2), C contains at least one 2 -vertex in B. If B is an unbalanced circuit of length at least 3 , then by (2), C contains one 2 -vertex in B too. If B is an unbalanced circuit of length 2 , then by (3), C contains the positive edge in B and the negative edge in B belongs to $\mathcal{U}(C)$. Therefore every $B \in \mathcal{B} \backslash\left\{C_{1}\right\}$ contributes at least 1 to $|\mathcal{U}(C)|+\left|V_{2}(G) \cap V(C)\right|$. Since $\left|\mathcal{B} \backslash\left\{C_{1}\right\}\right| \geq 2$, we have $|\mathcal{U}(C)|+\left|V_{2}(G) \cap V(C)\right| \geq 2$. Hence C is a removable circuit.

Since each $B \in \mathcal{B}$ is either balanced or an unbalanced circuit, $G-V(C)$ is balanced. This contradicts Claim 2-(2b) since C is removable and since $\sigma(C)=\epsilon$ by (1).

Claim 7. G contains an unbalanced theta and $\epsilon=1$.

Proof of Claim 7. We first show that G contains an unbalanced theta.
Suppose that G does not contain unbalanced theta. If G is unbalanced, then it contains an unbalanced circuit. If G is balanced, then $\left|V_{2}(G)\right|=\sum_{x \in V(G)}\left(3-d_{G}(x)\right) \geq 4-$ $\left|\delta_{G}(V(G))\right|-|\mathcal{U}(G)|=4$ by (S3). Since G is 2-connected by Claim 1, G has a circuit containing at least two 2 -vertices. Hence G has a removable circuit in either case. It contradicts Claim 2-(1). Therefore G contains an unbalanced theta.

The existence of unbalanced thetas implies that $\epsilon \in\{-1,1\}$. Let C be an unbalanced circuit. By Claim 6, G does not contain two disjoint unbalanced circuits, and thus $G-$ $V(C)$ is balanced. By Claim 2-(2b), $\epsilon \neq \sigma(C)=-1$, so $\epsilon=1$.

Claim 8. $\left|E_{N}(G)\right| \geq 2$.
Proof of Claim 8. By Claim 7, G is unbalanced. Suppose to the contrary that $E_{N}(G)=$ $\left\{e_{0}\right\}$. Let P be the maximal subdivided edge of G containing e_{0}. Let y_{0}, y_{1} be the two ends of P. Then $\operatorname{Int}(P) \subseteq V_{2}(G)$ and $y_{0}, y_{1} \in V_{3}(G)$. Let $G^{\prime}=G-\operatorname{Int}(P)$ if $\operatorname{Int}(P) \neq \emptyset$; Otherwise, let $G^{\prime}=G-e_{0}$.

We claim that G^{\prime} is 2-connected. Suppose to the contrary that G^{\prime} is not 2-connected. Let B be the maximal 2-connected subgraph of G^{\prime} containing y_{1}. Since $G=G^{\prime} \cup P$ is 2connected by Claim 1, $y_{0} \notin V(B)$ and $\delta_{G^{\prime}}(V(B)) \neq \emptyset$. By the maximality of B, each edge in $\delta_{G^{\prime}}(V(B))$ is a cut-edge of G^{\prime}. Since G is 2-connected again, $\left|\delta_{G^{\prime}}(V(B))\right|=1$ and thus $\left|\delta_{G}(V(B))\right|=2$ and B is nontrivial since $d_{G}\left(y_{1}\right)=3$. Similarly the maximal 2-connected subgraph of G^{\prime} containing y_{0} is nontrivial and thus contains a circuit. Therefore B is balanced and $G-V(B)$ is balanced and contains circuits since $E_{N}(G)=\left\{e_{0}\right\} \subseteq E(P)$. By Claim 3, $V(B) \subseteq V_{2}(G)$, which contradicts the fact $y_{1} \in V_{3}(G)$. This proves that G^{\prime} is 2-connected.
(i) G^{\prime} does not contain a circuit C such that $\left\{y_{0}, y_{1}\right\} \cap V(C) \neq \emptyset$ and $\left|V(C) \cap V_{2}(G)\right| \geq 2$.

Proof of (i). Otherwise, C is a removable circuit such that $G-V(C)$ is balanced and $\sigma(C)=1=\epsilon$ by Claim 7, a contradiction to Claim 2-(2b).

