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Let G be a k-regular graph of order 2n such that k > . Hilton (J. Graph Theory,
9 (1985), 193-196) proved that G contains at least | k/3 | edge-disjoint 1-factors.
Hilton’s theorem is improved in this paper that G contains at least | k/2 | edge-
disjoint 1-factors. The following result is also proved in this paper: Let G be a
2-connected, k-regular, non-bipartite graph of order at most 3k —3 and x, y be a
pair of distinct vertices. If G\ { x, v} is connected, then G contains an (x, y)-Hamilton
path.  © 1992 Academic Press, Inc.

We use the notations of [BM]. Let G = (V, E) be a graph with vertex set
V and edge set E. A p-factor of a graph G is a p-regular spanning subgraph.
Let G be a k-regular graph of order 2n and {p,,..,p,} a set of positive
integers such that p,+ --- +p,=k. If H,, .., H, are edge-disjoint regular
spanning subgraphs of G with degree p,,.., p,, respectively, then
{H,..,H,k} is called a (p,, ..., p,)-factorization of G.

The following theorem was proved by Hilton:

THEOREM A ([H] or See [Z]). Let G be a k-regular graph of order 2n.
(i) If k=n, then G contains at least | n/3 | edge-disjoint 1-factors. (ii) Let
D1y Py be odd positive integers and p,, ., .., p, be even positive integers

such that p,+ --- +p,=k=n and s<|nf3]; then G is (py,..p,)
factorizable.

In this paper, we prove the following theorem which improves the
theorem of Hilton.
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FACTORIZATION OF REGULAR GRAPHS 75

THeEOREM B (The Main Theorem). Every k-regular graph of order 2n
contains at least | k/2 | edge-disjoint 1-factors if k = n.

Let D be a subgraph of G and u a vertex of G. The set of vertices in D
adjacent to u is denoted by N,(u). Let P=v,---v, be a path of G. We
denote

NN u)={v, e V(P):v;e Np(u)}
and
Ny '(u)={v,_,€ V(P):v,€ Np(u)}.

Let H be a subgraph of G and X, ¥ a pair of disjoint vertex subsets of G.
The set of edges of H joining X and Y is denoted by E (X, ¥) and the
number of edges in the set E,(X, Y) is denoted by e,(X, Y). A graph G is
called Hamiltonian connected if G contains an (x, y)-Hamilton path for
every pair of vertices x and y of G.

The following results are basic lemmas in the proof of the main theorem.

Lemma 1 (Tutte [T]). If G is a graph containing no 1-factor, then G
must have a vertex subset S such that the number of odd components of G\S
is greater than the cardinality of S.

LemMMA 2 (Wallis [W, or see [Pi]). Let G be a d-regular graph of even
order which contains no 1-factor. Let S be a vertex subset of order s such
that the number r of odd components of G\S is greater than s, and r* the
number of odd components of order at least d+ 1 of G\S. Then

1. r=smod 2;

2. r=zs+2;

3. r"=3 whens=1;
4. V(G =zs+r+drt.

LemMma 3 (Dirac [D]). If G is a graph of order at most 26 and é is the
minimum degree of G, then G contains a Hamilton cycle.

Lemma 4 (Lovasz [LL 10.241]). If G is a graph of order at most 26 — 1
and & is the minimum degree of G, then G is Hamiltonian connected.

LemMma 5 (Jung [J]). Every 3-connected, k-regular, non-bipartite graph
of order at most 3k — 1 is Hamiltonian connected.
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LEMMA 6 Let G be a 2-connected graph with a 2-vertex-cut and mini-
mum degree d. Let x,y be a pair of distinct vertices such that G\{x, y} is
connected. If G is of order at most 36 —3, then G contains an (x,y)-
Hamilton path.

