Cycle covers (III) - Compatible circuit decomposition and K_{5}-transition minor ${ }^{2}$

Herbert Fleischner ${ }^{\text {a }}$, Behrooz Bagheri Gh. ${ }^{\text {a }}$, Cun-Quan Zhang ${ }^{\text {b }}$, Zhang Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Algorithms and Complexity Group, Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna, Austria
b Department of Mathematics, West Virginia University, WV 26506-6310, Morgantown, USA

A R T I C L E I N F O

Article history:

Received 14 December 2017
Available online 10 December 2018

Keywords:

Eulerian graph
Transition system
Compatible circuit decomposition
Sup-undecomposable K_{5}
Hamiltonian circuit

Abstract

Let G be a 2 -connected eulerian graph. For each vertex $v \in V(G)$, let $\mathcal{T}(v)$ be the set of edge-disjoint edge-pairs of $E(v)$, and, $\mathcal{T}=\bigcup_{v \in V(G)} \mathcal{T}(v)$. A circuit decomposition \mathcal{C} of G is compatible with \mathcal{T} if $|E(C) \cap P| \leq 1$ for every member $C \in \mathcal{C}$ and every $P \in \mathcal{T}$. Fleischner (1990's) wondered implicitly whether if (G, \mathcal{T}) does not have a compatible circuit decomposition then (G, \mathcal{T}) must have an undecomposable K_{5}-transition-minor or its generalized transition-minor. This long-standing open problem was partially verified for various graph-minor-free families of graphs, for example, it was solved by Fleischner for planar graphs (Fleischner (1980) [7]) and solved by Fan and Zhang for K_{5}-minor-free graphs (Fan and Zhang (2000) [6]). This transition-minor-free conjecture is now completely solved in this paper. And, as a by-product and a necessary stepping-stone, we characterize the structure of sup-undecomposable K_{5}-minor-free graphs (G, \mathcal{T}) in which every compatible circuit decomposition consists of a pair of Hamiltonian circuits. This result plays an important role in

[^0]the proof of the main theorem and also generalizes an earlier result by Lai and Zhang (Lai and Zhang (2001) [13]).
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Compatible Circuit Decomposition (CCD) Problem. Let G be a 2-connected eulerian graph with $\delta(G) \geq 4$, and for each $v \in V(G)$ let $\mathcal{T}(v)$ be a set of edge-disjoint edge-pairs (called transitions) of $E(v)$ (in the case of a loop l we allow $\{l, l\}$ to be a transition). Can we find a circuit decomposition \mathcal{C} of G such that, for every $C \in \mathcal{C}$ and every $v \in V(G)$ and every $P \in \mathcal{T}(v),|E(C) \cap P| \leq 1$ (unless C is a loop and $P=\{l, l\}$, in which case there is no CCD$)$?

Such \mathcal{C} is called compatible with the transition system $\mathcal{T}=\bigcup_{v \in V(G)} \mathcal{T}(v)$ (see also Definition 2.2).

The compatible circuit decomposition (CCD) problem is closely related to the famous circuit double cover conjecture, [12,14,16,17], and to the Sabidussi conjecture [7,8,9].

It is well known that not every eulerian graph associated with a transition system has a compatible circuit decomposition. For example, an undecomposable K_{5} (or, a bad K_{5} to use a more colloquial expression) is the complete graph K_{5} associated with the transition system

$$
\mathcal{T}_{5}=\left\{\left\{v_{i} v_{i+\mu}, v_{i} v_{i-\mu}\right\}: i \in \mathbb{Z}_{5}, \mu \in\{1,2\}\right\}
$$

where $V\left(K_{5}\right)=\left\{v_{0}, v_{1}, \ldots, v_{4}\right\}$ (see Fig. 1).
The compatible circuit decomposition problem has been verified for planar graphs by Fleischner [7], and for K_{5}-minor-free graphs by Fan and Zhang [6]. Fleischner further asked implicitly the following question [10] which is beyond a graph-minor problem. In what follows we restrict ourselves to 2 -connected graphs.

Problem 1 (Fleischner [10]). If (G, \mathcal{T}) does not have a compatible circuit decomposition, does (G, \mathcal{T}) contain either an undecomposable K_{5}-transition-minor or one of its generalized transition-minors?

A transition-minor is not only a graph-minor that preserves some topological structure of G but also inherits the original transition system \mathcal{T} (see Definitions 2.8 and 2.10 for definitions of transition-minor and SUD- K_{5}). Problem 1 is completely solved in this paper.

Theorem 1. Let (G, \mathcal{T}) be a 2-connected eulerian graph with the minimum degree $\delta \geq 4$ associated with a transition system. If (G, \mathcal{T}) is SUD- K_{5}-minor-free, then it has a compatible circuit decomposition.

Fig. 1. K_{5} with $\mathcal{T}_{5}=\left\{\left\{v_{i-1} v_{i}, v_{i} v_{i+1}\right\},\left\{v_{i-2} v_{i}, v_{i} v_{i+2}\right\}: i \in \mathbb{Z}_{5}\right\}$.

We observe that if $\mathcal{T}=\emptyset$, then any circuit decomposition of (G, \mathcal{T}) is in accordance with Theorem 1. Thus, we assume that our point of departure is a (G, \mathcal{T}) with $\mathcal{T} \neq \emptyset$.

In the study of circuit cover and circuit decomposition problems, one of the fundamental steps is to determine the structure of two adjacent circuits (i.e., two circuits having at least one vertex in common). The Hamilton weight problem ([13,19]) is one of such approaches for faithful cover problem. Its corresponding version for circuit decomposition is the Hamilton transition problem. That is, if (G, \mathcal{T}) has some compatible circuit decomposition and every such decomposition consists of a pair of hamiltonian circuits, then (G, \mathcal{T}) must be constructed recursively from two loops $(2 L)$ via a series of ($X \leftrightarrow O$)-operations (the operation extending a vertex to a digon); see Definition 2.15 and Conjecture A. The family of transitioned graphs constructed in such a way is denoted by $\langle 2 L\rangle$. This problem is solved in this paper for SUD- K_{5}-minor-free graphs, as stated in Theorem 2 below.

Theorem 2. Let (G, \mathcal{T}) be a 4-regular fully transitioned graph such that it has some compatible circuit decomposition and every such decomposition consists of a pair of hamiltonian circuits. If (G, \mathcal{T}) is SUD-K \mathbf{K}_{5}-minor-free, then $(G, \mathcal{T}) \in\langle 2 L\rangle$.

This result plays a key role in the determination of a UD- K_{5}-transition-minor in Theorem 1. It is important to point out that both Theorems 1 and 2 are proved simultaneously because one provides the structures of extreme cases, while the other assures the existence of a compatible circuit decomposition for any proper minor of a smallest counterexample.

The rest of the paper is organized as follows. Some notation and terminology are recalled and introduced in Section 2. Main results, Theorems 1 and 2 are further summarized in Section 3. In Section 4, some preliminary lemmas for Theorem 1 are proved in Subsection 4.1 before its simultaneous proof with Theorem 2 (in Section 5). There are other important results (Lemmas 4.15 and 4.16) in Subsection 4.2 that determine the specific structure of UD- K_{5} and is used in the simultaneous proof of Theorems 1 and 2.

2. Preliminary discussions

2.1. Basic definitions

For terminology and notation not defined here we follow [3,4,18], and the papers listed in the References.

A circuit is a 2-regular connected subgraph of a given graph G. A subgraph H of G is even if $\operatorname{deg}_{H}(v)$ is even for every vertex $v \in V(H)$.

Let v be a degree two vertex of a given graph G. Suppressing v is the operation of removing v and adding an edge between the two neighbours of v in G.

Definition 2.1. A vertex subset U is a separator of G separating G to G_{1}, G_{2} if $E(G)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right)$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=U$ and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset . U$ is a t-separator if $|U|=t$. We say a separator U separating subgraphs X_{1}, X_{2} of G if U is a separator of G separating G to G_{1}, G_{2} with $X_{i} \subseteq G_{i}, i=1,2$.

2.2. Transition system and $C C D$

Definition 2.2. Let G be an eulerian graph, and, for each $v \in V(G)$ with $\operatorname{deg}(v) \geq 4$, let $\mathcal{T}(v)$ be a set of edge-disjoint edge-pairs of $E(v)$. The set $\mathcal{T}=\bigcup_{v \in V(G)} \mathcal{T}(v)$ is called a transition system of G and each member of \mathcal{T} is called a transition. A non-trivial vertex is a vertex with some transition (that is, $\mathcal{T}(v) \neq \emptyset$); otherwise, we called v a trivial vertex. The graph G with a transition system \mathcal{T} is called a transitioned graph and denoted by (G, \mathcal{T}); (possibly $\mathcal{T}=\emptyset$). A fully transitioned graph is a transitioned graph without trivial vertex. For every subgraph H of $G,\left.\mathcal{T}\right|_{H}=\{P \in \mathcal{T} \mid P \subset E(H)\}$. In the case of multiple edges e, f at $u, v \in V(G)$, we distinguish between the transition $\{e, f\}$ at u and the transition $\{e, f\}$ at v.

Definition 2.3. Let (G, \mathcal{T}) be a transitioned graph.
(1) A 1-separator $\{v\}$ separating G to G_{1}, G_{2} is a bad cut-vertex if $E(v) \cap E\left(G_{i}\right) \in \mathcal{T}$ for at least one $i \in\{1,2\}$.
(2) (G, \mathcal{T}) is admissible if it does not have a bad cut-vertex.

Definition 2.4. Let (G, \mathcal{T}) be a transitioned graph. Let $C=v_{0} v_{1} \ldots v_{r-1} v_{0}$ be a circuit. Let e_{i} be the edge of C joining v_{i} and v_{i+1} for every $i \in \mathbb{Z}_{r}$.
(1) v_{i} is an inner vertex of C if $\left\{e_{i-1}, e_{i}\right\} \in \mathcal{T}\left(v_{i}\right)$ or $E\left(v_{i}\right) \backslash\left\{e_{i-1}, e_{i}\right\} \in \mathcal{T}\left(v_{i}\right)$, and we call $\left\{e_{i-1}, e_{i}\right\}$ an inner transition of C at v_{i}. C is compatible at v_{i} if it is not an inner vertex of C.
(2) C is a compatible circuit of (G, \mathcal{T}) if C is compatible at every vertex of C.

Definition 2.5. A family \mathcal{F} of circuits of G is a compatible circuit decomposition (abbreviated CCD) of (G, \mathcal{T}) if \mathcal{F} is a circuit decomposition of G and every member of \mathcal{F} is a compatible circuit.

It is obvious that the absence of bad cut-vertices (see Definition 2.3) is a necessary condition for a transitioned graph admitting a CCD.

Observation 2.6. Consider a non-trivial vertex v of degree 4 in (G, \mathcal{T}). Let $E(v)=$ $\left\{e_{1}, \ldots, e_{4}\right\}$ and $P=\left\{e_{1}, e_{2}\right\} \in \mathcal{T}(v)$. Then every circuit of a CCD of (G, \mathcal{T}) covers at most one edge of $\left\{e_{3}, e_{4}\right\}$. This means in a natural way and without loss of generality, we can assume that if $P \in \mathcal{T}(v)$, then $E(v) \backslash P \in \mathcal{T}(v)$, for every vertex v of degree 4 . Thus every vertex v of degree 4 is either a trivial vertex, or $|\mathcal{T}(v)|=2$.

Definition 2.7. A circuit C is a removable circuit of (G, \mathcal{T}) if it is compatible and $\left(G \backslash E(C),\left.\mathcal{T}\right|_{G \backslash E(C)}\right)$ remains admissible (that is, $\left(G \backslash E(C),\left.\mathcal{T}\right|_{G \backslash E(C)}\right)$ has no bad cut-vertex).