Since G^{\prime} is balanced and 2-connected, and is also a shrubbery by Proposition 6.1, $\left|V_{2}\left(G^{\prime}\right)\right|=\sum_{x \in V\left(G^{\prime}\right)}\left(3-d_{G^{\prime}}(x)\right) \geq 4$ by (S3) and thus at least two vertices in $V_{2}\left(G^{\prime}\right)$, say y_{2} and y_{3}, also belong to $V_{2}(G)$. Note that $\left\{y_{2}, y_{3}\right\} \cap\left\{y_{0}, y_{1}\right\}=\emptyset$. By (i), there is no circuit in G^{\prime} containing $\left\{y_{1}, y_{2}, y_{3}\right\}$. Thus by Theorem 6.7, there is a partition of $V\left(G^{\prime}\right)$ into $\mathcal{I}=\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, Y_{3}\right\}$ such that $y_{i} \in Y_{i}(i=1,2,3), \delta_{G^{\prime}}\left(X_{1}, X_{2}\right)=\delta_{G^{\prime}}\left(Y_{i}, Y_{j}\right)=\emptyset$ $(1 \leq i<j \leq 3)$, and $\delta_{G^{\prime}}\left(X_{i}, Y_{j}\right)=e_{i j}(i=1,2 ; j=1,2,3)$. See Fig. 2. For each $Z \in \mathcal{I}$, $G^{\prime}[Z]$ is connected since G^{\prime} is 2-connected and $\left|\delta_{G^{\prime}}(Z)\right| \leq 3$.

Since G^{\prime} is 2-connected and $\left|\delta_{G^{\prime}}\left(Y_{j}\right)\right|=2$ for $j \in\{2,3\}$, we have the following statement.

Fig. 2. A partition of $V\left(G^{\prime}\right)$ into $\mathcal{I}=\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, Y_{3}\right\}$
(ii) For any $\{i, j\}=\{2,3\}$, there is a circuit C_{i} in $G^{\prime}-Y_{j}$ containing y_{1} and all the edges in $\left\{e_{11}, e_{1 i}, e_{2 i}, e_{21}\right\}$. We choose C_{i} such that $\left|V\left(C_{i}\right) \cap V_{2}(G)\right|$ is as large as possible. Then by (i), $\left|V\left(C_{i}\right) \cap V_{2}(G)\right| \leq 1$.
(iii) $y_{0} \notin Y_{2} \cup Y_{3}, Y_{2}=\left\{y_{2}\right\}$, and $Y_{3}=\left\{y_{3}\right\}$.

Proof of (iii). Let $j \in\{2,3\}$. We first show $\left|Y_{j}\right|=1$ if $y_{0} \notin Y_{j}$. WLOG suppose to the contrary $y_{0} \notin Y_{3}$ and $\left|Y_{3}\right| \geq 2$. Since $G=G^{\prime} \cup P$ and $y_{0} \notin Y_{3},\left|\delta_{G}\left(Y_{3}\right)\right|=\left|\delta_{G^{\prime}}\left(Y_{3}\right)\right|=2$. By (ii), C_{2} is a circuit in $G^{\prime}-Y_{3}$. Since $G^{\prime}[Z]$ is connected for each $Z \in \mathcal{I}, G^{\prime}-Y_{3}$ is connected. Thus there is a (y_{0}, C_{2})-path P^{\prime} in $G^{\prime}-Y_{3}$, so $P^{\prime} \cup P \cup C_{2}$ is an unbalanced theta in $G-Y_{3}$. Since $G\left[Y_{3}\right]$ is balanced and $\left|\delta_{G}\left(Y_{3}\right)\right|=2$, by Claim 3, $Y_{3} \subseteq V_{2}(G)$ and $G\left[Y_{3}\right]$ is a path. Thus $Y_{3} \subset V\left(C_{3}\right)$ and $\left|V\left(C_{3}\right) \cap V_{2}(G)\right| \geq 2$, a contradiction to (ii). This proves $\left|Y_{3}\right|=1$. Therefore $\left|Y_{j}\right|=1$ if $y_{0} \notin Y_{j}$ for each $j \in\{2,3\}$.