Proof. Let {u,v} be a 2-vertex-cut of G. Since the minimum degree of
G is 6 and G contains at most 38 — 3 vertices, G\ {%, v} has only two com-
ponents. For each 2-cut {u, v} of G, let C!, and C?, be the compontents of

G\{u, v}, and H,, the subgraph of G induced by C' U {u, v} (for i=1, 2).
Since each component of G\{u, v} contains at least §—1 vertices and
|V(G)| <36 — 3, we have that 6 > 3. If § =3, then G is a graph H or H+wv
(see Fig. 1). It is easy to see that the lemma is true in this case. Thus we
assume that

5>4

and therefore each component of G\ {u, v} contains at least 3 vertices. It is
also evident that the lemma is true if both subgraphs H) and H2 are
complete for some 2-cut {u, v} of G. Let G be a 2-connected graph and
{x, v} a pair of vertices of G such that the following hold:

(1) the minimum degree of G is § and |V(G)| <36 —3,

(2) G has a 2-cut,

(3) G\{x, y} is connected,

(4) subject to (1), (2), and (3), G has no (x, y)-Hamilton path,

(5) subject to (1), (2), (3), and (4), |E(G)| is as large as possible.

I For each 2-cut {u, v} of G, we claim that C,=C] and C,=C? are
cliques. Assume that there are a pair of non-adjacent vertices w' and w” in
C,. By the choice of the graph G, the graph G+ w'w” contains an (x, y)-
Hamilton path P, where the edge w'w” must an edge somewhere in P.

Let H;=H! (i=1,2). It is easy to see that

S+1<|V(H,) <262

for i=1, 2 because all neighbors of each vertex of C, are contained in H,.

u

v
FIGURE 1



FACTORIZATION OF REGULAR GRAPHS 77

Since G does not contain an (x, y)-Hamilton path,

NZ'(w)nNy(w")= & (see Fig. 2)

and

do(w') +do(w") < [V(Q) +1

for any segment Q of p\ {w’,w"}. Since w' and w" belong to the same com-
ponent C,(p=1 or 2), N(w') and N(w")< V(H,). For any {ij}={1,2},
P\[{w', w"} U V(C,)] consists of at most three segments in H,. Thus

dy (W) +dy, (W) S| VIHNW, W'} +3<20 - 1.

This contradicts the fact that dj (w') +dy (w") = 20.

I. Byl C. and C2, are cliques for each 2-cut {u, v} of G. We consider
the following two representative cases.

Case 1. {x,y}< H!, for some 2-cut {u, v} of G.

It is evident that H2, contains a (u, v)-Hamilton path P, since CZ is a
clique and G is 2-connected. Since G is 2-connected again, there are a pair
of disjoint paths P, and P, joining {x, y} and {w, v} in G. Obviously both
P, and P, are contained in H). Choose P, and P, such that
V(P +|V(P,) is as large as possible. If F(H! )\(P,u P,)=(J, then
P,u P,u P, is an (x, y)-Hamilton path of G. This contradicts the assump-
tion. Thus, we assume that V(H} )\(P, v P,)# &. Since C., is a clique,
[V(P)n V(CL) <1 and |F(P,)n V(C),)l <1. This implies that {x, y} is
a 2-cut of G, a contradiction.

Zany

Vi ovs , .

¥ i vi+l W W y
or

% W' own Vi Vitl y

L

FIGURE 2
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Since x and y cannot be in the same subgraph H = G(C' U {u, v}) for
each i=1, 2 and each 2-cut {u, v}, we have that

(i) neither x nor y belongs to any 2-cut of G,
(ii) x and y belong to different components of G\ {u, v} for any 2-cut

{u, v}.

Hence, the following case is the only remaing case.

Case 2 z,eC!

uy

and z,e C2, for {z,,z,} = {x, y}.

By (i), G\{z,} is 2-connected and there are two distinct vertices it it
in C,\{z;} such that a,,e V(C! ) N(w) for each we {u, v} and each
i=1,2. Since each C,, (i=1,2) is a clique, for each we {u, v} and each
C,, (i=1,2), there is a (z,, w)-Hamilton path Q' =z, ---a,,w in the
subgraph of G induced by C., U {w}. Furthermore, uv is not an edge of G
for otherwise QU Q7L {uv} is an (x, y)-Hamilton path of G.

