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Let G be a two-connected graph. A family F of circuits of G is called a circuit
double cover (CDC) if each edge of G is contained in exactly two circuits of F. In
this paper, we show that if a simple cubic graph G (G # K,) of order n has a CDC,
then G has a CDC containing at most n/2 circuits. This result establishes the
equivalence of the circuit double cover conjecture {due to Szekeres, Seymour)
and the small circuit double cover conjecture (due to Bondy) for any cubic graph.
Actually, a stronger result is obtained in this paper for all loopless cubic graphs.
Another result in this paper establishes an upper bound on the size of any CDC of
a cubic graph. ¥ 1994 Academic Press. Inc.

1. INTRODUCTION

We follow the terminology and notations of [BM]. Unless otherwise
stated, the graphs considered in this paper are connected and loopless
(parallel edges are allowed).

1.1. Circuir Double Covers

Let G be a connected cubic graph of order »n. If G has a family F of
circuits such that each edge of G is contained in exactly two circuits of F,
then F is called a circuit double cover or, for short, a CDC, of G.
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The following conjectures are well known. The main result of this paper
will establish their equivalence.

Conjecture A (Szekeres [SZT, Seymour [S], or see [JI, J27). Every
two-connected cubic graph has a circuit double cover.

Conjecture B (Bondy [B1]). Every two-connected simple cubic graph
G of order n has a circuit double cover consisting of at most r/2 circuits
if G#K,.

In the following theorem, we establish an upper bound on the size of any
CDC of a cubic graph.

THEOREM 1. If F is a circuit double cover of a connected cubic graph G
of order n, then |F| <n/2 +2.

1.2. Small Circuit Double Covers

A loopless cubic graph with two vertices and three parallel edges is
denoted by K& and a complete graph with four vertices is denoted by X|,.

A connected graph with four vertices, two of which are of degree one and
two of which are of degree three, is called a ¢-graph (see Fig. 1). Let G be
a loopless cubic graph. A blistering of G is constructed by recursively
replacing edges by ¢-graphs (see Fig. 2). For the sake of convenience, we
say that a graph G is a blistering of itself (replacing edges by ¢-graphs zero
times). Figure 2 illustrates this concept with some examples: a blistered
K and a blistered K,. (Note that this definition of a blistered graph is
different from the definition originally given in [AGZ]).

A CDC F of a connected cubic graph G is called a small circuit double
cover or, for short, an SCDC, of G, provided that

(i) |F)<n/2+2,if G is a blistered K{";

FIGURE 1
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FIGURE 2

(i) [F|<n/2+1,if G is a blistered K;

(iii}) |F|<n/2, otherwise.

By the definition of blistered graphs, G= K}’ and G = K, are included in
(i) and (ii), respectively. Note that the definition of a small circuit double
cover is an extension of the original definition of SCDC introduced by
Bondy [B1]. Let Iy be the set of all two-connected cubic graphs, let ¢y
be the set of all connected cubic graphs admitting a CDC and [ s¢pc be the
set of all connected cubic graphs admitting an SCDC. Obviously,

I'senc ST cpc €10

The following problem is a refinement of Conjecture B.

Conjecture B'. Every two-connected cubic graph has a small circuit
double cover (that is, {'scpc=173)

Previous Results [LYZ]. (i) If every two-connected cubic graph has a
circuit double cover, then every two-connected cubic graph has a small
circuit double cover (that is, if [cpe= 175 then Isepe =13).

(ii}) Every two-connected cubic graph containing no subdivision of
the Petersen graph has a small circuit double cover. (It was proved in
[AZ] that every such graph has a circuit double cover.)

(ili) Every three-edge-colorable cubic graph has a small circuit
double cover. (The case of hamiltonian cubic graphs was originally proved

in[Y])

Some related results about the small circuit double cover also can be
found in [B1, B2, LH, SK1], etc. The following problem was proposed in
[LYZ] and is solved in this paper. One of the techniques that we use here
is similar to one employed by Goddyn [G] in showing that the girth of a
smallest counterexample to Conjecture A is at least seven.
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THEOREM 2. If a two-connected cubic graph G has a circuit double cover,
then G has a small circuit double cover (that is, I'scpc =1 ¢pe).