Now we show $y_{0} \notin Y_{2} \cup Y_{3}$. Otherwise WLOG, assume $y_{0} \notin Y_{3}$ and $y_{0} \in Y_{2}$. Then $Y_{3}=\left\{y_{3}\right\}$ and $y_{3} \in V_{2}(G)$. By (S4), C_{3} is not a balanced 4-circuit, and thus there is a set $Z \in\left\{Y_{1}, X_{1}, X_{2}\right\}$ such that $\left|V\left(C_{3}\right) \cap Z\right| \geq 2$. Since $\left|V(Z) \cap\left\{y_{0}, y_{1}\right\}\right| \leq 1, G[Z]$ is balanced. Obviously $\left|\delta_{G}(Z)\right|=3$. By Claim 4 and the maximality of $\left|V\left(C_{3}\right) \cap V_{2}(G)\right|, C_{3}$ contains a 2-vertex in Z. Together with the 2-vertex y_{3}, we have $\left|V\left(C_{3}\right) \cap V_{2}(G)\right| \geq 2$, a contradiction to (ii). This shows $y_{0} \notin Y_{2} \cup Y_{3}$ and thus $\left|Y_{2}\right|=\left|Y_{3}\right|=1$.
(iv) $\left|X_{i}\right|=1$ if $y_{0} \notin X_{i}$ for any $i \in\{1,2\}$ and thus $y_{0} \in X_{1} \cup X_{2}$.

Proof of (iv). Suppose that for some $i \in\{1,2\}, y_{0} \notin X_{i}$ and $\left|X_{i}\right| \geq 2$. WLOG assume $i=1$. Let $x_{1 j}$ be the end of $e_{1 j}$ in X_{1} for $j=1,2,3$. Since $\left|X_{1}\right| \geq 2$ and since $\Delta(G)=3$ and G is connected by Claim $1, x_{11} \neq x_{1 j}$ for some $j \in\{2,3\}$. Note that $x_{11}, x_{1 j} \in$ $V\left(C_{j}\right)$. Since $\left|\delta_{G}\left(X_{1}\right)\right|=3$ and $G\left[X_{1}\right]$ is balanced, by Claim 4, there is an $\left(x_{11}, x_{1 j}\right)$ path in X_{1} containing a 2-vertex. So C_{j} contains a 2-vertex in X_{1} by the maximality of $\left|V\left(C_{j}\right) \cap V_{2}(G)\right|$. Since $d_{G}\left(y_{j}\right)=2$ and C_{j} contains $y_{j}, V\left(C_{3}\right)$ contains at least two 2-vertices, a contradiction to (ii). This proves that $\left|X_{i}\right|=1$ if $y_{0} \notin X_{i}$ for any $i \in\{1,2\}$.

If $y_{0} \notin X_{1} \cup X_{2}$, then $\left|X_{1}\right|=\left|X_{2}\right|=1$. By (iii), $G\left[Y_{2} \cup Y_{3} \cup X_{1} \cup X_{2}\right]$ is a balanced 4 -circuit, a contradiction to (S4). Therefore $y_{0} \in X_{1} \cup X_{2}$.

Fig. 3. $G^{\prime}=G-\operatorname{Int}(P)-E(P)$.

By (iv), WLOG assume $y_{0} \in X_{1}$. Then by (iv) and (iii), $\left|X_{2}\right|=\left|Y_{2}\right|=\left|Y_{3}\right|=1$. Denote $X_{2}=\left\{x_{2}\right\}$.
(v) $Y_{1}=\left\{y_{1}\right\}$.

Proof of (v). Suppose to the contrary that $Y_{1} \neq\left\{y_{1}\right\}$. Then $\left|Y_{1}\right| \geq 2$. Note that $\Delta\left(G^{\prime}\right) \leq$ $\Delta(G)=3$. Since G^{\prime} is 2-connected and $\delta_{G^{\prime}}\left(Y_{1}\right)=\left\{e_{11}, e_{21}\right\}$, the ends of e_{11} and e_{21} in Y_{1} are different. Let C_{4} be a circuit in G^{\prime} containing all the edges in $\left\{e_{11}, e_{12}, e_{22}, e_{21}\right\}$ such that $\left|V\left(C_{4}\right) \cap V_{2}(G)\right|$ is as large as possible. Since $G\left[Y_{1}\right]$ is balanced and $\left|\delta_{G}\left(Y_{1}\right)\right|=3$, with a similar argument in (iv), C_{4} contains a 2-vertex in Y_{1} and also contains the 2-vertex y_{2}. Thus C_{4} contains at least two 2 -vertices and hence is removable. Since $\delta_{G}\left(Y_{1}\right) \cap E\left(C_{4}\right)=\left\{e_{11}, e_{21}\right\}$ and $\left|\delta_{G}\left(Y_{1}\right)\right|=3, G-V\left(C_{4}\right)$ is balanced. Since C_{4} does not contain e_{0}, the only negative edge, C_{4} is balanced, meaning $\sigma\left(C_{4}\right)=1=\epsilon$, a contradiction to Claim 2-(2b). This completes the proof of (v).