If {ay,, a5} is a 2-cut of G, then {u,v} belong to a component of
G\{a,,, a,} which, by 1, it is clique. This contradicts that uv is not an edge
of G. Thus, G\{a,,, a,,} is connected. Since |V(C?,)| = 3, there is a vertex
b in C}\{a,,, a,,} adjacent to either u or v. Without loss of generality, let
be N(u). Since C;, is a clique, let @, =z, ---bu and Q,=va,, ---a,u be

uv

two paths in H2, such that V(Q,)n V(Q,)= {u} and V(Q,)u V(Q,)=

V(H.,). Then Q,uQ,u Q! is a (z,, z,)-Hamilton path in G. This contra-
dicts the assumption and completes the proof. |

By applying Lemma 5 and Lemma 6, we have the following theorem
which was originally proved in [ZZ].

Tueorem C (Zhang and Zhu [ZZ]). Let G be a 2-connected, k-regular,
non-bipartite graph of order at most 3k —3 and x,y be a pair of distinct
vertices. If G\{x, y} is connected, then G contains an (x, y)-Hamilton path.

LEMMA 7. Let G be a graph of order at most 26 —4 and & be the
minimum degree of G.

(1) If u,v,w, x are four distinct vertices of G, then there are two
disjoint paths P, and P, joining u and v, w and x, respectively, in G and the
union of P, and P, spans G.

(ii) If u, v, w are three distinct vertices of G, then there is a Hamilton
path in G\{w} joining u and v.
Proof. (i) If uve E(G), then let G' =G\ {u, v}. If un¢ E(G), then there is
a vertex ze [N(u) n N(v)]\{w, x} because

IN@M\{w, x}| + [N\ {w, x}| 226 — 4> |[V(G\{u, v, w, x }.
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Let G"=G\{u,v,z}. By Lemma 4, both G’ and G" are Hamiltonian
connected and there exists a Hamilton path P, joining w and x in G’ or G”.
The path P, joining u and v is wv if uve€ E(G) or uzv if uv ¢ E(G).

(i) By Lemma 4, it is easy to see that G* =G\ {w} is Hamiltonian
connected. |

LEMMA 8. Let G be a 2-connected d-regular grah of order at most 3d — 4
and V' a vertex subset of G of order 3. If G is not a bipartite graph, then
there is a Hamilton path of G joining two vertices of V.

Proof. By Theorem C, it is sufficient to show that there must be two
vertices x and y of ¥’ such that G\{x, y} is connected.

Let V' = {v,, v5, v;}. Assume that G\ {v,, v;} is disconnected for any pair
of i, je {1, 2,3}. Let C,, C, be two disconnected parts of G\ {v,, v,} and
D\, D, be two disconnected parts of G\ {v,, v;}. Without loss of generality,
let v;eC, and v,e D,. Then G\ V' has three disconnected parts C,, D,,
and C,n D,. Obviously,

Nw)=[Cu {vy, v} 1\ {u} for ueV(C)),
Nu)s [Dyv {v,, v5} 1\ {u} for we V(D,),
and
Nw)s [(ConDy)u (v, vy, 05} N u} for wueV(C,nD)).
Then |V(C,)| =d—1, [V(D,)| =d—1 and |V(C,nD,)| =d—2. That is,
IV(G)| = V(C)I+ V(D) + IV(Con D)) + [{vy, 03, 03} 2 3d — 1.

This contradicts that |V(G) <3d—4. |

LemMa 9 (Peterson [P]). Every 2k-regular graph contains k edge-
disjoint 2-factors.

The Proof of The Main Theorem. Let {F|, .., F,} be a maximum set of
disjoint 1-factors in G. Let h=k—1t and H=G\E(F, U --- UF,) which is
an h-regular graph. The proof of this theorem is by contradiction. Suppose
that 1t <| k/2 |. Thus H is of order at most 4k — 4.

An even 2-factor is a 2-factor such that each component of it is a cycle
of even length. Obviously, any even 2-factor is a union of two disjoint
I-factors. We claim that the following statement (*) holds for any
F,e{F,,..,F}:

Hu F, contains no even 2-factor. (*)
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Assume that Hu F, contains an even 2-factor which is the union of two
disjoint 1-factors F’ and F". We can replace F, of {F,, .., F,} by F', F"
and obtain a bigger set of disjoint I-factors in G. This contradicts the
choice of {F,, .., F,}.