1.3. Strong Embedding of Cubic Graphs

A graph is said to be embedded in a surface S (a closed two-manifold)
if it can be drawn in S so that edges intersect only at their common
vertices. If G is embedded in a surface S, then we regard G as a topological
subspace of § and each component of S\G is called a face of the
embedding. An embedding of G in S is a strong-embedding if every face is
homeomorphic to the open disk and each face boundary is a circuit of G.
(A strong embedding is also sometimes called a circular embedding, sce
[J1,12].) As indicated by Jaeger [J1], when G is a cubic graph, every cir-
cuit double cover F is the system of face boundaries of a strong embedding
in some surface S. The surface S is said to be induced by the CDC F.
A recent result due to Richter, Seymour, and Siran [RSS] asserts that
every three-connected planar graph has a strong embedding in some non-
spherical surface. For cubic graphs, the following corollary of Theorem 2
generalizes this result, assuming the truth of the CDC conjecture.

COROLLARY 3.  Every two-connected cubic simple graph G has a strong
embedding in some non-spherical surface if and only if G has a CDC.

Proof. Let F be an SCDC of G and let S be the surface induced by F.
Denote the Euler characteristic of S by £(S). Then by Euler’s formula,

V(G| + |F] = [E(G)] = k(S).

Since G 1s cubic |E(G)] =3|V(G)|/2 and by Theorem 2, |F} <|V(G)|/2 + 1,
unless G is a blistered K§. Tt follows that k(S)<1 if G is simple. The
surface S must thus be non-spherical. ||

1.4. Small circuit 2k-Covers of Cubic Graphs

A two-edge-connected graph G is said to be circuit 2k-coverable if G has
a family F of circuits such that each edge of G is contained in precisely 2k
circuits of F. This family of circuits is called a circuit 2k-cover of G; when
k=1, we have a circuit double cover. Unlike the circuit double cover
conjecture, which is still open, all other circuit 2k-cover problems (for
k = 2) have been solved. The circuit four-cover theorem is due to Bermond,
Jackson, and Jaeger (see [BJJ]) and the circuit six-cover theorem is due to
Fan (see [F]). As mentioned in [F], the existence of a circuit 2k-cover (for
k>=2) of any two-edge-connected graph is immediately implied by the
above two results. The small circuit double cover conjecture for cubic
graphs is verified in Theorem 2, assuming the existence of a circuit double
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cover. The result below generalizes Theorem 2 to 2k-coverings. Because of
the theorems of Bermond, Jackson, and Jaeger and Fan, the assumption of
the existence of a 2k-cover for a graph can be dropped. By imitating the
proof of Theorem 2 and by dropping the assumption that G has a circuit
double cover, we obtain the following theorem.

THEOREM 4. Let G be a two-edge-connected cubic graph with n vertices,
let k=2 be an integer, and let SC, (G) denote the number of circuits in a
smallest circuit 2k-cover of G. Then

(i) SC,(G)<k(n/2+2), if G is a blistered K
(1) SCG)<k®/2+1), if G is a blistered K,;
(i) SC(G)<k(n/2), for all other graphs.

2. CircuiT DouBLE CoVERS OF CuBic GRAPHS

For any connected cubic graph G admitting a CDC, Theorem 2
establishes an upper bound on the size of a smallest CDC of G (a max-min
problem), while the following theorem provides an upper bound for all
CDCs of G.

THEOREM 1. If Fis a CDC of a connected cubic graph G of order n, then
|F|<n/2+2.

Proof. Tt is well known that the circuit space of a connected graph with
n vertices and m edges has dimension m — n + 1. The addition operation in
this vector space is the symmetric difference (binary sum) of edge sets of
the circuits. The CDC F is a subset of the circuit space of G. Hence the
rank 7(F) of F (the maximum number of independent circuits in F) satisfies
the inequality

3n n
Fys—-— l==+1.
r(F) 3 n+ 2+

Now we claim that r(F)=|F|— 1. For otherwise, there is a proper
subset F’ of F such that the binary sum Y .., E(C)= . The circuits of
F’ induce a proper subgraph H of G, and each edge of H is covered twice
by F'. Let e be any edge of G\E(H) with at least one end in H. Since ¢
is cubic, any circuit in G containing ¢ must use at least one edge in H. This
is a contradiction since ¢ must be covered twice by the CDC F. Hence
|F]—1<n/2+1,and so |[F|<n/2+2. |
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An Alternative Proof (L. Goddyn and B. Richter, personal communica-
tion). [Each circuit of F can be considered as the boundary of a disk. The
graph G is therefore embedded in a surface S established by joining all
these disks at the edges of G. Since the Euler characteristic of S is not
greater than two, by Euler’s formula, we have that

[V(G)| +|F| — |E(G) <2.