Let x_{11}, x_{12} and x_{13} be the ends of e_{11}, e_{12} and e_{13} in X_{1}, respectively. By (S4), $G\left[\left\{x_{12}, x_{13}, x_{2}, y_{2}, y_{3}\right\}\right]$ is not a 4 -circuit, so $x_{12} \neq x_{13}$. Together with (iii), (iv), and (v), the structure of G^{\prime} is shown in Fig. 3.

Now we can complete the proof of Claim 8.
Recall that $G^{\prime}\left[X_{1}\right]$ is connected. If there is an $\left(x_{12}, x_{13}\right)$-path P in $G^{\prime}\left[X_{1}\right]$ containing y_{0}, then $C_{5}=P \cup\left\{e_{12}, e_{22}, e_{23}, e_{13}\right\}$ is a circuit containing y_{0} and two 2-vertices y_{2}, y_{3}, a contradiction to (i). Hence by Menger's Theorem, $G^{\prime}\left[X_{1}\right]=G\left[X_{1}\right]$ has a cut-edge separating y_{0} from $\left\{x_{12}, x_{13}\right\}$.

Let B_{1} be the maximal 2-connected subgraphs in $G\left[X_{1}\right]$ containing y_{0}. Then every edge in $\delta_{G\left[X_{1}\right]}\left(V\left(B_{1}\right)\right)$ is a cut-edge of $G\left[X_{1}\right]$ by the maximality of B_{1}. Since $G\left[X_{1}\right]$ has a cut-edge separating y_{0} from $\left\{x_{12}, x_{13}\right\}, x_{12}$ and x_{13} are in the same component, denoted by B_{2}, of $G\left[X_{1}\right]-V\left(B_{1}\right)$. Since G^{\prime} is 2 -connected and $\delta_{G^{\prime}}\left(X_{1}\right)=\left\{e_{11}, e_{12}, e_{13}\right\}$, $x_{11} \notin V\left(B_{2}\right)$. Let $\delta_{G\left[X_{1}\right]}\left(V\left(B_{2}\right)\right)=\left\{e^{\prime}\right\}$ and z be the end of e^{\prime} in B_{2}. Then there exists an $\left(x_{11}, z\right)$-path P^{\prime} in $G^{\prime}\left[X_{1}\right]$ containing y_{0}.

Recall that $x_{12} \neq x_{13}$. WLOG assume $z \neq x_{13}$. Since $\delta_{G}\left(V\left(B_{2}\right)\right)=\left\{e_{12}, e_{13}, e^{\prime}\right\}$ and B_{2} is balanced and has at least two vertices, by Claim $4, B_{2}$ has a $\left(z, x_{13}\right)$-path $P^{\prime \prime}$ containing at least one vertex in $V_{2}(G)$. Then $C_{6}=P^{\prime} \cup P^{\prime \prime} \cup x_{13} y_{3} x_{2} y_{1} x_{11}$ is a circuit
containing at least two 2-vertices and y_{0}, a contradiction to (i). This completes the proof of Claim 8.

By Claim $8, \epsilon(G)=\left|E_{N}(G)\right| \geq 2$. Denote $\epsilon(G)=k$. By Claims 1 and 6 and Theorem 6.8, we can choose a minimum subset $S \subseteq E(G) \backslash E_{N}(G)$ such that $H=G / S$ satisfies the following properties:
(i) $\Delta(H) \leq 3$;
(ii) $H-E_{N}(H)-\cup_{e \in E_{N}(H)} \operatorname{Int}\left(P_{e}\right)$ is a 2-connected planar graph with a facial circuit C, where P_{e} is the maximal subdivided edge in H containing e;
(iii) $x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{2 k}$ are pairwise distinct and lie in that cyclic order on C, where $E_{N}(H)=E_{N}(G)=\left\{e_{1}, \ldots, e_{k}\right\}$ and x_{i}, x_{k+i} are the two ends of $P_{e_{i}}$ for each $i \in[1, k]$.