Definition 2.8. Let (G, \mathcal{T}) be a transitioned eulerian graph, and, $G^{\prime}=\left(G \backslash F_{d}\right) / F_{c}$ be an eulerian minor of G obtained by deleting F_{d} and contracting F_{c} where $F_{d}, F_{c} \subseteq E(G)$. The resulting transition system $\mathcal{T}^{\prime}=\left.\mathcal{T}\right|_{G^{\prime}}$ on G^{\prime} is defined as follows.
(1) Delete the edges of $\left(F_{d} \cup F_{c}\right)$. The resulting transition system \mathcal{T}^{\prime} contains all transitions $P \in \mathcal{T}$ for which $P \subseteq E\left(G \backslash\left(F_{d} \cup F_{c}\right)\right)$.
(2) For each edge $e=v_{e}^{\prime} v_{e}^{\prime \prime} \in F_{c}$, identify the end-vertices v_{e}^{\prime} and $v_{e}^{\prime \prime}$ as a new vertex v_{e}.
(3) Since we do not define a transition at any vertex v of degree $2, \mathcal{T}^{\prime}(v)=\emptyset$ if $\operatorname{deg}_{G^{\prime}}(v)=2$. And we apply Observation 2.6 to extend $\mathcal{T}^{\prime}(z)$ if $\operatorname{deg}_{G^{\prime}}(z)=4$.

The resulting transitioned graph $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ is called a transition-minor of (G, \mathcal{T}).

Definition 2.9. (G, \mathcal{T}) is called the undecomposable K_{5} (UD- K_{5} for short) if $G=K_{5}$, and the transition system \mathcal{T} is defined as follows.

$$
\mathcal{T}\left(v_{i}\right)=\left\{\left\{v_{i} v_{i+\mu}, v_{i} v_{i-\mu}\right\}: \mu \in\{1,2\} \quad(\bmod 5)\right\}
$$

for every $v_{i} \in V\left(K_{5}\right)=\left\{v_{0}, v_{1}, \ldots, v_{4}\right\}$; see Fig. 1.

Definition 2.10. The transitioned graph (G, \mathcal{T}) is a sup-undecomposable K_{5} (SUD- K_{5} for short) if the graph G can be decomposed into 15 connected edge-disjoint subgraphs

$$
\left\{P_{i, j}:\{i, j\} \subset \mathbb{Z}_{5}, i<j\right\} \cup\left\{Q_{i}: i \in \mathbb{Z}_{5}\right\}
$$

as follows (see Fig. 2).

Fig. 2. A sup-undecomposable K_{5}.
(1) Each $P_{i, j}$ is a path joining $V\left(Q_{i}\right)$ and $V\left(Q_{j}\right)(i<j)$, and the different $P_{i, j}$'s are internally disjoint;
(2) $\left\{Q_{i}: i \in \mathbb{Z}_{5}\right\}$ are disjoint connected subgraphs;
(3) Let Q_{i}^{+}be the subgraph of H induced by $E\left(Q_{i}\right)$ and the four adjacent paths $P_{i, j}$ (for every pair $j \neq i$). Then each subgraph Q_{i}^{+}has a bad cut-vertex u_{i} separating $P_{i,(i+1)} \cup P_{i,(i-1)}$ and $P_{i,(i+2)} \cup P_{i,(i-2)}$, where $u_{i} \in V\left(Q_{i}\right)$.

Note that a UD- K_{5} is a special case of a SUD- K_{5} where $\left|Q_{i}\right|=1$ for every $i \in \mathbb{Z}_{5}$.
Definition 2.11. (G, \mathcal{T}) is sup-undecomposable K_{5}-transition-minor free (or, SUD- $K_{5^{-}}$ minor-free for short) if it does not have any eulerian minor H such that $\left(H,\left.\mathcal{T}\right|_{H}\right)$ is a SUD- K_{5}.

The following is a straightforward observation.
Observation 2.12. Let G^{\prime} be an eulerian minor of G. If (G, \mathcal{T}) is SUD- K_{5}-minor-free, then $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ remains SUD- K_{5}-minor-free (where \mathcal{T}^{\prime} is described in Definition 2.8).

Example 2.1. In [11], an infinite family of snarks $\left\{H_{n}\right\}$ has been constructed, which has a 2-factor F_{n} such that F_{n} is not contained in any circuit double cover of H_{n}. Let $\overline{H_{n}}$ be the 4-regular graph obtained from H_{n} by contracting the 1-factor $H_{n} \backslash F_{n}$ and \mathcal{T}_{n} be the transition system of $\overline{H_{n}}$ such that each circuit of F_{n} has all its vertices as inner vertices (see Definition 2.4-(1)). Clearly, $\left(\overline{H_{n}}, \mathcal{T}_{n}\right)$ has no CCD. Otherwise we can get a circuit double cover by taking F_{n} together with the CCD of $\left(\overline{H_{n}}, \mathcal{T}_{n}\right)$ (after a proper adjustment by adding edges of $H_{n} \backslash F_{n}$). The 4-regular graph illustrated in Fig. 3-(a) is the contracted graph $\overline{H_{0}}$ where the 2 -factor F_{0} is a pair of edge-disjoint hamiltonian circuits (illustrated by thin lines and thick lines). A study in [11] reveals that each member $\left(\overline{H_{n}}, \mathcal{T}_{n}\right)$ in this family contains a UD- K_{5}-minor due to the structure of $\left(\overline{H_{n}}, \mathcal{T}_{n}\right)$. For example, the resulting transition graph by deleting some edges $\overline{H_{0}}$ is a subdivision of a

Fig. 3. (a) $\left(\overline{H_{0}}, \mathcal{T}_{0}\right)$ has no CCD. (b) A UD- K_{5}-minor in $\left(\overline{H_{0}}, \mathcal{T}_{0}\right)$.

Fig. 4. Digons of type 0,1 , and 2 , respectively.

UD- K_{5} (illustrated in Fig. 3-(b)). Therefore, every transitioned 4-regular graph $\left(\overline{H_{n}}, \mathcal{T}_{n}\right)$ in this family contains a SUD- K_{5}-minor and does not have a CCD.

2.3. Hamiltonian circuit decomposition, $(X \leftrightarrow O)$-operation, $\langle 2 L\rangle$-graphs

Definition 2.13. Let (G, \mathcal{T}) be a fully transitioned 4-regular graph. If every CCD of (G, \mathcal{T}) is a pair of hamiltonian circuits, then (G, \mathcal{T}) is called a Hamilton transitioned graph.

Definition 2.14. Let $D=v_{0} v_{1} v_{0}$ be a digon. D is of type λ where λ is the number of inner vertices of D (see Fig. 4).

Definition 2.15. Let v be a non-trivial degree 4 vertex of a transitioned graph (G, \mathcal{T}). The $(X \leftrightarrow O)$-operation at v with $\mathcal{T}(v)=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{3}, e_{4}\right\}\right\}$ is defined as follows (see Fig. 5). Split v with $\left\{e_{1}, e_{2}\right\}$ becoming incident to a new vertex v_{1} and $\left\{e_{3}, e_{4}\right\}$ incident to another new vertex v_{2}, and add a pair of parallel edges $\left\{e_{5}, e_{6}\right\}$ between v_{1} and v_{2}, and define a new transition system by replacing $\mathcal{T}(v)$ with $\mathcal{T}\left(v_{2}\right)=\left\{\left\{e_{3}, e_{4}\right\},\left\{e_{5}, e_{6}\right\}\right\}$ and with either $\mathcal{T}\left(v_{1}\right)=\left\{\left\{e_{1}, e_{5}\right\},\left\{e_{2}, e_{6}\right\}\right\}$ or $\mathcal{T}\left(v_{1}\right)=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{5}, e_{6}\right\}\right\}$. In fact, we have created a digon of type >0 between v_{1} and v_{2}.

Definition 2.16. Denote by $\langle 2 L\rangle$ the family of all transitioned 4-regular graphs obtained from $\left(2 L, \mathcal{T}_{2}\right)$ (which appears on the top left of Fig. 6) by a sequence of ($X \leftrightarrow O$)-operations; it is called the $2 L$-family and its members are called $\langle 2 L\rangle$-elements.

Fig. 5. $(X \leftrightarrow O)$-operations.

Fig. 6. $\langle 2 L\rangle$-elements of order ≤ 3.

Lemma 2.17. Let $(G, \mathcal{T}) \in\langle 2 L\rangle$ be of order at least 3 . Then (G, \mathcal{T}) has either two vertexdisjoint digons of type ≥ 1, or two edge-disjoint digons of type ≥ 1 with at least one inner transition in the common vertex.

Proof. Note that the order of $(G, \mathcal{T}) \in\langle 2 L\rangle$ being at least 3 implies that G does not contain an edge with multiplicity more than 2 (this is straightforward from the definition of $\langle 2 L\rangle$). The family $\langle 2 L\rangle$ has precisely three members of order 3 (see Fig. 6); in this case, every $(G, \mathcal{T}) \in\langle 2 L\rangle$ has two edge-disjoint digons of type >0 sharing a common inner vertex.

Thus, the statement of the lemma is true for $(G, \mathcal{T}) \in\langle 2 L\rangle$ of order 3. Hence suppose that G is of order greater than 3.

Since $(X \leftrightarrow O)$-operations create a new digon of type >0, every member of $\langle 2 L\rangle$ except $2 L$ contains at least one digon of type >0. Let D be a digon of type $\lambda>0$ in (G, \mathcal{T}) and let $\left(G^{\prime}, \mathcal{T}^{\prime}\right) \in\langle 2 L\rangle$ be the graph obtained from (G, \mathcal{T}) by contracting D. By induction on $|V(G)|,\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ has either two vertex-disjoint digons of type >0 or two edge-disjoint digons of type >0 with an inner transition in a common vertex in each of these two digons. In all cases at least one of these digons of type >0 and D are either two vertex-disjoint digons of type >0 or two edge-disjoint digons of type >0 with inner transitions in the common vertex in (G, \mathcal{T}).

3. Main results

3.1. Compatible circuit decomposition problem and Theorem 1

Given Definition 2.3, Theorem 1 is restated as a stronger version below.

Theorem 1'. Let (G, \mathcal{T}) be an eulerian graph associated with an admissible transition system. If (G, \mathcal{T}) is SUD- K_{5}-minor-free, then it has a CCD.

Theorem 1' is not only a graph minor problem, but also a transition minor problem. It was originally proposed by Fleischner [10]. Its weak version for graph minors was solved by Fleischner [7] for planar graphs, and by Fan and Zhang [6] for K_{5}-minor-free graphs.

Note that Theorem 1^{\prime} is stronger than the following theorem which is only a graph-minor-free result (not a transition-minor-free result).

Theorem A. [6] Let \mathcal{T} be an admissible transition system of an eulerian graph G. Then (G, \mathcal{T}) has a CCD if G is K_{5}-minor-free.

3.2. Hamiltonian circuit decomposition problem and Theorem 2

In the studies of circuit covering problems or circuit decomposition problems, one of the critical steps is to determine the structure of the subgraph induced by a pair of incident circuits ([20,21], etc.). The structure of a graph that is covered by or decomposed into a pair of hamiltonian circuits provides a local structure of a possible counterexample to many open problems (such as the circuit double cover conjecture). Its structure for the faithful circuit covering problem was conjectured in [19]; the following is an equivalent version for the corresponding compatible circuit decomposition problem.

Conjecture A. [19] Let (G, \mathcal{T}) be a fully transitioned 4-regular graph such that it has some CCD and every such decomposition consists of a pair of hamiltonian circuits. Then $(G, \mathcal{T}) \in\langle 2 L\rangle$.

Theorem 2 solves Conjecture A for SUD- K_{5}-minor-free graphs. This result generalizes an early result by Lai and Zhang [13] which is a graph minor result for the faithful covering problem.

Note that, in this paper, Theorems 1' and 2 are proved simultaneously, which indicates the technical importance of Hamilton transitioned results (such as, Theorem 2) in the studies of this area.

4. Primary lemmas

4.1. For the proof of Theorem 1'

We consider a counterexample (G, \mathcal{T}) to Theorem 1', such that
(1) $|E(G)|$ is as small as possible;
(2) subject to (1), the number of transitions is as small as possible.
(G, \mathcal{T}) is called a smallest counterexample to Theorem 1^{\prime}. It follows from the choice of (G, \mathcal{T}) that (G, \mathcal{T}) has no removable circuit.

Definition 4.1. Let v be a non-trivial vertex in a transitioned 4-regular graph (G, \mathcal{T}). A circuit decomposition of (G, \mathcal{T}) is called an almost compatible circuit decomposition with respect to v, if it is compatible in every vertex except v.