Note that |V(G)| =n and |E(G)| =3n/2 since G is cubic. Therefore, no
circuit double cover F of G contains more than #/2 + 2 circuits. |

Actually, the alternative proof gives a generalization of Theorem 1.

THEOREM 1'. If F is a CDC of a connected cubic graph G of order n,
then |F| <n/2+ k(S), where S is the surface induced by F and k(S) is the
Euler characteristic of the surface S.

3. SMaLL CircuiT DousLE Covers OF CuBiC GRAPHS

If G is a loopless graph in which the degree of each vertex is either two
or three, then the cubic graph that is homeomorphic to G is called the
background graph of G and is denoted by B(G) (see Fig. 3). A rtrivial cut X
of a graph G is an edge-cut of G such that one component of G\X is a
single vertex.

THEOREM 2. If a two-connected cubic graph G has a circuit double cover,
then G has a small circuit double cover (that is, I'scpye = epe)

Proof. Assume that I'gcpe # I'epe. Let G be a smallest graph in
I'epe\sepe. Since K8 and K, belong to Igepe, G#KY, K, Let
WV(G)| =n.

G B (G)

FIGURE 3
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FIGURE [-1

I. G has no two-cut. Assume that G has a two-cut. Choose a two-cut
X={xx', yy'}, where G, and G, are two components of G\X and
x, ye V(G,), x', y' € V(G,) such that G, is as small as possible. Note that
x#y, xX'#y' since G is cubic and has no cut-edge (see Fig.1-1). Let
H,=G,u{e} and H,=G,u {e'}, where ¢ and ¢’ are new edges joining x
and p, x' and y’, respectively (see Fig. I-2). If G is not simple then, by the
choice of X, [V(G,)|=2 and H, =K. Let F be a CDC of G. Let C, and
C, be the two circuits of F containing xx" and yy’. Let C be the segment
of C; of G, between x and y, together with the edge e, i=1, 2. Then

(CeF:C#C,, C,and E(C)nE(H,) # @} u{C}, Ch}

is a CDC of H,. That is, H,el'¢pc. By the inductive hypothesis,
H, € I'scpe. Similarly, H, € lNgepe.

Let F* and F* be SCDCs of H, and H,, respectively. Let D}, Dy
{respectively, D5, D7) be the circuits of F* (respectively, F*) containing
the new edge e = xy (respectively, e’ = x"y’).

Let D'=D{4D4C, and D"=D]uDj4C,, where C, is a circuit
xx'y’yx and 4 is the symmetric difference. Then

F¥*=[FroF}u{D, D"}\{D}, D}, D3, D}

FIGURE 1-2
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is a CDC of G consisting of |F*| + [F}*| —2 circuits. Note that |V(G)| =
[V(H))| +|V(H;)|, so F** is an SCDC of G if |F*| + |F5¥| <n/2 4+ 2. Thus,
by the assumption, we have that |F*| + |F*| 2 n/2+ 3. That is, one of H,,
H, must be a blistered K’ and the other must be either a blistered K"
or a blistered K,. It is evident that any blistered K" has at least two
distinct pairs of parallel edges. If H, (for i=1 or 2) is a blistered K%, then
one pair of parallel edges of H, must originally exist in G and therefore G
is not simple. By the choice of the edge-cut X and the component G, we
can see that |V(G,)| =2 and H,= K. Thus G is a blistered graph of H,.
Furthermore, G is a blistered K. (respectively, a blistered K,) if H, is a
blistered K§ (respectively, a blistered K,). Note that blistering one edge
adds two vertices and requires exactly one more circuit to double cover the
new edges. Therefore the CDC F** constructed above is an SCDC of G.
This is a contradiction. Thus G has no two-circuit and is simple.