For each $v \in V(H)$, let G_{v} denote the corresponding component of $G-E(H)$. Note that $\Delta\left(G_{v}\right) \leq \Delta(G)=3$. By the minimality of S, G_{v} is 2 -connected. Otherwise we choose $S \backslash S_{v}$ to replace S, where S_{v} is the set of cut-edges of G_{v}. Moreover, $S=\cup_{v \in V(H)} E\left(G_{v}\right)$ and $E(G)=E(H) \cup S$.

Claim 9. $k=2$ and $\left|\operatorname{Int}\left(P_{e_{1}}\right)\right|+\left|\operatorname{Int}\left(P_{e_{2}}\right)\right|=1$.

Proof of Claim 9. Since $k \geq 2$, it is easy to see $H-\{x\}$ contains an unbalanced theta for any vertex x with $d_{H}(x)=2$. Thus by Claim 3 and by the minimality of S, we have that if $d_{H}(x)=2$ then $G_{x}=\{x\}$.

We construct a circuit C_{H} in the following cases. If there are distinct $i, j \in[1, k]$ such that $\left|\operatorname{Int}\left(P_{e_{i}}\right)\right|=\left|\operatorname{Int}\left(P_{e_{j}}\right)\right|=0$, let $C_{H}=C$; If $\left|\operatorname{Int}\left(P_{e_{i}}\right)\right|+\left|\operatorname{Int}\left(P_{e_{i+1}}\right)\right| \geq 2$ for some $i \in[1, k]$, let $C_{H}=C-E\left(x_{i} C x_{i+1}\right)-E\left(x_{i+k} C x_{i+k+1}\right)+P_{e_{i}}+P_{e_{i+1}}$. Note that G_{v} is 2 -connected for any $v \in V(H), \Delta(H) \leq 3$ and $\Delta(G)=3$. Then C_{H} can be extended to a removable circuit C_{G} of G such that $\sigma\left(C_{G}\right)=1=\epsilon$ and $G-V\left(C_{G}\right)$ is also balanced, a contradiction to Claim 2-(2b). This completes the proof of the claim.

WLOG assume that $\operatorname{Int}\left(P_{e_{1}}\right)=\emptyset$ and $\operatorname{Int}\left(P_{e_{2}}\right)=\{y\}$ by Claim 9. Then $P_{e_{1}}=x_{1} x_{3}$ and $P_{e_{2}}=x_{2} y x_{4}$. Denote $A_{i}=x_{i} C x_{i+1}(\bmod 4)$ for $i \in[1,4], C_{1}=P_{e_{1}} \cup A_{1} \cup P_{e_{2}} \cup A_{3}$, and $C_{2}=P_{e_{1}} \cup A_{4} \cup P_{e_{2}} \cup A_{2}$. Note that both C_{1} and C_{2} contain the 2-vertex y. See Fig. 4.

Claim 10. $H=G$ and $V_{2}(G)=\{y\}$.

Proof of Claim 10. As noted in the proof of Claim 9, for each x with $d_{H}(x)=2, G_{x}=$ $\{x\}$. In particular, $G_{y}=\{y\}$.

Note that G_{x} is balanced and $\left|\delta_{G}\left(G_{x}\right)\right| \leq 3$ for every $x \in V(H)$. Thus by Claim 4, we have the following fact:

Fig. 4. C_{1} and C_{2} in $C \cup P_{e_{1}} \cup P_{e_{2}}$.
(a) If G_{x} is nontrivial, then for each two distinct ends u, v in $V\left(G_{x}\right)$ of $\delta_{G}\left(G_{x}\right)$, there is an (u, v)-path in G_{x} containing at least one vertex in V_{2}.

Let $x \in V(C)$. WLOG assume $x \in V\left(C_{1}\right)$. Note that if $d_{H}(x)=2$, then $d_{G}(x)=2$. Thus, if $d_{H}(x)=2$ or if G_{x} is nontrivial, C_{1} can be extended to a circuit C_{1}^{\prime} of G such that C_{1}^{\prime} contains the 2-vertex y and one 2-vertex in G_{x} (the latter case follows from (a)). Hence C_{1}^{\prime} is removable, $\sigma\left(C_{1}^{\prime}\right)=1=\epsilon$, and $G-V\left(C_{1}^{\prime}\right)$ is balanced, a contradiction to Claim 2-(2b). Therefore $d_{H}(x)=3$ and $G_{x}=\{x\}$ for each $x \in V(C)$.