By Lemma 1, let S be a smallest vertex subset of order s such that the
number of odd components if H\S is greater than s. Let C,, .., C, be the
odd components of H\S. Here r>s. If C is a component of H\S and v is
a vertex of C, then N(v)= [V(C)u S]\{v}. By the h-regularity of H,
[M(C)w S| =h+1 and hence

IV(CW=h—s+1

for any component C of H\S. By Lemma 2, we must have that

O V(Cf)‘ Zs+(h+1—s)

i=1

25+ (h+1—s)(s+2)

4h—4>|V(H) =5+

That is (s—2)(s —h +2) = 2. Therefore either s<1 or s=h — 1.
If s>h—1, then

\V(H)| =s+r+hr
(by (4) of Lemma 2)
> (h—1)+ (s+2)+3h
(by (2) and (3) of Lemma 2)

>(h—1)+((h—1)+2)+ 3k
= 5h.

This contradicts that |V(H)| <4h—4. So S must be either a single vertex
or an empty set.

Case One. s=1. Let S={w}. If H is disconnected, then each compo-
nent of H is of even order because of the choice of S. So H\S has at least
four components. Since each component of H\S is of order at least h, H
contains at least 44+ 1 vertices and this contradicts that |V(H)| < 4h—4.
Therefore, H must be connected in this case. Moreover, H(C U §) is not a
cligue for any component C of H\S and hence |V(C)| =h+ 1. Thus H \S
has exactly three components, C,, C,, and C;, each of which is of odd
order and for any i=1, 2, 3,

IV(CHI < [VH)| —[S] = [V(C)I = [V(Cy)



FACTORIZATION OF REGULAR GRAPHS 81
(where j, j' #1i)
<|V(H) —=1-2(h+1)
< |V(H) —2h-3.

Since |V(H)|/2 <2h—2, we have that

|V(H)|

NGl <—;

—5<2h-17 (1)

for any i=1, 2, 3.

Since |C,| is odd, e, (C,, V\V(C,)) is odd for each F,e{F,,..F,}.
We claim that there is F, e {F,, .., F,} such that e, (C,, V\V(C,))=3.
If not, then e.(C,, V\V(C)))=1 for any F,e{F,,..,F,} and
2uep(Cy, PA(C)))=t<h+1<|V(C)|. So there must be a vertex v of C,
such that the neighbor of v in each F, is contained in C,, that is all vertices
adjacent to v in G are contained in V(C,)u {w}. But this implies that

e =k V‘zH”.

This contradicts that |V(C,)| <|V(H)|/2—5 and therefore, our claim
holds. Without loss of generality, let e (C,, V\V(C,))=3.

Assume that ¢, (C,, C;)#0 for each j=2,3. Let x,; e N(w)n V(C,),
X3 € N(w)n V(C,), and x,, x5, X,5x3, be edges of F| where x; e V(C,) for
i=1,2. By Lemmas 3 and 4, for i=1, 2, 3, let P, and Q,; be a pair of dis-
joint path and cycle in H(C,) such that either P, is an (x,;, x;;)-Hamilton
path of H(C;) and @, is empty if x,, # x,,, or P, is a single vertex x,, and
Q, is a Hamilton cycle in H(C)\{x;,} if x;; = x;,. Thus we obtain an even
2-factor

{PLUP,UP U {wx,y, W-‘falaxzzv‘fln-\'uxzz}, 0,, 05}

in Hu F; which contradicts the statement (*). So either e,,(C,, C;) =0 or
ex(Cy, C3)=0. See Fig. 3.

Let e;(Cy, C,)=0. Then ex(C,, C;)=22. If ey(Cy, C3)#0, then the
proof is the same as the case of e, (C,, C;)#0 and e (C,, C;)#0 by
exchanging C, and C;. So we assume that e, (C;, C,) =0. Let wy,, be and
edge of H joining w and C,. Since C, is of odd order, e, (C,, V\V(C,)) #0
and hence e, (C,, w)#0. Let wy,, be an edge of F, joining w and C,, and
V11 V3, and y,, ys, pair of distinct edges of F, joining C, and C; (where
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w
FIGURE 3
Y€ V(C;) for j=1, 2). By Lemma 4, let R, be a (y,,, ¥,,)-Hamilton path in
H(C;) for i=1, 2, 3. Then we obtain an even 2-factor
{Ry VR {y11y31, Yiyah Ry {wyy, wypt}
in Hu F, and this contradicts the statement (*). See Fig. 4.