II. G has no non-trivial three-cut. Suppose that G has a non-trivial three-
cut X ={xx’, yy, zz'} with two non-trivial components G, and G, (see
Fig. I1-1). Since G is cubic and has no two-cut, X is a matching of G. Let
H, (respectively, H,) be the graph constructed from G by contracting all
edges in G, (respectively, G,), and denote the new vertex in H, (respec-
tively, H,) by w, (respectively, w,) (see Fig. II-2). Let F be a CDC of G.
Let C,, be the circuit of F containing the edges xx’ and yy'; the circuits C .
and C,. of F are defined similarly. Let C',, (respectively, C'. and C!.) be
the circuit constructed from C . (respectively, C.. and C,.) by contracting
all edges in G,. Then

[C:CeFand E(C)S E(G))}u {C,,, C\., C.}

is a CDC of H,. By the inductive hypothesis, H, € I'scp. Similarly,
H,e I'scpe. Let F¥ and Ff be SCDCs of H, and H,, respectively. Let D',
be the circuit of F* containing the edges xw, and yw,; define D', D’.
similarly. Let D7, be the circuit of F,* containing the edges x'w, and YW
define D, D}. similarly. Let

D,vy = [D,u v D'\/\ U { xx’, )'_V, § ]\\\ { XWa, YWa, .YIW, ) _V’W| };
define D, D,. similarly. Then
Fx*= [F]* 1 FZ* - {D,\‘y9 D.\':, D\Z}]\{D,\TDQ D.(r:9 D;'za D} D.::a D’y,:}

Xy

is a CDC of . Note that G is simple and X is a three-matching. Thus both
H, and H, are simple and neither H, nor H, is a blistered K. Therefore,
by the inductive hypothesis,

V(H H
IFI*IS—————l (2‘)'+1, |F2*|<———'V(22)'+1.
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FiGURe II-1

Since |F**|=|F* +|F*| —3 and |V(G)|=|V(H,)|+ |V(H,)| =2, F** is
an SCDC of G, a contradiction.

Hence we can see that G is triangle-free.

III. No CDC of G contains a four-circuit. Let F be a CDC of G. Assume
that F has some circuit of length four, say C =uvwx. Let u'u, v'v, w'w, and
x'x be four edges of E(G)\E(C). Note that since G has no three-circuit,
either {u'u, v'v, w'w, x'x} is a four-matching or (without loss of generality)
u'=w'. If ' =w’, then G has a three-cut consisting of vv’, xx’ and the edge
incident with #'=w’ other than w#' and ww’. Since G has no non-trivial
three-cut, we have that v'=x" and therefore G =K, ; for which the
theorem holds. So we assume that {u'w, v'v, w'w, x’x} is a four-matching
of G. Let C, be the circuit of F containing «'uvv’, C, be the circuit of F
containing v'vww’, Cy be the circuit of F containing w'wxx’, and C, be the
circuit of F containing x'xuu’ (see Fig. I11-1).

Case 1. C,#C, (or, symmetrically, C,# C;). Let D=Cy4C. Then
[F{C,, C}]u{D} is a CDC of H=G\{ux} (see Fig.III-2). Since the
background graph B(H )€ "¢, by the inductive hypothesis, B(H ) e I'scpc-
Let F* be an SCDC of B(H). Since G is triangle-free, B(H ) is simple and
not a blistered graph. Furthermore, B(H ) is neither K" nor K, because
B(H) contains at least six vertices {«’, v, v', w, w', x'}. Thus F* consists
of at most |V(B(H))|/2 = (n—2)/2 circuits.

FIGURE 11-2
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FiGure 1I1-1

Subcase 1. F* has a circuit D, containing the path w'uvwxx’' (see
Fig. 111-3). Let D, =D, 4C. Then [F*\{D,}]u {D,, C'} is an SCDC of G,
a contradiction.

Subcase 2. The path v'uvwxx’ does not belong to any circuit of F*.
Then the circuits of F* containing v or w must be of the following four
types E,, E,, E,, E, (see Fig l11-4): E, contains u'uvww’, E, contains
v'uvt’, E4 contains x'xwor’, and E, contains x'xww'.