Next we show that y is the only 2 -vertex in G. Suppose to the contrary that u is a 2-vertex in G. Then $u \notin V(C)$. Since G is 2-connected, there are two internally disjoint (u, C)-paths Q_{1} and Q_{2} in G with v_{1} and v_{2} the end vertices in C respectively. Since $\Delta(G)=3, v_{1} \neq v_{2}$. Let $C_{3}=Q_{1} \cup Q_{2} \cup v_{1} C v_{2}$ and $C_{4} \in\left\{C_{1}, C_{2}\right\}$ such that $V\left(C_{4}\right) \cap$ $\left\{v_{1}, v_{2}\right\} \neq \emptyset$. Then $C^{\prime}=C_{3} \Delta C_{4}$ is a circuit containing two 2 -vertices $\{y, u\}$ and the two negative edges. Thus C^{\prime} is removable, $\sigma\left(C_{1}^{\prime}\right)=1=\epsilon$, and $G-V\left(C^{\prime}\right)$ is balanced, which contradicts Claim 2-(2b). Thus $V_{2}(G)=\{y\}$.

Since $V_{2}(G)=\{y\}, G_{x}$ is trivial by (a). Therefore $H=G$.
Claim 11. $\operatorname{Int}\left(A_{i}\right) \neq \emptyset$ for each $i \in[1,4]$.

Proof of Claim 11. Suppose to the contrary that $\operatorname{Int}\left(A_{i}\right) \neq \emptyset$ for some $i \in[1,4]$. WLOG assume $\operatorname{Int}\left(A_{1}\right)=\emptyset$. Then A_{1} is a chord in $\mathcal{U}\left(C_{2}\right)$. Since C_{2} contains the 2-vertex y, C_{2} is removable, which contradicts Claim 2-(2b) since $\sigma\left(C_{2}\right)=1=\epsilon$ and $G-V\left(C_{2}\right)$ is balanced.

The final step.

By Claim 11, let $y_{1} \in \operatorname{Int}\left(A_{1}\right)$ be the neighbor of x_{1}. Let Q be the component of $G-E(C)$ containing y_{1}. Since $d_{G}\left(y_{1}\right)=3$ by Claim $10, Q$ is nontrivial. Obviously, $V(Q) \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\emptyset$ since $\Delta(G)=3$.

If there is a vertex y_{2} in $V(Q) \cap\left(\operatorname{Int}\left(A_{2}\right) \cup \operatorname{Int}\left(A_{3}\right)\right)$, let P be a $\left(y_{1}, y_{2}\right)$-path in Q. Since $\Delta(G) \leq 3, C_{3}=P \cup y_{1} C y_{2}$ is a circuit containing x_{2}. Then $C^{\prime}=C_{2} \triangle C_{3}$ is a circuit of G containing y and the chord $x_{1} y_{1} \in \mathcal{U}\left(C^{\prime}\right)$. Thus C^{\prime} is a removable circuit of G, a contradiction to Claim 2-(2b) since $G-V\left(C^{\prime}\right)$ is balanced.

If $V(Q) \cap\left(\operatorname{Int}\left(A_{2}\right) \cup \operatorname{Int}\left(A_{3}\right)\right)=\emptyset$, then $V(Q) \cap V(C) \subseteq \operatorname{Int}\left(A_{4}\right) \cup \operatorname{Int}\left(A_{1}\right)$. Note that $|V(Q) \cap V(C)| \geq 2$ since G is 2-connected. Let $y_{2}, y_{3} \in V(Q) \cap V(C)$ be two ends of a segment P^{\prime} of $A_{4} \cup A_{1}$ such that the length of P^{\prime} is as large as possible. By Claim 10, $G^{\prime}=G-x_{1} x_{3}-y$ is a 2 -connected planar graph with a facial circuit C, and so $T^{\prime}=\delta_{G^{\prime}}\left(V\left(P^{\prime}\right)\right) \cap E(C)$ is a 2-edge-cut of G^{\prime}. Let $T=T^{\prime}$ if $y_{2}, y_{3} \in \operatorname{Int}\left(A_{1}\right)$, and otherwise $T=T^{\prime} \cup\left\{x_{1} x_{3}\right\}$. Then T is an edge-cut of G with $|T| \leq 3$ and the component, denoted by R, of $G-T$ containing y_{2} is balanced and doesn't contain y. Since $\left|\delta_{G}(V(R))\right|=|T| \leq 3$, by $(\mathrm{S} 3), \sum_{v \in V(R)}\left(3-d_{G}(v)\right) \geq 4-\left|\delta_{G}(V(R))\right|-2|\mathcal{U}(R)| \geq 1$, and so this component R contains a 2-vertex (distinct from y), which contradicts $V_{2}(G)=\{y\}$ by Claim 10. This completes the proof of Lemma 6.13.