A sequence of edge-disjoint circuits $\left\{C_{1}, \ldots, C_{k}\right\}(k \geq 2)$ of (G, \mathcal{T}) is called an almost compatible circuit chain decomposition with respect to $v(\operatorname{ACCCD}(v)$ for short), if
(1) it is an almost compatible circuit decomposition with respect to v;
(2) $v \in V\left(C_{1}\right) \cap V\left(C_{k}\right)$, and $v \notin V\left(C_{i}\right) \forall i \in\{2, \ldots, k-1\}$.
(3) for each $i, j \in\{1, \ldots, k\}$ with $i \neq j,\left[V\left(C_{i}\right) \cap V\left(C_{j}\right)\right] \backslash\{v\} \neq \emptyset$ if and only if $|j-i|=1$.

The integer k is called the length of the chain $\left\{C_{1}, \ldots, C_{k}\right\}$ (see Fig. 7).
By an approach similar to the one in [2], [1] and [6], we obtain the following structural results. For the purpose of being self-contained, proofs are therefore included.

Lemma 4.2. [6] Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1' and let $\mathcal{F}_{v}=$ $\left\{C_{1}, \ldots, C_{k}\right\}$ be an ACCCD of (G, \mathcal{T}) with respect to a non-trivial vertex v. If $k \geq 3$, then $V\left(C_{1}\right) \cap V\left(C_{k}\right)=\{v\}$.

Proof. By Definition 4.1, $v \in V\left(C_{1}\right) \cap V\left(C_{k}\right)$. Let H be the subgraph induced by $E\left(C_{1}\right) \cup E\left(C_{k}\right)$. If $\left|V\left(C_{1}\right) \cap V\left(C_{k}\right)\right| \geq 2$, then $\left(H,\left.\mathcal{T}\right|_{H}\right)$ is 2-connected. So each C_{i}, $1<i<k$, is a removable circuit, which is a contradiction.

Lemma 4.3. [6] Any smallest counterexample (G, \mathcal{T}) to Theorem 1' is 4-regular, 2 -connected, and for every non-trivial vertex v of (G, \mathcal{T}), there exists an $\operatorname{ACCCD}(v)$. Furthermore, every almost $C C D$ with respect to v is an $\operatorname{ACCCD}(v)$.

Proof. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. Since \mathcal{T} is admissible, (G, \mathcal{T}) has no bad cut-vertex. If $\{v\}$ is a 1 -separator of G separating G to G_{1}, G_{2}, then $\left(G_{1},\left.\mathcal{T}\right|_{G_{1}}\right)$ and $\left(G_{2},\left.\mathcal{T}\right|_{G_{2}}\right)$ have CCD's \mathcal{C}_{1} and \mathcal{C}_{2}, respectively, Thus, $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is a CCD of (G, \mathcal{T}), a contradiction. Therefore, G is 2 -connected.

Fig. 7. An $\operatorname{ACCCD}(v)$ of (G, \mathcal{T}).

Let v be a non-trivial vertex in G and let $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ be a transitioned graph obtained from (G, \mathcal{T}) by removing one transition in vertex v, if $\operatorname{deg}(v)>4$, or by removing all transitions of $\mathcal{T}(v)$, if $\operatorname{deg}(v)=4$.

By the choice of (G, \mathcal{T}), the new graph $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$, which has a smaller number of transitions, has a CCD, \mathcal{F}_{v}. Let C_{v} be the circuit of \mathcal{F}_{v} containing the vertex v and one of the removed transitions and let $\mathcal{A}=\left\{C \in \mathcal{F}_{v} \backslash\left\{C_{v}\right\} \mid C\right.$ contains $\left.v.\right\}$.

By the choice of $(G, \mathcal{T}), \mathcal{F}_{v}$ is an almost compatible circuit decomposition with respect to v.

Construct an auxiliary graph \mathcal{I} with the vertex set $V(\mathcal{I})=\mathcal{F}_{v}$ and two vertices of \mathcal{I} are adjacent to each other if and only if their corresponding circuits of \mathcal{F}_{v} have a non-empty intersection in $G \backslash\{v\}$. Since G is 2-connected, \mathcal{I} is connected. Let $S=C_{1} \ldots C_{k}$ be a shortest path in \mathcal{I} from $C_{1}=C_{v}$ to $\mathcal{A}\left(C_{k} \in \mathcal{A}\right)$. Obviously, S is a circuit chain of G closed at v.

Let $G^{\prime \prime}$ be the subgraph induced by edges of $\cup_{i=1}^{k} E\left(C_{i}\right)$. The transitioned graph $\left(G^{\prime \prime},\left.\mathcal{T}\right|_{G^{\prime \prime}}\right)$ is 2-connected, so it has no bad cut-vertex. Thus, every circuit $C \in \mathcal{F}_{v} \backslash$ $\left\{C_{1}, \ldots, C_{k}\right\}$ is a removable circuit. This is impossible. Therefore, $\mathcal{F}_{v}=\left\{C_{1}, \ldots, C_{k}\right\}$ is an $\operatorname{ACCCD}(v)$ of (G, \mathcal{T}) and G is 4-regular.

Lemma 4.4. Any smallest counterexample to Theorem 1 ' has no digon of type $\lambda>0$.
Proof. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. Suppose (G, \mathcal{T}) has a digon of type $\lambda>0, D$. The smaller graph $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ obtained from (G, \mathcal{T}) by contracting D remains SUD- K_{5}-minor-free, because (G, \mathcal{T}) has this property. Thus it has a CCD. It is easily seen that every CCD of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ induces a CCD on (G, \mathcal{T}), which is a contradiction.

Lemma 4.5. Any smallest counterexample to Theorem 1' is 4-edge-connected.
Proof. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. Assume that $\left\{e_{1}, e_{2}\right\}$ is a 2-edge-cut of (G, \mathcal{T}) and G_{1}, G_{2} are the components of $G \backslash\left\{e_{1}, e_{2}\right\}$. By Lemma 4.3,

Fig. 8. 2-vertex-cut $\{u, v\}$.
G is 2 -connected, so e_{1} and e_{2} are vertex disjoint. Let $e_{1}=u_{1} u_{2}$ and $e_{2}=v_{1} v_{2}$ where $\left\{u_{i}, v_{i}\right\} \subset V\left(G_{i}\right), i=1,2$.

Let $H_{i}=G / G_{3-i}$ for each $i=1,2$. It is easy to check that $\left(H_{i}, \mathcal{S}_{i}\right), i=1,2$, is SUD- K_{5}-minor-free, $\mathcal{S}_{i}=\left.\mathcal{T}\right|_{G_{i}}$. So there exists a $\operatorname{CCD} \mathcal{C}_{i}$ of $\left(H_{i}, \mathcal{S}_{i}\right)$ and a circuit $C_{i} \in \mathcal{C}_{i}$ covering $u_{i} v_{i}, i=1,2$. Let $C=\left(C_{1} \cup C_{2} \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}\right) \backslash\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$. Thus, $\mathcal{C}=\left(\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup\{C\}\right) \backslash\left\{C_{1}, C_{2}\right\}$ is a CCD of (G, \mathcal{T}), a contradiction.

Since no eulerian graph has an edge-cut of odd size, (G, \mathcal{T}) is 4-edge-connected.
Lemma 4.6. Any smallest counterexample to Theorem 1' is 3-connected.
Proof. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. By Lemma 4.3, G is a 2-connected 4-regular graph. By Lemma $4.5, G \backslash X$ has exactly two components, for every 2 -vertex-cut X.

Suppose $\{u, v\}$ is a 2-vertex-cut of G such that G_{1}, G_{2} are the components of $G \backslash\{u, v\}$. Every edge-cut in an eulerian graph has an even number of edges. It follows that u, v can be chosen such that for $i=1,2$, both u and v have the same degrees in $G \backslash V\left(G_{i}\right)$. By Lemma 4.5, uv $\notin E(G)$ and $\operatorname{deg}_{G \backslash V\left(G_{i}\right)}(u)=\operatorname{deg}_{G \backslash V\left(G_{i}\right)}(v)=2, i=1,2$. We have two cases (see Fig. 8).

Case 1. $E\left(G \backslash V\left(G_{i}\right)\right) \cap E(u) \in \mathcal{T}(u)$.
In this case, let $\left(G_{i}^{\prime}, \mathcal{T}_{i}^{\prime}\right)$ be a transitioned 4-regular graph obtained from (G, \mathcal{T}) by contracting all edges of $G \backslash V\left(G_{i}\right)$. Then, $\left(G_{i}^{\prime}, \mathcal{T}_{i}^{\prime}\right)$ has no SUD- $K_{5^{-}}$ minor. It follows from the minimality of (G, \mathcal{T}) that $\left(G_{i}^{\prime}, \mathcal{T}_{i}^{\prime}\right)$ has a CCD. Then by adapting the circuits containing edges of $E(u) \cup E(v)$ in these two CCD's, we may obtain a CCD of (G, \mathcal{T}), which is a contradiction.
Case 2. $\left\{u_{1} u, u u_{2}\right\} \in \mathcal{T}(u),\left\{v_{1} v, v v_{2}\right\} \in \mathcal{T}(v)$, where u_{i}, v_{i} are neighbours of u and v in $G_{i}, i=1,2$, respectively.

In this case, we set $G_{i}^{\prime}=G \backslash V\left(G_{i+1}\right)$, and define \mathcal{T}_{i}^{\prime} as the set of transitions in G_{i}^{\prime} induced by $\left.\mathcal{T}\right|_{G_{i}^{\prime}}$. Observe that $\left(G_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$ and $\left(G_{2}^{\prime}, \mathcal{T}_{2}^{\prime}\right)$ have no bad cut-vertex; otherwise, the bad cut-vertex and vertex u is a 2 -vertex-cut yielding Case 1 .

Therefore, $\left(G_{i}^{\prime}, \mathcal{T}_{i}^{\prime}\right)$ has a CCD $i=1,2$. The union of these two CCD's is a CCD of (G, \mathcal{T}), which is a contradiction.

Lemma 4.6 now follows.

Corollary 4.7. Any smallest counterexample to Theorem 1' has no digon.

Proof. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. Suppose (G, \mathcal{T}) has a digon, D. By Lemma 4.4, D is a digon of type 0 . Then by Lemma 4.6, $G \backslash E(D)$ is 2 -connected. Thus, D is a removable circuit, which is a contradiction.

Definition 4.8. An even subgraph H of (G, \mathcal{T}) is compatible if $|E(H) \cap P| \leq 1$, for every $P \in \mathcal{T}$. An almost compatible 2-even subgraph decomposition $\left\{U_{1}, U_{2}\right\}$ with respect to v is a decomposition into two even subgraphs in such a way that both U_{i} 's are compatible at every $w \in V(G) \backslash\{v\}$, and U_{i} is not compatible at v for at least one i.

Definition 4.9. Let (G, \mathcal{T}) be a transitioned 4-regular graph. Let v be a non-trivial vertex of degree 4 in (G, \mathcal{T}) and let $\{e, f\} \in \mathcal{T}(v)$. By splitting v (with respect to \mathcal{T}) we mean that v is split into two degree 2 vertices such that e and f are incident with the same vertex. The split graph of (G, \mathcal{T}), denoted by $S P(G, \mathcal{T})$, is the graph obtained from (G, \mathcal{T}) by splitting every non-trivial vertex.

The following lemma appeared in $[1,6]$ as part of proofs of some theorems (not as an independent lemma). For the purpose of smoothness of the paper and possible applications in the future, Lemma 4.10 is stated in this paper as an independent lemma. The proof is also included here for the purpose of not only the consistency of notation and terminology but also for the self-completeness of the paper.

Lemma 4.10. [1,6] Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. Then
(1) $S P(G, \mathcal{T})$ has exactly two components;
(2) for each non-trivial vertex v, if x and y are the two vertices in $S P(G, \mathcal{T})$ which result by splitting v, then they are contained in different components of $\operatorname{SP}(G, \mathcal{T})$;
(3) each component of $\operatorname{SP}(G, \mathcal{T})$ is a circuit of odd length.

Proof. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. By Lemma 4.3, G is 4-regular and for every non-trivial vertex $v \in V(G)$, there exists an $\operatorname{ACCCD}(v)$, say $\mathcal{F}_{v}=\left\{C_{1}, \ldots, C_{k}\right\}$.

Let

$$
S_{1}=\cup_{\mu=1}^{\left\lceil\frac{k}{2}\right\rceil} E\left(C_{2 \mu-1}\right) \quad \text { and } \quad S_{2}=\cup_{\mu=1}^{\left\lfloor\frac{k}{2}\right\rfloor} E\left(C_{2 \mu}\right)
$$

Then, $\left\{S_{1}, S_{2}\right\}$ is an almost compatible 2-even subgraph decomposition with respect to v. Note that depending on the parity of $k, v \in V\left(S_{2}\right)$ if and only if k is even. If k is odd then S_{2} is a set of compatible circuits.