(i) If E,#E,, let E'=FE,AC, E}=E,AC (note that E,#E,
because E,u E, has a vertex of degree three). Then (see Fig. Ill-5)
[F*\{E,, E;}]JU {E}, Ey} is an SCDC of G.
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(i) If E,=E,, then the union of the circuit £, and its chord ux
can be covered by two circuits £ and E, such that EAE,=FE,
and EsnEg={ux}. Thus [F*\{E,}Ju{Es, E,} is an SCDC of G,
a contradiction.

Case 2. C,=C, and C, = C, (refer to Fig. I1I-1). We claim that either
w'e', wx'¢ E(G) or v'w', x'u' ¢ E(G). Without loss of generality, assume to
the contrary that v'w’, w'x’ € E(G). Then the edges {uw’, v'v", x'x"}, where
v" e NN {e,w'}, x"eN(x'\{x,w'}, form a three-edge-cut of G (see
Fig. II1-6). Thus G is a three-cube since G has no non-trivial three-cut. Tt
is very easy to check that the theorem holds for the three-cube.

Suppose that u'v’, w'x'¢ E(G). Then the background graph of

H'=G\{ux,vw} is simple. Let D=C,4C, a union of circuits. Then

FiGure I11-4
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[FA\{Cy, C}1u{D} is a CDC of H'=G\{ux,vw}. By the inductive
hypothesis, the background graph B(H') e I'scpe. Let F** be an SCDC of
B(H’). Note that B(H') contains at least four vertices {u’, v, w', x'}. If
B(H’)=K,, then the graph G is illustrated in Fig. 111-7; an SCDC can
easily be found in this graph. Since B(H) is simple, we may thus assume
that B(H') is neither a blistered K* nor a blistered K,. Hence |F**| <
[V(B(H'))|/2=n/2—-2. Let D,, D, be the circuits of F** containing the
path w'uvv’ and D,, D, be circuits of F** containing the path w'wxx’
(see Fig. I1-8).

v
u’
v
u v
X w
x' w'
x"

FiGURe HI-6
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Subcase 1. {D,,D,}n{D;,D,}=&. Let D=D,AC and Dj=
D, AC (see Fig. I1-9). Then [F**\{D,, D;}1u {D\, Dy} is an SCDC
of G, a contradiction.

Subcase 2. {D,, D,} n{Dy, D,} #J. Without loss of generality,
suppose that D, = D;. The symmetric difference of D, and C is the union
of at most two circuits since D,\C has only two segments. Thus
[F**\{D,}]u {D,4C, C} (see Fig. I11-10) is an SCDC of G consisting of
at most n/2 circuits.

IV. No CDC of G contains a five-circuit. Assume that the CDC F of G
contains a circuit C of length five. Let C=x,x,---x5x, and y; be the
neighbor of x; other than x; | and x,,, {(mod 5). Since G is triangle-free,

FIGURE V-]
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{xy, ., x5} and {p,, .., ys} are disjoint. Denote the circuit of F containing
the path y,x;x,,, v.,1 (mod 5) by C, (see Fig. IV-1).

(i) Since Fisa CDC of G, C;#C,, fori=1,..,5 (mod 5). Hence
{C,, .., Cs} is a set of at least three distinct circuits, and one element of it
must be distinct from all others.

(1) By (i), we assume, without loss of generality, that Cs# C,, C,,
C,, and C,. Let D= C4C (see Fig. 1V-2). Then [F\{Cs, C}]Ju{D}isa
CDC of H=G"{x,xs}. By the inductive hypothesis, B(H)e Iscp¢- Let
F* be an SCDC of B(H).

(iii) We claim that |F*| <|V(B(H))|/2. By the inductive hypothesis,
we only need to show that B(H) is a simple graph other than K" and K,.
Since G is triangle-free, B(H) must be simple and {{y,, .., ys}| = 3. Thus
B(H ) has at least six distinct vertices (x,, X3, X4, Jy, - Vs}. This excludes
the possibility that B(H)= K,, so our claim holds.