Case Two. s=0. Since each component is of order at least 7+ 1 and
|V(H)|<4h—4, H has at most three components. By Lemma 2, two
components must be of odd order. Thus

h+1<|V(C)| <3h—5 (2)

for any component C of H. The degree # of H must be an even integer
because H has some odd components.

If Cis an odd component of order at most |V(H)|/2 of H, we claim
that there is F,e{F,,.. F,} such that e (C, V\V(C))=3. We have
that e, (C, V\F(C)) is odd since |V(C)| is odd. Suppose that
er(C, VAV(C))=1 for every F, e {F,, .., F,}. Then

V(O Zh+1>1=F ex(C, V\W(C))

FIGURE 4
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and there is a vertex v of C such that the neighbor of v in each F, is
contained in C. Hence, all vertices adjacent to v in G are contained in C

and

!V(C)|2k+1>IV(2H)|

which contradicts the assumption that |V(C)| < |V(H)|/2.

Subcase 1. H has two components and both components are blocks.

Let C, and C, be two odd components of H. Without loss of generality,
let [V(Cy)|<|V(H)|/2 and F, a I-factor such that e, (C,, V\V(C,))=
en(Cy, Cy) 23 and u,v,€ E(C,, C,) for p=1, 2, 3. Note that

V(H
h+1:~:\V(CI)|s| (2 ”szh—z
and
V(H
| (2 )lslV(C2)|<3h~5.

Since H(C,) is regular and of odd order, H(C,) cannot be a bipartite
graph. By Lemma 8, there is a Hamilton path P, joining two vertices of
{v,,vs, 03} in H(C,) and without loss of generality, let P, join v, and v,.
By Lemma 4, let P, be a (u,, u,)-Hamilton path in H(C,). Then Hu F,
contains a Hamilton cycle P, U P, U {u,v,, u,v,} which is an even 2-factor
and contradicts the statement (*).

Subcase 2. H has two components and one component is not a block.

Let C, and C, be two components of H. Without loss of generality, let
C, be a non-block component and w a cut vertex of C,. C,\{w} can have
only two components because |V(C,)| <3h—35. Let D, and D, be the two
components of C,\{w}. Since H is h-regular and H(D; U w) is not a clique
for i=1,2, |[V(C))|, |V(D,)l, and |V(D,) =h+1. Hence, for any
{4, 4,47} ={C,. D,, Dy},

Al < |V(H)| = [{w}| = 14| = |4"|
<|V(H)—1-2h-2
(since |V(H)|/2<2h—2)

V(H
<|V(H)|—5—¥
v

<2h-T.
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Since the degree 4 of H is an even number and the number of odd degree
vertices in the subgraph H(D,uw) is even, ey(D;, w) is even for i=1, 2.
Let x,;, x, be two vertices of D, adjacent to w in H for i=1,2. Since
[V(C))I < |V(H)|/2, let F, be a 1-factor such that en(Cy, V\V(C)))=3.

If e,(Cy, D;)#0 for both i=1 and 2, then let Y1z, and y,z, be two
edges of F, joining C, and D, and D, where Y1, y2,€C, and z;e D, for
i=1,2. Without loss of generality, assume that xy#z; for i=1,2. By
Lemma 4, let P; be an (x;;, z;)-Hamilton path in H(D;)for i=1,2 and P,
be a (y,, y,)-Hamilton path in H(C,). Then Hu F, contains a Hamilton
cycle Pou Py U Pyu {x W, X5 W, ¥12y, ¥,2,}. This contradicts that H U F,
contains no even 2-factor. See Fig. 5.

So we assume that en(Cy,Dy) 22 and e,(C,,D,)=0. Let
Ep(Cy, Dy)={uy,v,):p=12,. ..}

(i) If [V(D,)| is odd, then by Lemma 4, let Q, be a (uy,u,)-
Hamilton path in H(C,), Q, a (v, v,)-Hamilton path in H(D,), and Q, an
(X2, X2 )-Hamilton path in H(D,). Thus

{QOUQJ v {uy vy, szz}: Q20 {x;w, XpW}}

is an even 2-factor in H U F, and this contradicts the statement (*). See
Fig. 6.