Next, to establish the validity of the Lemma we prove a sequence of claims.
Claim 4.10.1. For every almost compatible 2 -even subgraph decomposition $\left\{U_{1}, U_{2}\right\}$ with respect to v, for every vertex $w \neq v, \operatorname{deg}_{U_{i}}(w)=2, i=1,2$.

Assume that $\left\{U_{1}, U_{2}\right\}$ is an almost compatible 2-even subgraph decomposition with respect to v and that there exists a vertex $w \neq v, \operatorname{deg}_{U_{1}}(w)=4$. By Definition 4.8, a non-trivial vertex of G other than v cannot be of degree 4 in $U_{i}, i=1,2$. Thus, w is a trivial vertex and $E(w) \subseteq E\left(U_{1}\right)$.

Let \mathcal{F}_{i} be a circuit decomposition of U_{i} for each $i=1,2$. The union $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ forms an almost compatible circuit decomposition with respect to v, by the choice of (G, \mathcal{T}). By Lemma 4.3, every almost CCD with respect to a non-trivial vertex is a circuit chain, hence $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a circuit chain $\left\{D_{1}, \ldots, D_{r}\right\}$. Since $G\left[U_{1}\right]$ has a vertex of degree 4 , it follows that $r \geq 3$. By Lemma 4.2, we have $V\left(D_{1}\right) \cap V\left(D_{r}\right)=\{v\}$. Let $w \in V\left(D_{j}\right) \cap V\left(D_{j+1}\right)$. Note that D_{j} and D_{j+1} are edge-disjoint and both are subsets of U_{1}. So, every vertex of the induced subgraph $G\left[D_{j} \cup D_{j+1}\right]$ is of degree 2 or 4 . If w is the only vertex of $V\left(D_{j}\right) \cap V\left(D_{j+1}\right)$, then $\{v, w\}$ is a 2-vertex-cut of G (since G has no digon by Corollary 4.7). This contradicts Lemma 4.6.

Thus the induced subgraph $G\left[D_{j} \cup D_{j+1}\right]$ is 2-connected. Let $u_{j} \in V\left(D_{j}\right) \cap V\left(D_{j-1}\right)$ (or $u_{j}=v$ if $j=1$), and let $u_{j+1} \in V\left(D_{j+1}\right) \cap V\left(D_{j+2}\right)$ (or $u_{j+1}=v$ if $j+1=r$). Let $D \subset G\left[D_{j} \cup D_{j+1}\right]$ be a circuit containing the vertices u_{j} and u_{j+1}. Then $G\left[D_{j} \cup D_{j+1}\right] \backslash D$ is a removable even subgraph of (G, \mathcal{T}). This is a contradiction. Thus, $\operatorname{deg}_{U_{i}}(w)=2$, for every $w \neq v, i=1,2$, and thus Claim 4.10.1 is true.

The following claim is obvious.
Claim 4.10.2. For each circuit C of $S P(G, \mathcal{T}),\left\{S_{1} \Delta C, S_{2} \Delta C\right\}$ is also an almost compatible 2-even subgraph decomposition with respect to v.

Claim 4.10.3. For each trivial vertex w with $\left\{e^{\prime}, e^{\prime \prime}\right\}=E(w) \cap S_{1}$, no circuit of $\operatorname{SP}(G, \mathcal{T})$ contains both edges e^{\prime} and $e^{\prime \prime}$.

Suppose that C is a circuit of $S P(G, \mathcal{T})$ containing both edges e^{\prime} and $e^{\prime \prime}$. By Claim 4.10.2, $\left\{S_{1} \Delta C, S_{2} \Delta C\right\}$ is also an almost compatible 2-even subgraph decomposition with respect to v. Note that $\operatorname{deg}_{S_{2} \Delta C}(w)=4$. This contradicts Claim 4.10.1. Thus Claim 4.10.3 now follows.

Therefore, by Claim 4.10.3, we have the following immediate conclusions about $S P(G, \mathcal{T})$. Let w be a trivial vertex of (G, \mathcal{T}).

Claim 4.10.4. For each pair $\left\{e^{\prime}, e^{\prime \prime}\right\}=E(w) \cap S_{i}(i=1,2)$, the edges e^{\prime} and $e^{\prime \prime}$ must be in different blocks of $\operatorname{SP}(G, \mathcal{T})$.

From Claim 4.10.4, we conclude

Claim 4.10.5. The trivial vertex w must be a cut-vertex of some component of $\operatorname{SP}(G, \mathcal{T})$.

This also implies

Claim 4.10.6. The circuit decomposition of $\operatorname{SP}(G, \mathcal{T})$ is unique.

Notation. Let R_{1}, \ldots, R_{h} be the components of the split graph $S P(G, \mathcal{T})$, and let $\left\{X_{1}, \ldots, X_{t}\right\}$ be the unique circuit decomposition of $S P(G, \mathcal{T})$, which is also the block decomposition of $\operatorname{SP}(G, \mathcal{T})$.

Claim 4.10.7. Let x and y be the two vertices in $S P(G, \mathcal{T})$ which result from by splitting v. Then x and y are contained in different components of $S P(G, \mathcal{T})$.

Proceeding by contradiction, suppose that x and y are contained in the same component R_{1}, of $S P(G, \mathcal{T})$. Let P be a path of R_{1} joining x and y. Let C be the even subgraph induced by $E(P)$ in G. Note that C is not compatible in its vertices except at $v . S_{1}$ and S_{2} are compatible at every vertex $u \neq v$, and S_{1} is not compatible at vertex v. Therefore, $\left\{S_{1} \Delta C, S_{2} \Delta C\right\}$ is a compatible 2-even subgraph decomposition which is a contradiction to the choice of G and thus proves the claim.

By Claim 4.10.7 assume without loss of generality that $x \in X_{1}$ and $y \in X_{2}$ where X_{j} is a block of $R_{j}, j=1,2$.

Claim 4.10.8. The circuits X_{1} and X_{2} are of odd lengths, while all other $X_{i}(i>2)$ are of even lengths.

Colour the edges of S_{1} with blue, and the edges of S_{2} with red. By Claim 4.10.4, each circuit X_{i} is of even length if $i \neq 1,2$ since its edges are alternately coloured with red and blue, while X_{1} and X_{2} are of odd length since each of x, y is incident with two edges of the same colour. Claim 4.10.8 now follows.

The following is the final claim and concludes the proof of the lemma.

Claim 4.10.9. $h=t=2$. That is, the split graph $\operatorname{SP}(G, \mathcal{T})$ has precisely components $R_{1}=X_{1}$ and $R_{2}=X_{2}$ each of which is a circuit of odd length.

Since the non-trivial vertex v was selected arbitrarily, all conclusions we have had above can be applied to every non-trivial vertex; that is, for every non-trivial vertex v and the vertices x and y resulting by splitting v, it follows that $x \in X_{1}$ and $y \in X_{2}$.

If R_{1} has more than one block, then R_{1} must have a block Q_{3} other than X_{1} that contains precisely one cut-vertex z of R_{1} (note that Q_{3} corresponds to a leaf in the block-cut-vertex graph of R_{1}). By Claims 4.10.7 and 4.10.8, every vertex of Q_{3} is trivial.

So by Claim 4.10.5, every vertex of Q_{3} is a cut-vertex of $S P(G, \mathcal{T})$. This contradicts the supposed existence of Q_{3}.

Furthermore, no edge of R_{i} with $i>2$ is incident with a non-trivial vertex. By the definition of $S P(G, \mathcal{T})$, each R_{i} with $i>2$ also corresponds to a component of G whose vertices are all trivial. This contradicts G being connected.

Therefore, $S P(G, \mathcal{T})$ consists of two vertex disjoint circuits of odd length $X_{1}=R_{1}$ and $X_{2}=R_{2}$. Lemma 4.10 now follows.

Since in the proof of Lemma 4.10, it is shown that any smallest counterexample to Theorem 1' has no trivial vertex, we have the following corollary.

Corollary 4.11. Any smallest counterexample to Theorem 1' is a fully transitioned graph.
Lemma 4.12. [6] Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1 ' and let $\mathcal{F}_{v}=$ $\left\{C_{1}, \ldots, C_{k}\right\}$ be an ACCCD of (G, \mathcal{T}) with respect to a non-trivial vertex v with $k=\left|\mathcal{F}_{v}\right|$ maximum. Then $k \geq 3$.

Proof. Since v is of degree $4, k>1$ where $\mathcal{F}_{v}=\left\{C_{1}, \ldots, C_{k}\right\}$. Assume that $k=2$. Let R_{1} and R_{2} be the components of $S P(G, \mathcal{T}$) (see Lemma $4.10(1)$). By Lemma 4.10 and Definition 4.9, without loss of generality, let $E(v) \cap E\left(C_{1}\right) \subseteq E\left(R_{1}\right)$ and $E(v) \cap E\left(C_{2}\right) \subseteq E\left(R_{2}\right)$. Consider $\left\{C_{1} \Delta R_{1}, C_{2} \Delta R_{1}\right\}$. It is easy to check that $\left\{C_{1} \Delta R_{1}, C_{2} \Delta R_{1}\right\}$ is an almost compatible decomposition into even subgraphs of (G, \mathcal{T}) with respect to v. Note that $E(v) \subseteq E\left(C_{2} \Delta R_{1}\right)$. Therefore, the maximum degree of $C_{2} \Delta R_{1}$ is four and hence any of its circuit decomposition consists of at least two circuits. Since $S P(G, \mathcal{T})$ has two components and G is 2-connected, (G, \mathcal{T}) has at least a second non-trivial vertex $u \neq v$. Because C_{1} is compatible in $u, C_{1} \Delta R_{1}$ is not empty. Therefore, the union of circuit decompositions of $C_{1} \Delta R_{1}$ and $C_{2} \Delta R_{1}$ has at least three elements. This contradicts the maximality of $\left|\mathcal{F}_{v}\right|$.
4.2. Cornered triangle extension property: key lemmas for the determination of UD-K5

There are few results in graph theory that tell us the existence of the Petersen-minor (for example, $[5,15]$, etc.). The main lemmas in this section provide a new approach to identify the precise structure of a transitioned UD- K_{5} (their corresponding versions for the faithful circuit covering problem identify the Petersen graph). These lemmas are applied in the final steps of the proofs of Theorems 1 ' and 2.

Definition 4.13. Let $C_{0}=x y_{1} y_{2} x$ be a non-compatible circuit of length 3 .
(1) The corner of C_{0} is a given inner vertex, say x, of the triangle. If y_{j} is a compatible vertex of C_{0}, then the opposite edge $x y_{i}$ is called a leg of $C_{0}(i \neq j)$.
(2) For $\mu=1,2$, a triangle C_{0} with the corner x is called μ-legged if $E(x) \cap E\left(C_{0}\right)$ contains at least μ legs.

Fig. 9. A cornered triangle $C_{0}=x y_{1} y_{2} x$, and its extension $C_{1}=w_{1} x y_{1} w_{1}$.
(3) Let $C_{0}=x y_{1} y_{2} x$ be a triangle with the corner x. Given $x y_{i}$ a leg of C_{0}, an extension of C_{0} along the leg $x y_{i}$ is another triangle $C_{i}=w_{i} x y_{i} w_{i}$ with the corner w_{i} where $w_{i} \notin V\left(C_{0}\right)$ (note that $y_{i} w_{i}$ is a leg of C_{i}).
(4) A μ-legged triangle $C_{0}=x y_{1} y_{2} x$ with the corner x is μ-extendable if every leg $x y_{i}$ has an extension which is also μ-legged (a μ-legged extension; see Fig. 9).

Definition 4.14. For a given integer $\mu \in\{1,2\}$, a graph G has the the μ-legged-triangleextension property (abbreviated as μ-LTEP) if G contains some μ-legged triangle and each of them is μ-extendable (see Definition 4.13(4)).

The following two lemmas play an important role in the proofs of the main theorems. These lemmas identify the structure of the UD- K_{5} based on the extension property.