(iv) Since {x,p,:1<i<5} is an edge-cut, every circuit in F*
contains an even number of edges in {x,y,:1 <i<5} and so the edge set
{x,¥,:1<i<5} of His covered by at most five distinct circuits of F*. Let
D, and D, be the circuits of F* containing the path y,x;x, and let F, and
E, be the circuits of F* containing y, x,x,.

We claim that D,, D,, E,, E, are distinct. It is trivial that D, # D, and
E,#FE,. Assume that D, = E,|. Then the union of the circuit D, and its
chord xgx; can be covered by two circuits D’ and D” such that
D'nD"={xsx,} and D'AD"=D,. Thus [F*\{D,}1u {D’, D"} is an
SCDC of G. This contradicts the assumption that G is a counterexample to
the theorem.



192 LAI, YU, AND ZHANG

v
v Y2
M
LI}
1
E;yw4 D
r
'o' e
o ™ ~§
”"’c .’!‘ ~.c.
Pt . heS
DM X - hd
R 2 Se The E v
Y E; R 1 3
-1 ......... * . Seod
. = mmme— e
---------- xl 'ﬁ---.D---——--
Xqr 2
E; 31 [ 1
N
L 4
P |
L 4
Xg Xa, ,
Sm .- - —--- s
Dy o el RS
R D
»o SO
.' " D ‘;QQ
vs o~ D, 2 % Yy
B
FIGURE V-3

(v) For i=1,2, let D, contain the path ysxsx,---x, ), for some
d;e{2,3,4} (note d;#1 by (iv)) and let E, contain the path
YiX X5+ X, p,, for some e,e{2, 3,4} It can be seen that d, #d,, for
otherwise the edges x, y,, X, , (X, are covered twice by the circuits
D, D, and the edge x,x, , cannot be covered by any circuit of F*,
Similarly, e, #¢,. Since d,, d,, e,, e, {2, 3,4}, we assume, without loss
of generality, that d, =e,.

(vi) Case 1. d,=e,=3. The coverage of all edges incident with
Xy, .., Xs by F*in H can be easily determined and is illustrated in Fig. I'V-3.
The circuit D in Fig. IV-3 contains the path y,x,x;x, y,. Obviously D
is distinct from each of D,, D,, E,, and E, since it intersects all of them.
Let D\ =D,4C and E|=E 4C. Then [F*\{D,,E,}Ju{D|, E} is an
SCDC of G, a contradiction.

(vii) Case 2. d, = e, = 2 (or, symmetrically, d, = ¢, = 4). The
coverage of all edges incident with x,, .., xs by F* in H is illustrated in
Fig. IV-4, The circuit D in Fig.IV-4 contains the path yyx;x,y,.
Obviously the circuit D is distinct from each of D,, D,, and E,, while it
is possible that D=FE,. As in Case |, let D1=D,4C and E\=E, AC. If
D#E,, then [F*\{D,,E,}]u{D}, E}} is an SCDC of G, a contra-
diction. Assume that D=FE,. Then E\=E AC=[E\{x,X5, X3X4} ]V
{x,%x3, X4Xs5, Xsx,}. Thus F**=[F¥\{D, E,}Ju{D}, E|} is a CDC of
H'=G\{x3x,} (see Fig. 1V-5). Here E{=E AC is the union of at most
two circuits. And |F**|=|F* <(n—2)2 if E| is a single circuit, or
|F**| = |F* +1<n/2 if E is the union of two disjoint circuits.
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FIGURE 1V-4

(a) If E{ is the union of two disjoint circuits £* and E**, where E*
contains the path y,x,x;x, y, and E** contains the path y,x,x; y;, let
D*=E*AC and D**=E,AC. Then [F**\{E* E,}]u {D* D**} is an
SCDC of G.

(b) If EY is a single circuit, then the union of the circuit £7 and its
chord x,x, can be covered by two circuits D and D°° such that
DD ={x;3x,} and D°4AD**=E|, and [F**\{E|}Ju {D" D°°} is
an SCDC of G. Both contradict the assumption that G has no SCDC.

FiGURE V-5
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V. Note that the number of edges of the cubic graph G is 3n/2, so the
total length of all circuits of F is 3n. That the length of each circuit of F
is at least six implies that |F| <n/2. This is a contradiction and completes
the proof of this theorem. ||
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