6.3. Completing the proof of Theorem 1.3

Finally we are to complete the proof of Theorem 1.3 in this subsection.
By Lemma 6.6, it suffices to show that every cubic shrubbery G admits a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF. If G is balanced, then such a flow exists by Theorem 6.2.

Assume that G is unbalanced. We claim that G contains either an unbalanced theta or a negative loop.

If G is 2 -connected, then for any unbalanced circuit C, we can easily find a path in $G-E(C)$ to connect two distinct vertices of $V(C)$, and thus G has an unbalanced theta.

If G is not 2-connected, then it has an cut-edge since G is cubic. Let B be a leaf block of G. If B is trivial, then B is a negative loop. If B is nontrivial, then B is unbalanced by Proposition 2.2 since G is flow-admissible by (S2). Since B is 2 -connected and all vertex except one has degree 3, similar to the argument in the case when G is 2-connected, one can find an unbalanced theta in B, which is also an unbalanced theta in G.

By the claim, we apply Lemma 6.13 on cubic shrubbery G with $\varepsilon=1$ to obtain an NZF $f=\left(f_{1}, f_{2}\right)$ with $\sigma\left(\operatorname{supp}\left(f_{1}\right)\right)=\varepsilon=1$. By Definition 6.10 this is a balanced $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-NZF as desired. This completes the proof of Theorem 1.3.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM, vol. 244, Springer, 2008.
[2] A. Bouchet, Nowhere-zero integral flows on a bidirected graph, J. Comb. Theory, Ser. B 34 (1983) 279-292.
[3] J. Cheng, Y. Lu, R. Luo, C.-Q. Zhang, Signed graphs: from modulo flows to integer-valued flows, SIAM J. Discrete Math. 32 (2018) 956-965.
[4] R. Diestel, Graph Theory, fourth edn., Springer-Verlag, 2010.
[5] H. Fleischner, Eine gemeinsame Basis für die Theorie der eulerschen Graphen und den Satz von Petersen, Monatshefte Math. 81 (1976) 267-278.
[6] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs - a nonhomogeneous analogue of nowhere-zero flow properties, J. Comb. Theory, Ser. B 56 (1992) 165-182.
[7] Y. Lu, R. Luo, C.-Q. Zhang, Multiple weak 2-linkage and its applications on integer flows on signed graphs, Eur. J. Comb. 69 (2018) 36-48.
[8] P.D. Seymour, Nowhere-zero 6-flows, J. Comb. Theory, Ser. B 30 (1981) 130-135.
[9] W.T. Tutte, A contribution to the theory of chromatic polynomials, Can. J. Math. 6 (1954) 80-91.
[10] M.E. Watkins, D.M. Mesner, Cycles and connectivity in graphs, Can. J. Math. 19 (1967) 1319-1328.
[11] D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.
[12] R. Xu, C.-Q. Zhang, On flows in bidirected graphs, Discrete Math. 299 (2005) 335-343.
[13] O. Zýka, Nowhere-zero 30-flow on bidirected graphs, Thesis, KAM-DIMATIA, Series 87-26, Charles University, Praha, 1987.

[^0]: E-mail address: lijiaao@nankai.edu.cn (J. Li).
 ${ }^{1}$ This research project has been partially supported by National Natural Science Foundation of China (No. 11901318), Natural Science Foundation of Tianjin (No. 19JCQNJC14100) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63191425).
 ${ }^{2}$ This research project has been partially supported by National Natural Science Foundation of China (No. 11871397), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JM-083) and the Fundamental Research Funds for the Central Universities (No. 3102019ghjd003).
 ${ }^{3}$ This research project has been partially supported by National Science Foundation (DMS-1700218).