In the proofs of the main theorems, the 1-LTEP or 2-LTEP will be verified for smallest counterexamples to the theorems. We wish to point out that although Lemma 4.15 and Lemma 4.16 look very similar, neither of them is an immediate corollary of the other.

Lemma 4.15. Let (G, \mathcal{T}) be a 4-regular, fully transitioned, simple graph. If (G, \mathcal{T}) has the 2-LTEP, then it is exactly the UD- K_{5}.

Proof. By the 2-LTEP, there exists a 2-legged triangle in (G, \mathcal{T}), say $S_{0}=v v_{1} v_{2} v$, with corner v and two legs $v v_{1}$ and $v v_{2}$. Since S_{0} has the 2-LTEP, each leg $v v_{i}(i=1,2)$, has a 2-legged extension $S_{i}=v_{i+2} v v_{i} v_{i+2}$ which is also a 2-legged triangle with the corner v_{i+2}.

Since G is simple, it can be seen that $v_{3} \neq v_{4}$, for otherwise, by looking at the transitions contained in $E\left(v_{3}\right)$, the edge $v v_{3}$ would be contained in two distinct transitions $\left\{v_{3} v, v_{3} v_{1}\right\}$ and $\left\{v_{3} v, v_{3} v_{2}\right\}$ (see Fig. 10-(ii)).

Since S_{i} has the 2-LTEP $(i=1,2)$, each leg $v v_{i+2}$ has a 2-legged extension $S_{i+2}=$ $w_{i} v v_{i+2} w_{i}$. Since G is 4-regular, $w_{1} \in\left\{v_{2}, v_{4}\right\}$ and $w_{2} \in\left\{v_{1}, v_{3}\right\}$. Since the transition $\left\{v_{4} v, v_{4} v_{2}\right\} \in \mathcal{T}\left(v_{4}\right)$ and w_{1} is an inner vertex of S_{3}, we have that $w_{1} \neq v_{4}$. Hence, $w_{1}=v_{2}$. Symmetrically, $w_{2}=v_{1}$.

Since S_{1} has the 2-LTEP, the leg $v_{1} v_{3}$, has a 2-legged extension $S_{5}=w_{3} v_{1} v_{3} w_{3}$ with corner w_{3}. By the 4 -regularity of $G, w_{3} \in\left\{v, v_{2}, v_{4}\right\}$. Since w_{3} is an inner vertex of S_{5},

Fig. 10. Proof of Lemma 4.15.

Fig. 11. Case $\mathrm{A}\left(w_{0}=v_{1}\right)$.
one has $w_{3}=v_{4}$ by looking at the transitions at v and v_{2}. Thus, $\left\{v_{4} v_{1}, v_{4} v_{3}\right\} \in \mathcal{T}\left(v_{4}\right)$, and $\left\{v_{3} v_{2}, v_{3} v_{4}\right\} \in \mathcal{T}\left(v_{3}\right)$ (see Fig. 10-(iii)).

It is now easy to check that (G, \mathcal{T}) is exactly the UD- K_{5}.

Lemma 4.16. Let (G, \mathcal{T}) be a 4-regular, 4-edge-connected, fully transitioned, simple graph. If (G, \mathcal{T}) has the 1-LTEP, then either it is the UD- K_{5} or it has a CCD of size 3 .

Proof. Let $S_{1}=v_{0} v_{1} v_{2} v_{0}$ be a 1-legged triangle with the corner v_{2} and a leg $v_{0} v_{2}$. By using the 1-LTEP of S_{1} at the leg $v_{0} v_{2}$, we have a new vertex v_{3} such that $S_{2}=v_{0} v_{2} v_{3} v_{0}$ is a 1 -legged triangle with the corner v_{3} and a leg $v_{0} v_{3}$.

By using the 1-LTEP of S_{2} at the leg $v_{0} v_{3}$, there is a 1-legged triangle $S_{3}=v_{0} v_{3} w_{0} v_{0}$ with the corner w_{0} and a leg $v_{0} w_{0}$. Since $S_{3} \neq S_{2}$ and G is simple, there are two possibilities for $w_{0}: w_{0}=v_{1}$ or $w_{0} \notin\left\{v_{0}, \ldots, v_{3}\right\}$.

Case A: $w_{0}=v_{1}$ (see Fig. 11).
We will show that this case cannot happen.
Since (G, \mathcal{T}) is fully transitioned, there exists a transition of v_{0} contained in the edge set $\left\{v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}\right\}$. By rotational symmetry, we may assume that $\left\{v_{0} v_{1}, v_{0} v_{2}\right\} \in \mathcal{T}\left(v_{0}\right)$. Thus $v_{2} v_{3}$ is another leg of the 2-legged triangle S_{2}. By using the 1-LTEP of S_{2} at the leg $v_{2} v_{3}$, there exists a 1-legged triangle $S_{4}=v_{2} v_{3} w_{1} v_{2}$ with the corner w_{1} and a leg $v_{2} w_{1}$. It is obvious that $w_{1} \notin\left\{v_{0}, v_{2}, v_{3}\right\}$. If $w_{1}=v_{1}$, then the edge $v_{1} v_{3}$ will be contained two distinct transitions, which is impossible.

By using the 1-LTEP of S_{4} at the leg $v_{2} w_{1}$, there exists a 1-legged triangle $S_{5}=v_{2} w_{1} w_{2} v_{2}$ with the corner w_{2} and a leg $v_{2} w_{2}$. Since G is 4 -regular and simple, $w_{2} \in\left\{v_{0}, v_{1}\right\}$. If the corner $w_{2}=v_{0}$, then $\left\{w_{2} w_{1}, w_{2} v_{2}\right\}=\left\{v_{0} w_{1}, v_{0} v_{2}\right\} \in \mathcal{T}\left(v_{0}\right)$. But the edge $v_{0} v_{2}$ is already contained in another transition $\left\{v_{0} v_{1}, v_{0} v_{2}\right\}$. This is a contraction, and therefore, $w_{2}=v_{1}$.

Let $e^{\prime} \in E\left(v_{0}\right)-\left\{v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}\right\}$ and $e^{\prime \prime} \in E\left(w_{1}\right)-\left\{w_{1} v_{1}, w_{1} v_{2}, w_{1} v_{3}\right\}$. Since G is 4-regular and 4-edge-connected, we have that $e^{\prime}=e^{\prime \prime}$ for otherwise $\left\{e^{\prime}, e^{\prime \prime}\right\}$ is a 2-edge-cut of G. That is, $e^{\prime}=e^{\prime \prime}=w_{1} v_{0}$, and $V(G)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, w_{1}\right\}$.

Consider the 2 -legged triangle $v_{0} w_{1} v_{3} v_{0}$ with corner v_{0}. By using the 1-LTEP at the leg $v_{0} w_{1}$, there exists a 1-legged triangle $v_{0} w_{1} w_{3} v_{0}$ with the corner w_{3}. By the 4 -regularity of G, one must have $w_{3}=v_{1}$ or $w_{3}=v_{2}$. However, none of them can happen as can be seen by checking the transitions around v_{1} and v_{2}.

Case B: $w_{0} \notin\left\{v_{0}, \ldots, v_{3}\right\}$; denote $w_{0}=v_{4}$ (see Fig. 12).
By using the 1-LTEP of S_{3} at the leg $v_{0} v_{4}$, there exists a 1-legged triangle $S_{6}=v_{0} v_{4} w_{3} v_{0}$ with the corner w_{3} and a leg $v_{0} w_{3}$. Since G is 4-regular and simple, $w_{3} \in\left\{v_{1}, v_{2}\right\}$. If $w_{3}=v_{2}$, then the edge $v_{0} v_{2}$ is contained in the two transitions $\left\{v_{2} v_{0}, v_{2} v_{1}\right\}$ and $\left\{v_{2} v_{0}, v_{2} v_{4}\right\}$ of v_{2}. This is a contradiction. Therefore, $w_{3}=v_{1}$.

Note there is no information yet about the transitions around the vertex v_{0}. By symmetry, there are two cases for further analysis:

$$
\begin{equation*}
\left\{v_{0} v_{1}, v_{0} v_{2}\right\} \in \mathcal{T}\left(v_{0}\right) \text { or }\left\{v_{0} v_{1}, v_{0} v_{3}\right\} \in \mathcal{T}\left(v_{0}\right) \tag{1}
\end{equation*}
$$

In either case, we can assume that v_{0} is compatible in the triangle $S_{2}=v_{0} v_{2} v_{3} v_{0}$. That is, the edge $v_{2} v_{3}$ is another leg of the triangle S_{2}. By using the 1-LTEP of S_{2} at the leg $v_{2} v_{3}$, we have an extension $S_{7}=v_{2} v_{3} w_{4} v_{2}$ with the corner w_{4} and a leg $v_{2} w_{4}$. Proceeding similarly to the above, by looking at the transitions around v_{4}, we have that $w_{4} \neq v_{4}$. Hence, there are two possibilities for $w_{4}: w_{4} \notin\left\{v_{0}, \ldots, v_{4}\right\}$ or $w_{4}=v_{1}$ (see Fig. 12).

Subcase B-1. $w_{4} \notin\left\{v_{0}, \ldots, v_{4}\right\}$; denote $w_{4}=v_{5}$ (see Fig. 13).
For this subcase, we will find a CCD of size 3. By using the 1-LTEP of S_{7} at the leg $v_{2} v_{5}=v_{2} w_{4}$, there exists an extension $v_{2} v_{5} w_{5} v_{2}$ with the corner w_{5} and a leg $v_{2} w_{5}$. Since G is 4-regular and simple and $w_{5} \in\left[N\left(v_{2}\right) \cap N\left(v_{5}\right)\right]-V\left(S_{7}\right)$, we have $w_{5}=v_{1}$ (see Fig. 13). Arguing similarly as above, we then get $v_{4} v_{5} \in E(G)$ by the 4 -edge connectivity and 4-regularity. Therefore $V(G)=\left\{v_{0}, \ldots, v_{5}\right\}$.

By (1), if $\left\{v_{0} v_{1}, v_{0} v_{3}\right\} \in \mathcal{T}\left(v_{0}\right)$, then consider the 2-legged triangle $S_{1}=v_{2} v_{1} v_{0} v_{2}$ with the corner v_{2}. The leg $v_{1} v_{2}$ cannot be extended by checking at the transitions around v_{5} and the neighbourhood of v_{3}, v_{4}. This is a contradiction.

So, by (1), we must have $\left\{v_{0} v_{1}, v_{0} v_{2}\right\} \in \mathcal{T}\left(v_{0}\right)$, and thus the set

$$
\left\{v_{1} v_{2} v_{3} v_{4} v_{1}, v_{0} v_{1} v_{5} v_{3} v_{0}, v_{0} v_{2} v_{5} v_{4} v_{0}\right\}
$$

is a CCD of (G, \mathcal{T}) of size 3 .

Fig. 12. Case $\mathrm{B}\left(w_{0}=v_{4}\right): S_{7}=v_{2} v_{3} w_{4} v_{2}$ and subcase $\mathrm{B}-1\left(w_{4}=v_{5}\right)$, subcase $\mathrm{B}-2\left(w_{4}=v_{1}\right)$.

Fig. 13. Subcase B-1 $\left(w_{4}=v_{5}\right)$.

Fig. 14. Subcase $\operatorname{B}-2\left(v_{1}=w_{4}\right):(G, \mathcal{T})$ is the UD- K_{5}.

Subcase B-2. $w_{4}=v_{1}$ (see Fig. 14).
It is obvious that $v_{2} v_{4} \in E(G)$ by the 4-edge connectivity and 4-regularity of G (see Fig. 14). By (1), we may first assume that $\left\{v_{0} v_{1}, v_{0} v_{2}\right\} \in \mathcal{T}\left(v_{0}\right)$. Then consider the 2 -legged triangle $v_{4} v_{2} v_{1} v_{4}$ with the corner v_{4}. The leg $v_{2} v_{4}$ cannot be extended by checking at the transitions around v_{0} and v_{3}. This is a contradiction.

So, by (1), we must have $\left\{v_{0} v_{1}, v_{0} v_{3}\right\} \in \mathcal{T}\left(v_{0}\right)$. It is easy to check that (G, \mathcal{T}) is the UD- K_{5} (see Fig. 14).

5. Simultaneous proof of Theorems 1^{\prime} and 2

Suppose at least one of these two theorems is false. Let (G, \mathcal{T}) be a counterexample to either Theorem 1' or Theorem 2 with $|E(G)|$ being as small as possible. Therefore, every admissible transitioned 4-regular graph without SUD- K_{5}-minor and smaller than (G, \mathcal{T})
has a CCD; and for every Hamilton transitioned graph (H, \mathcal{S}) smaller than (G, \mathcal{T}), if (H, \mathcal{S}) is SUD- K_{5}-minor-free, then $(H, \mathcal{S}) \in\langle 2 L\rangle$.

For our considerations we introduce an extra definition.

Definition 5.1. Let G^{\prime} be a graph obtained from G by some operations. A digon D^{\prime} of G^{\prime} is virtual if its corresponding subgraph D in G is a circuit of length >2 such that at least one edge of D^{\prime} corresponds to a path of length >1 in D; otherwise we speak of D^{\prime} as a real digon.

Now we consider two cases with respect to the assumed counterexample.

Case I. (G, \mathcal{T}) is a counterexample to Theorem 1^{\prime}.
Case II. (G, \mathcal{T}) is a counterexample to Theorem 2.

5.1. Case I. (G, \mathcal{T}) is a counterexample to Theorem 1'

The goal of our first step is to show that (G, \mathcal{T}) has a kind of extension property for a type of cornered triangle, which is to be proved in Lemma 5.5.

Definition 5.2. A circuit $C=v_{1} v_{2} \ldots v_{k} v_{1}$ is called an almost removable circuit with respect to $v_{1}\left(\operatorname{ARC}\left(v_{1}\right)\right.$, for short) if it is compatible at every vertex except v_{1} such that $\left(G \backslash E(C),\left.\mathcal{T}\right|_{G \backslash E(C)}\right)$ has no bad cut-vertex.

Note that, for an almost removable circuit $C_{v_{1}}$ with respect to v_{1}, if $d\left(v_{1}\right)=4$ and v_{1} is incident with two transitions, say P_{1} and P_{2}, then P_{1} is contained in $C_{v_{1}}$ and P_{2} remains in $G \backslash E\left(C_{v_{1}}\right)$. If this case happens, the remaining transition P_{2} is removed from $\left.T\right|_{G \backslash E\left(C_{v_{1}}\right)}$ by Definition 2.8-(3).

Lemma 5.3. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1', and let $C_{v_{1}}$ be a circuit of G containing v_{1}. Then $C_{v_{1}}$ is an $\operatorname{ARC}\left(v_{1}\right)$ if and only if there exists an $\operatorname{ACCCD}\left(v_{1}\right) \mathcal{F}_{v_{1}}$ containing $C_{v_{1}}$.

Proof. Sufficiency is trivially true. Let $C_{v_{1}}$ be an $\operatorname{ARC}\left(v_{1}\right)$. Since (G, \mathcal{T}) is a smallest counterexample to Theorem 1', the transitioned graph $\left(G \backslash E\left(C_{v_{1}}\right),\left.\mathcal{T}\right|_{G \backslash E\left(C_{v_{1}}\right)}\right)$ has a CCD, say \mathcal{C}_{1}. Note that $\mathcal{C}_{1} \cup\left\{C_{v_{1}}\right\}$ is an $\operatorname{ACCCD}\left(v_{1}\right)$ because of Lemma 4.3.

Lemma 5.4. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1', and let $C_{v_{1}}$ be a triangle of G containing v_{1}. If $C_{v_{1}}$ is compatible at every vertex except v_{1}, then $C_{v_{1}}$ is an $\operatorname{ARC}\left(v_{1}\right)$.

Proof. Let $C_{v_{1}}=v_{1} v_{2} v_{3} v_{1}$ be compatible at every vertex except v_{1}. By Definition 5.2, we need to show $\left(G \backslash E\left(C_{v_{1}}\right),\left.\mathcal{T}\right|_{G \backslash E\left(C_{v_{1}}\right)}\right)$ has no bad cut-vertex. Assume there exists a cut-vertex $x \neq v_{1}$ in G such that G has two blocks Q_{1} and Q_{2} incident with x

Fig. 15. $\operatorname{An} \operatorname{ACCCD}(v)$ of (G, \mathcal{T}), and, $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$.
and $Q_{1} \cap E(x) \in \mathcal{T}(x)$. If $V\left(Q_{1}\right) \cap V\left(C_{v_{1}}\right)=\left\{v_{2}\right\}$, then $\left\{x, v_{2}\right\}$ is a 2-vertex-cut. If $V\left(Q_{1}\right) \cap V\left(C_{v_{1}}\right)=\left\{v_{1}, v_{2}\right\}$, then $\left\{x, v_{3}\right\}$ is a 2 -vertex-cut. In both cases we obtain a contradiction to Lemma 4.6.

Lemma 5.5. Let (G, \mathcal{T}) be a smallest counterexample to Theorem 1'. Then (G, \mathcal{T}) has the following properties.
(i) $\operatorname{ARC}(v)$ exists for every vertex v;
(ii) a shortest ARC is of length 3, and
(iii) for every $\operatorname{ARC}\left(v_{1}\right)=v_{1} v_{2} v_{3} v_{1}$ and for the edge $v_{1} v_{2}$, there exists an $\operatorname{ARC}(w)=$ $w v_{1} v_{2} w, w \neq v_{3}$.

Proof. By Lemma 4.3, for every vertex $v \in V(G)$, there exists an $\operatorname{ACCCD}(v)$ (see Corollary 4.11), and, for every $v \in V(G)$, by Lemma $5.3,(G, \mathcal{T})$ contains an $\operatorname{ARC}(v)$.

Choose $\operatorname{ACR}(v)$ with the smallest length among all ARC's in (G, \mathcal{T}) and choose $\operatorname{ACCCD}(v), \mathcal{F}_{v}=\left\{C_{1}, \ldots, C_{k}\right\}$ with maximum length involving this shortest $\operatorname{ACR}(v)$, C_{k} say (see the left side of Fig. 15).

Let $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ be obtained from (G, \mathcal{T}) by deleting all edges of C_{k} except $u v$ where u is a neighbour of v on C_{k}, contracting $u v$ to a new vertex v^{*} and suppressing vertices of degree two.

For every $C^{\prime} \in G^{\prime}$, assume that C is the subgraph of (G, \mathcal{T}) induced by $E\left(C^{\prime}\right)$ and vice versa.

Clearly, $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ has no SUD- K_{5}-minor (see the right side of Fig. 15), and because of the choice of (G, \mathcal{T}), we may consider \mathcal{F}^{\prime} to be a CCD of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$. There exist two circuits H_{1}^{\prime} and H_{2}^{\prime} of \mathcal{F} each of which contains the new vertex v^{*}.

Claim 5.5.1. $\mathcal{F}^{\prime}=\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}$.

Proof of Claim 5.5.1. Assume that $\left|\mathcal{F}^{\prime}\right| \geq 3$. Then we have to show that, for every $C^{\prime} \in$ $\mathcal{F}^{\prime} \backslash\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}$, the corresponding circuit C in G is a removable circuit of (G, \mathcal{T}). It is evident that C is compatible in (G, \mathcal{T}) since $v^{*} \notin V\left(C^{\prime}\right)$. We thus want to show that $\left(G \backslash E(C),\left.\mathcal{T}\right|_{G \backslash E(C)}\right)$ has no bad cut-vertex.

To this end, it is sufficient to show that J is 2-connected where J is the subgraph of G induced by the edges of H_{1}^{\prime} and H_{2}^{\prime} and the circuit C_{k}. Note that $H_{1}^{\prime} \cup H_{2}^{\prime}$ corresponds in G the $H_{1} \cup H_{2}$ which is a pair of paths with the common end-vertices u and v. Adding the circuit C_{k}, the resulting graph J is therefore 2-connected (because $H_{1} \cup H_{2} \cup\{u v\}$ is already 2 -connected).

It now follows that every CCD of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ is a pair of hamiltonian circuits. By the minimality of (G, \mathcal{T}), the smaller transitioned graph $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ is not a counterexample to Theorem 2. Thus, we can draw the following conclusion.

Claim 5.5.2.

$$
\left(G^{\prime}, \mathcal{T}^{\prime}\right) \in\langle 2 L\rangle
$$

By Lemma 4.4, (G, \mathcal{T}) has no digon of type $\lambda>0$. However, by Claim 5.5.2 and Lemma 2.17, $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ contains at least two digons of type $\lambda>0$. Let D^{\prime} be a digon of type $\lambda>0$ in $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$. Because of Lemma 4.4, there can only be two kinds of digons in $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$; either

$$
E\left(D^{\prime}\right) \cap E\left(C_{k-1}^{\prime}\right) \neq \emptyset \neq E\left(D^{\prime}\right) \cap E\left(C_{k-2}^{\prime}\right)
$$

(which is a virtual digon), or D^{\prime} contains the vertex v^{*} and some edges of C_{1}^{\prime} and C_{k-1}^{\prime}, where $k=3$ (which is a real digon).

Let D_{1}^{\prime} be a virtual digon in $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$. Let D_{1} denote the circuit in G corresponding to D_{1}^{\prime}. Observe that $C_{k-2}^{\prime} \cap D_{1}^{\prime}=C_{k-2} \cap D_{1}$ is an edge of G and $C_{k-1} \cap D_{1}$ contains some vertices of C_{k}. Let $V\left(D_{1}^{\prime}\right)=\{y, z\}$ and let z be an inner vertex of D_{1}^{\prime}. If D_{1}^{\prime} is of type 2 , then it can be easily seen that the circuit $C_{k-1} \Delta D_{1}$ is a removable circuit in (G, \mathcal{T}). Thus, D_{1}^{\prime} is of type 1 .

Claim 5.5.3. D_{1} is an $\operatorname{ARC}(z)$.

Proof of Claim 5.5.3. Since D_{1}^{\prime} is of type 1, it is sufficient to show that $G \backslash E\left(D_{1}\right)$ remains 2-connected.

Suppose $G^{*}=G \backslash E\left(D_{1}\right)$ has a cut-vertex, x say. Then $x \in V\left(C_{k-1}\right) \cap V\left(C_{k-2}\right)$, since, for every $i \in\{1, \ldots, k\} \backslash\{k-2, k-1\}, C_{i}$ is also as a circuit in G^{*}. For, if $x \notin$ $V\left(C_{k-1}\right) \cap V\left(C_{k-2}\right)$ would hold, then $\{v, x\}$ would be a 2 -vertex-cut in G, contradicting Lemma 4.6. Note that $J=\left(C_{k-2} \cup C_{k-1}\right) \backslash E\left(D_{1}\right)$ is a pair of edge-disjoint paths with common end-vertices y and z implying that y and z are not cut-vertices of G^{*}. Thus, $x \neq y, z$ and x is a cut-vertex of J separating y and z. Let G_{1}^{*}, G_{2}^{*} be components
of $G^{*} \backslash\{x\}$ with $y \in V\left(G_{1}^{*}\right), z \in V\left(G_{2}^{*}\right)$. Let K be the subgraph of G^{*} induced by the set of circuits $\left\{C_{1}, \ldots, C_{k}\right\} \backslash\left\{C_{k-2}, C_{k-1}\right\}$, which is a connected subgraph of G^{*} since $v \in V\left(C_{1}\right) \cap V\left(C_{k}\right)$. Then it is easy to see that either $V(K) \subseteq V\left(G_{1}^{*}\right) \cup\{x\}$ or $V(K) \subseteq V\left(G_{2}^{*}\right) \cup\{x\}$, but not both. Assume that $V(K) \subseteq V\left(G_{1}^{*}\right) \cup\{x\}$. Then $\{x, z\}$ is a 2-vertex-cut of G. This contradicts Lemma 4.6 and finishes the proof of the claim.

By the choice of C_{k}, the length of D_{1} is not smaller than the length of C_{k}. Thus, by Claim 5.5.3, we have the following immediate corollary.

Claim 5.5.4.

$$
V\left(C_{k}\right) \backslash\{v, u\} \subseteq V\left(C_{k-1}\right) \cap V\left(D_{1}\right)
$$

Claim 5.5.5. $k=3$.
Proof of Claim 5.5.5. By Lemma 2.17, $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ has at least two edge-disjoint digons of types 1 or 2 . If $k \geq 4$, then every digon of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ is virtual. But, by Claim 5.5.4, at least one of them is a digon of type >0 in (G, \mathcal{T}), contrary to Lemma 4.4. Hence $k=3$.

Since $k=3,\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ has at most one virtual digon. Let D_{2}^{\prime} be a real digon in $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ and let $D_{2}=u v w u$ correspond to D_{2}^{\prime} in G.

Claim 5.5.6. D_{2} is an $\operatorname{ARC}(w)$ for some $w \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$.
Proof of Claim 5.5.6. Denote $D_{2}^{\prime}=\left\langle w, v^{*}\right\rangle$ with one edge in C_{1}^{\prime} and the other edge in $C_{k-1}^{\prime}=C_{2}^{\prime}$. By the definition of $\mathcal{T}^{\prime}\left(v^{*}\right), D_{2}^{\prime}$ is compatible at v^{*}. So w is an inner vertex of D_{2} since D_{2}^{\prime} is of type $\lambda>0 . D_{2}^{\prime}$ is extended to D_{2} in G which is the triangle vwuv. If u is also an inner vertex of D_{2}, then it is easy to see that $C_{2} \Delta D_{2}$ is a removable circuit in (G, \mathcal{T}). Now by Lemma 5.4, D_{2} is an $\operatorname{ARC}(w)$.

In the general case, by the analogous argument as we did for C_{3} and $u v$, for every $\operatorname{ARC}\left(v_{1}\right)$, say $C_{v_{1}}=v_{1} v_{2} v_{3} v_{1}$ and the edge $v_{1} v_{2}$, for some $v_{1} \in V(G)$, there exists a vertex $w \in\left(N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)\right) \backslash\left\{v_{3}\right\}$ such that $C_{w}=w v_{1} v_{2} w$ is an $\operatorname{ARC}(w)$. This completes the proof of the lemma.

Proof of Theorem 1'. We first claim that every shortest ARC is a 2-legged cornered triangle. Note that, by Definition 5.2, each ARC contains precisely one inner vertex. By Lemma 5.5(ii), every shortest ARC is a triangle. That is, every shortest ARC is a 2-legged cornered triangle.

In order to apply Lemma 4.15, we further claim that (G, \mathcal{T}) has the 2-LTEP. By Lemma 5.5(i) and (ii) again, (G, \mathcal{T}) contains some 2-legged cornered triangles. By Lemma 5.5(iii), each shortest ARC has an extension at every leg.

Thus, by Lemma $4.15,(G, \mathcal{T})$ is exactly the UD- K_{5}, which is a contradiction.
5.2. Case II. (G, \mathcal{T}) is a counterexample to Theorem 2

Lemma 5.6. (G, \mathcal{T}) has no non-hamiltonian removable circuit.

Proof. Let C be a non-hamiltonian removable circuit of (G, \mathcal{T}). Then the SUD- K_{5}-minorfree transitioned graph $\left(G \backslash E(C),\left.\mathcal{T}\right|_{G \backslash E(C)}\right)$ has a CCD \mathcal{C}. Thus, $\mathcal{C} \cup\{C\}$ is a CCD of (G, \mathcal{T}) with at least three circuits, which is a contradiction.

Lemma 5.7. (G, \mathcal{T}) has no digon of any type.

Proof. Suppose that D is a digon of type ≥ 1 in (G, \mathcal{T}). Let $\left(G^{\prime}, \mathcal{T}^{\prime}\right)=\left(G / D,\left.\mathcal{T}\right|_{G / D}\right)$. It is obvious that every CCD of (G, \mathcal{T}) induces a CCD on the smaller graph $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ because edges of D of are contained in different members of any CCD. By the same token, every CCD of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ also induces a CCD of (G, \mathcal{T}). Note that $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ remains SUD- K_{5}-minor-free. Therefore, by the minimality of (G, \mathcal{T}), the reduced graph $\left(G^{\prime}, \mathcal{T}^{\prime}\right) \in\langle 2 L\rangle$. Then, by the definition of the family $\langle 2 L\rangle$ of graphs and by the choice of D, we have $(G, \mathcal{T}) \in\langle 2 L\rangle$, which is a contradiction.

Assume that $D=\left\langle v_{1}, v_{2}\right\rangle$ is a digon of type 0 in (G, \mathcal{T}) with $E(D)=\left\{e_{1}, e_{2}\right\}$. D is a compatible circuit, but not a removable circuit (by Lemma 5.6). Hence, $\left(G \backslash E(D),\left.\mathcal{T}\right|_{G \backslash E(D)}\right)$ has a bad cut-vertex w. That is, $\{w\}$ is a 1-separator of $G \backslash E(D)$ separating $G \backslash E(D)$ into two subgraphs G_{1} and G_{2}.

Let $H_{i}=G / G_{j}$ for $i \neq j$ and let w_{i} be the contracted vertex of G_{i}, for $i=1,2$. As an eulerian minor of G, each H_{i} is SUD- K_{5}-minor free. And every CCD \mathcal{F}_{i} of $\left(H_{i},\left.\mathcal{T}\right|_{H_{i}}\right)$ has exactly two members for otherwise, a third member of \mathcal{F}_{i} not passing through the contracted vertex w_{i} is a removable circuit of (G, \mathcal{T}), for $i=1,2$. This contradicts Lemma 5.6. Hence, $\left(G_{i},\left.\mathcal{T}\right|_{H_{i}}\right)$ remains a Hamilton transitioned graph, and therefore, a member of $\langle 2 L\rangle$. By Lemma 2.17, each $\left(G_{i},\left.\mathcal{T}\right|_{H_{i}}\right)$ has at least two edge-disjoint digons of type ≥ 1, one of which is different from D and must be a digon of the original graph G. This contradicts the first part of the proof that (G, \mathcal{T}) contains no digon of type ≥ 1.

Definition 5.8. Let $\left\{H_{1}, H_{2}\right\}$ be a CCD of the Hamilton transitioned graph (G, \mathcal{T}). A circuit $C=v_{1} v_{2} \ldots v_{k} v_{1}$ is called an H_{i}-Segment-Chord Circuit with respect to v_{1} ($H_{i}-\operatorname{SgCC}\left(v_{1}\right)$ for short) if $v_{1} v_{k}$ is a chord of H_{i} and $C \backslash\left\{v_{1} v_{k}\right\}$ is a segment of H_{i} and v_{1} is an inner vertex of C (See Fig. 16).

Obviously, for every compatible hamiltonian circuit H_{i}, every transition P at a non-trivial vertex v and every chord e contained in P, there exists an $H_{i}-\operatorname{SgCC}(v)$ containing e.

Lemma 5.9. For any given decomposition $\left\{H_{1}, H_{2}\right\}$ into hamiltonian compatible circuits in (G, \mathcal{T}) a shortest $H_{i}-\mathrm{SgCC}$ is of length 3.

Fig. 16. $H_{1}-\operatorname{SgCC}\left(v_{1}\right) \quad C_{0}=v_{1} v_{2} \ldots v_{k} v_{1}$.

Proof. For $i \in\{1,2\}$, among all H_{i}-SgCC's, let $C_{0}=v_{1} \ldots v_{k} v_{1}$ be a shortest one. Without loss of generality C_{0} is an $H_{1}-\operatorname{SgCC}\left(v_{1}\right)$ (see Fig. 16). By Lemma 5.7, $k \geq 3$.

The new 4-regular graph $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ is obtained from (G, \mathcal{T}) by deleting all edges of C_{0} except $v_{1} v_{k}$, contracting $v_{1} v_{k}$ to a new vertex v^{*} and suppressing vertices of degree two. $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ remains SUD- K_{5}-minor-free. Hence, $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ does have a CCD.

Claim 5.9.1. Every CCD of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ is a pair of hamiltonian circuits.

Let \mathcal{F}^{\prime} be an arbitrary CCD of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$. There exist two circuits C_{1}^{\prime} and C_{2}^{\prime} in \mathcal{F}^{\prime} each of which contains the new vertex v^{*}.

For every circuit $C^{\prime} \in \mathcal{F}^{\prime}$, let C denote the subgraph of G induced by the edges of C^{\prime}. Note that $C_{3}=C_{3}^{\prime}$ is also a compatible circuit of (G, \mathcal{T}), for every circuit $C_{3}^{\prime} \in$ $\mathcal{F}^{\prime} \backslash\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}$ if such C_{3}^{\prime} exists. We show that C_{3} is removable in (G, \mathcal{T}) by showing that the subgraph of G induced by $E\left(C_{0}\right) \cup E\left(C_{1}\right) \cup E\left(C_{2}\right)$ is 2-connected.

Set $H=G\left[C_{1} \cup C_{2} \cup\left(C_{0} \backslash\left\{v_{1} v_{k}\right\}\right)\right]$; this is the union of three edge-disjoint paths with the common end-vertices v_{1} and v_{k}. If H has a cut-vertex x, it must separate v_{1} and v_{k}. Hence, $H \cup\left\{v_{1} v_{k}\right\}=C_{0} \cup C_{1} \cup C_{2}$ does not have any cut-vertex. Thus, C_{3} is a removable circuit of (G, \mathcal{T}), for every circuit $C_{3}^{\prime} \in \mathcal{F}^{\prime} \backslash\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}$. This contradicts Lemma 5.6. Therefore, $\mathcal{F}^{\prime}=\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}$.

Since $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ has no SUD- K_{5}-minor, by the minimality of (G, \mathcal{T}), we draw the following conclusion.

Claim 5.9.2. $\left(G^{\prime}, \mathcal{T}^{\prime}\right) \in\langle 2 L\rangle$.

Note that v^{*} is the only contracted vertex of G^{\prime} and v_{2}, \ldots, v_{k-1} are the only suppressed vertices of G^{\prime}. Since G has no digon of type $\lambda>0$ (see Lemma 5.7), for each digon D^{\prime} of G^{\prime}, the corresponding circuit D of G must contain either some of $\left\{v_{2}, \ldots, v_{k-1}\right\}$ or the edge $v_{1} v_{k}$. And if D contains $v_{1} v_{k}$, then D^{\prime} must contain the contracted vertex v^{*} and be compatible at v^{*}.

Claim 5.9.3. Let D^{\prime} be a digon of type $\lambda>0$ in G^{\prime}. Then the corresponding circuit in G is an H_{2}-SgCC.

If x is an inner vertex of $D^{\prime}=\langle x, y\rangle$, then one edge of D^{\prime} is an H_{1}-edge, another one is an H_{2}-segment. So it is an $H_{2}-\operatorname{SgCC}(x)$.

Assume that $k \geq 4$.
Claim 5.9.4. There is no real digon in G^{\prime}.
Suppose to the contrary that there is a real digon D^{\prime} in G^{\prime}. Let D be the circuit in G corresponding to D^{\prime}. Since D is not a digon in G and does not contain any vertex of $\left\{v_{2}, \ldots, v_{k-1}\right\}$, it corresponds to a $H_{2}-\operatorname{SgCC}(x)$ of length 3 . This contradicts $k \geq 4$.

Claim 5.9.5. Every virtual digon uses v^{*}.
Let $D_{1}^{\prime}, D_{2}^{\prime}$ be a pair of edge-disjoint digons of G^{\prime}; both are virtual (by Claim 5.9.4). Suppose that $v^{*} \notin V\left(D_{1}^{\prime}\right)$ and x is an inner vertex of D_{1}^{\prime}. By Claim 5.9.3, D_{1} is an $H_{2}-\operatorname{SgCC}(x)$. By the choice of C_{0} (that it is shortest), D_{1} must contain all vertices of $\left\{v_{2}, \ldots, v_{k-1}\right\}$. Thus D_{2} contains no other suppressed vertices and, therefore, D_{2}^{\prime} is a real digon contradicting Claim 5.9.4.

Claim 5.9.6. Every virtual digon is compatible at v^{*}.
Suppose that v^{*} is an inner vertex of the digon D_{1}^{\prime}. Thus, D_{1} is an $H_{2}-\operatorname{SgCC}\left(v_{1}\right)$. We will show that D_{1} is shorter than C_{0}. Since D_{1}^{\prime} and D_{2}^{\prime} are edge-disjoint, each of $D_{1}^{\prime}, D_{2}^{\prime}$ contains one transition of $\mathcal{T}^{\prime}\left(v^{*}\right)$. Hence, v^{*} must be an inner vertex of both D_{1}^{\prime} and D_{2}^{\prime}. Furthermore, the corresponding circuits D_{1}, D_{2} in G do not contain the chord $v_{1} v_{k}$, and contain some vertex of $\left\{v_{2}, \ldots, v_{k-1}\right\}$. That is, D_{1} contains at most $(k-3)$ vertices of $\left\{v_{2}, \ldots, v_{k-1}\right\}$. Thus, D_{1} is shorter than C_{0}. This contradicts the choice of C_{0}.

Claim 5.9.7. $k \leq 4$. Furthermore, each D_{i} contains precisely one vertex of $\left\{v_{2}, v_{3}\right\}$ if $k=4$.

Let $D_{1}^{\prime}, D_{2}^{\prime}$ be two edge-disjoint digons of G^{\prime}. Both are virtual, use v^{*} and are compatible at v^{*}. And it is obvious that if D_{1}^{\prime} traverses v_{n} and then D_{2}^{\prime} traverses v_{k+1}. The corresponding circuits D_{i} in G contain an H_{2}-segment each passing through at least $k-3$ vertices of $\left\{v_{2}, \ldots, v_{k-1}\right\}, i=1,2$; for otherwise, it would be shorter than C_{0}. Since G is 4-regular, $(k-3)+(k-3) \leq k-2$. Thus, $k \leq 4$ and $\left\{v_{2}, \ldots, v_{k-1}\right\}=\left\{v_{2}, v_{3}\right\}$ implying the validity of the remainder of the claim.

Claim 5.9.8. $k=3$.
If $k=4$, then, by Claim 5.9.7, let $D_{1}=v_{1} v_{4} v_{\mu} v_{n} v_{1}$ with an inner vertex v_{n} where $\mu=2$ or 3 (see Fig. 17). Furthermore, the segment $v_{4} v_{\mu} v_{n}$ is an H_{2}-segment. If $\mu=2$, then there is a triangle $v_{n} v_{2} v_{1} v_{n}$ inner at v_{n}, which is an $H_{1}-\mathrm{SgCC}\left(v_{n}\right)$ shorter than C_{0}. If $\mu=3$, then $D^{*}=\left\langle v_{3}, v_{4}\right\rangle$ induces a digon of G. This contradicts Lemma 5.7. Thus, $k=3$ and Lemma 5.9 now follows.

Fig. 17. $k=4: \quad D_{1}=v_{1} v_{4} v_{\mu} v_{n} v_{1}, \mu=2,3$.

Since $k=3$ and by Claim 5.9.2, at least one digon of $\left(G^{\prime}, \mathcal{T}^{\prime}\right)$ is a real digon, with the circuit corresponding to this digon in (G, \mathcal{T}) is a 1-legged triangle $v_{1} v_{3} w v_{1}$ with the corner w and a leg either $v_{1} w$ or $v_{3} w$.

In Lemma 5.9, we proved the existence of 1-legged triangles. In the next lemma (Lemma 5.10), we show that every 1-legged triangle has the 1-LTEP. Note that the proof of this lemma is similar to the proof of Claims 5.9.1 and 5.9.2 for Lemma 5.9.

Lemma 5.10. (G, \mathcal{T}) has the 1-LTEP.

Proof. Assume that $S_{1}=u_{1} u_{2} u_{3} u_{1}$ is a 1-legged triangle with the corner u_{1} and a leg $u_{1} u_{3}$. Let $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$ be a new 4-regular graph obtaining from (G, \mathcal{T}) as follows. Remove $u_{1} u_{2}$ and $u_{2} u_{3}$, contract $u_{1} u_{3}$ to a new vertex u^{*} and then suppress vertices of degree two. ($G^{\prime \prime}, \mathcal{T}^{\prime \prime}$) remains SUD- K_{5}-minor-free.

Claim 5.10.1. $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$ has no bad cut-vertex.
Proof of Claim 5.10.1. Suppose that p is a bad cut-vertex in $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)\left(p \neq u_{3}\right.$, otherwise u_{1} is a cut-vertex of G contrary to G is 2 -connected). Thus, $\left\{u_{2}, p\right\}$ is a 2 -vertex-cut in (G, \mathcal{T}). Let $G_{1}^{\prime \prime}$ and $G_{2}^{\prime \prime}$ be the components of $G \backslash\left\{u_{2}, p\right\}$ such that $\left\{u_{1}, u_{3}\right\} \subseteq V\left(G_{1}^{\prime \prime}\right)$.

Remove $V\left(G_{2}^{\prime \prime}\right)$ and identify u_{2} and p to a new vertex q to obtain a new transitioned 4-regular graph $\left(G^{\prime \prime \prime}, \mathcal{T}^{\prime \prime \prime}\right)$ which is admissible (since $u_{1} u_{3} \in E(G)$,) and SUD- K_{5}-minorfree. Thus $\left(G^{\prime \prime \prime}, \mathcal{T}^{\prime \prime \prime}\right)$ has a CCD. It is easily seen that every CCD of $\left(G^{\prime \prime \prime}, \mathcal{T}^{\prime \prime \prime}\right)$ is a pair of hamiltonian circuits (a removable circuit in $\left(G^{\prime \prime \prime}, \mathcal{T}^{\prime \prime \prime}\right)$ not containing q is also a removable circuit in $(G, \mathcal{T}))$. By the choice of $(G, \mathcal{T}),\left(G^{\prime \prime \prime}, \mathcal{T}^{\prime \prime \prime}\right) \in\langle 2 L\rangle$. By Lemma 2.17, $\left(G^{\prime \prime \prime}, \mathcal{T}^{\prime \prime \prime}\right)$ has two edge-disjoint digons of type >0. Since (G, \mathcal{T}) has no digon of any type, $\left\{u_{1} u_{2}, u_{1} p\right\} \in \mathcal{T}\left(u_{1}\right)$. However, $\left\{u_{1} u_{2}, u_{1} u_{3}\right\} \in \mathcal{T}\left(u_{1}\right)$ (see definition of a 1-legged triangle with corner u_{1}); this contradicts $p \neq u_{3}$. Now Claim 5.10.1 follows.

Hence, $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$ does have a CCD.
Claim 5.10.2. $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right) \in\langle 2 L\rangle$.
Let $\mathcal{F}^{\prime \prime}$ be an arbitrary CCD of $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$. There exist two circuits $C_{1}^{\prime \prime}$ and $C_{2}^{\prime \prime}$ in $\mathcal{F}^{\prime \prime}$ each of which contains the new vertex u^{*}.

For every circuit $C^{\prime \prime} \in \mathcal{F}^{\prime \prime}$, denote bz C the subgraph of G induced by the edges of a circuit $C^{\prime \prime}$. Note that C_{3} is also a compatible circuit of (G, \mathcal{T}), for every circuit $C_{3}^{\prime \prime} \in \mathcal{F}^{\prime \prime} \backslash\left\{C_{1}^{\prime \prime}, C_{2}^{\prime \prime}\right\}$.

Let H be the subgraph of G induced by the edges contained in C_{1}, C_{2} and $\left\{u_{1} u_{3}\right\}$, which is the union of three edge-disjoint paths with the common end-vertices u_{1} and u_{3}; and it is 2-connected. Hence, $S_{1} \cup C_{1} \cup C_{2}$ is 2-connected. Thus, C_{3} is a removable circuit of (G, \mathcal{T}), for every circuit $C_{3}^{\prime \prime} \in \mathcal{F}^{\prime \prime} \backslash\left\{C_{1}^{\prime \prime}, C_{2}^{\prime \prime}\right\}$ which contradicts Lemma 5.6. Therefore, $\mathcal{F}^{\prime \prime}=\left\{C_{1}^{\prime \prime}, C_{2}^{\prime \prime}\right\}$.

Note that $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$ has no SUD- K_{5}-minor, thus by the minimality of (G, \mathcal{T}), we have $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right) \in\langle 2 L\rangle$ which finishes the proof of the claim.

By Lemma 2.17, $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$ has at least two edge-disjoint digons of type $\lambda>0$. Since (G, \mathcal{T}) has no digon by Lemma 5.7, for each digon $D^{\prime \prime}$ of $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$, the corresponding circuit D in G must contain either u_{2} or the edge $u_{1} u_{3}$.

There is at most one D in (G, \mathcal{T}) with $u_{2} \in V(D)$ corresponding to a digon in $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$; otherwise, (G, \mathcal{T}) would contain a digon, contrary to Lemma 5.7. Let $D^{\prime \prime}=\left\langle u^{*}, w\right\rangle$ be a digon of type >0 in $\left(G^{\prime \prime}, \mathcal{T}^{\prime \prime}\right)$ containing the contracted vertex u^{*} with edges $\left\{e_{1}, e_{2}\right\}$ (such digon must exist because of the preceding argument). Because of Lemma $5.7 u^{*}$ is not an inner vertex of $D^{\prime \prime}$. Its corresponding triangle D in G containing the edge $u_{1} u_{3}$ and therefore $\left\{e_{1}, e_{2}\right\}$ is not a transition in $\mathcal{T}\left(u^{*}\right)$. Therefore, the only inner vertex of $D^{\prime \prime}$ is w. Thus (G, \mathcal{T}) has the 1-LTEP.

Proof of Theorem 2. By Lemma 5.10, (G, \mathcal{T}) has the 1-LTEP. Thus by Lemma 4.16, either (G, \mathcal{T}) is the UD- K_{5} or it has a CCD of size 3 , which is a contradiction. Now Theorem 2 follows.

References

[1] B. Alspach, L. Goddyn, C.-Q. Zhang, Graphs with the circuit cover property, Trans. Amer. Math. Soc. 344 (1) (1994) 131-154.
[2] B. Alspach, C.-Q. Zhang, Cycle covers of cubic multigraphs, Discrete Math. 111 (1-3) (1993) 11-17, Graph theory and combinatorics (Marseille-Luminy, 1990).
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008.
[4] R. Diestel, Graph Theory, fourth edition, Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010.
[5] M.N. Ellingham, Petersen subdivisions in some regular graphs, in: Proceedings of the Fifteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, La., 1984, vol. 44, 1984, pp. 33-40.
[6] G. Fan, C.-Q. Zhang, Circuit decompositions of Eulerian graphs, J. Combin. Theory Ser. B 78 (1) (2000) 1-23.
[7] H. Fleischner, Eulersche Linien und Kreisüberdeckungen, die vorgegebene Durchgänge in den Kanten vermeiden, J. Combin. Theory Ser. B 29 (2) (1980) 145-167.
[8] H. Fleischner, Eulerian graphs, in: Selected Topics in Graph Theory, 2, Academic Press, London, 1983, pp. 17-53.
[9] H. Fleischner, A. Frank, On circuit decomposition of planar Eulerian graphs, J. Combin. Theory Ser. B 50 (2) (1990) 245-253.
[10] H. Fleischner, personal communication, 1990's.
[11] J. Hägglund, A. Hoffmann-Ostenhof, Construction of permutation snarks, J. Combin. Theory Ser. B 122 (2017) 55-67.
[12] A. Itai, M. Rodeh, Covering a graph by circuits, in: Automata, Languages and Programming, Fifth Internat. Colloq., Udine, 1978, in: Lecture Notes in Comput. Sci., vol. 62, Springer, Berlin-New York, 1978, pp. 289-299.
[13] H.-J. Lai, C.-Q. Zhang, Hamilton weights and Petersen minors, J. Graph Theory 38 (4) (2001) 197-219.
[14] P.D. Seymour, Sums of circuits, in: Graph Theory and Related Topics, Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977, Academic Press, New York-London, 1979, pp. 341-355.
[15] P.D. Seymour, K. Truemper, A Petersen on a pentagon, J. Combin. Theory Ser. B 72 (1) (1998) 63-79.
[16] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Aust. Math. Soc. 8 (1973) 367-387.
[17] W.T. Tutte, Personal correspondence with H. Fleischner, July 22, 1987.
[18] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
[19] C.-Q. Zhang, Hamiltonian weights and unique 3-edge-colorings of cubic graphs, J. Graph Theory 20 (1) (1995) 91-99.
[20] C.-Q. Zhang, Cycle covers (I) - minimal contra pairs and Hamilton weights, J. Combin. Theory Ser. B 100 (5) (2010) 419-438.
[21] C.-Q. Zhang, Cycle covers (II) - circuit chain, Petersen chain and Hamilton weights, J. Combin. Theory Ser. B 120 (2016) 36-63.

[^0]: Research supported by FWF Project P27615-N25, and by National Science Foundation of USA DMS-1700218.

 E-mail address: cqzhang@math.wvu.edu (C.-Q. Zhang).