(ii) If |F(D,)| is even and en(C,w)#0 then let wu,weF,.
Without loss of generality, assume that vy #X;;. By Lemma 4, let R,
and R, be (uy, u,)- and (v,, x,,)-Hamilton paths in H(C,) and H(D,),
respectively; and let R, be a Hamilton cycle in H(D,). Then {RyL R, U

{#ow, wxyy, uy0,}, Ry} is an even 2-factor in Hu F, and this contradicts
(*) again. See Fig. 7.

FIGURE 5
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w

FIGURE 6

w

FIGURE 7

w

FiGure 8
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(iii) If [V(D,)| is even and er(C,,w)=0, then e (Cy, D))=
ep(Cy, VAV(Cy))=3. When {v, 05,03} {xyy, xn} # &, let v,=x,,
be a vertex in this intersection and v,€ {v, v,, v3}\{x;, X;2}. By (ii)
of Lemma7, let §'=v, and let S” be a (v,, x;,)-Hamilton path in
H(D,)\{v,}. When {v,, v, 03} n {x1, x5} = &, by (i) of Lemma 7, let S’
and S” be a pair of disjoint paths joining v, and x,,, v, and x,,, respec-
tively, in H(D,). By Lemma 3 and Lemma 4, let S, be a (u, u,)-Hamilton
path in H(C,) and S, be a Hamilton cycle in H(D,). Then H U F, contains
an even 2-factor {S,uS"US"U {u vy, uyv,, wxy,, wx;,}, S,} and this
contradicts (*). See Fig. 8.

Subcase 3. H has three components, C,, C,, and C;.
Let C, and C, be the odd components and C, the even component

of H. Obviously,
h+1<|V(C))
SIWVH) =V(C)I=V(Cp)l - for j,j #1
<|V(H)| —2(h+1)

\V(H)|
2

<|V(H)| - 4

_VH)
T2

<2h—6

4

for any i=1,2,3. We claim that there is an F,e {F,, .., F,} such that
ep(Cy, VAV(C,)) 23 and e, (C,, V\V(C,)) 2 3. If not, we have that either
ep(C, VAV(C))=1 or ep(C,, V\V(C,))=1 for any F,e{F,,..,F}
because | and C, are odd components and er(Ci VAV(C))) is odd for
i=1,2. Let

Ii={p:es(Cy, V\V(C))=1}
and

I={p: er(Cyy, VAV(C,)) = 13

Here {1, ...t} =1, v, and t<|I|| + |I,|. The graph H,= Hu Weg F) is
(h+|I,|)-regular for i=1, 2. Since ep(Cy, VAV(C,))=1 for any pel, and

ICHIZh+1>t2|L] =}, er(Cy, V\K(C))),

Held,
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there must exist a vertex v of C, such that e, (v, V\V(C,))=0 for each
pel,. Hence all vertices adjacent to v in H, are contained in C, and
[V(C)| = h+|1,| + 1. Similarly |V(C,)| = h+ |I,| + 1. But

V(G5 = V() = [V(C)| = [V(Co)l
2%k —(h+ L] +1)—(h+ || +1)
=2k—2h—|I,| —|L,| -2

<2k—2h—1t-2
=k—h-2
(as h+t=k)
<h—-2

(as k< 2h). This contradicts that |V(C;)| =4+ 1 and our claim holds.

Without loss of generality, let F, be a 1-factor such that
er(Cy, VAV(Cy)) =3 and e (C,, V\V(C,)) 2 3. If e (C,, C;) 22, then let
edges x;;X,;, X12X5 € Ef(Cy, C,). By Lemmas 3 and 4, let P; be an
(x;1, x;)-Hamilton path in C, for i=1, 2, and let P, be a Hamilton cycle
in C;. Thus {P, U P, U {x1;X5;, X12X2 }, P3} is an even 2-factor in Hu F,
and this contradicts the statement (*). See Fig. 9.

So we have that er(C,,C;)<1 and hence e;(C,,C;)>2 and
er(Cy, C3) 22, Let edges zy, X3y, 212X3,€ Ex(Cy, C3) and 25y, 255V 50 €
Ep(C,, C3). By Lemma 4, et O, be a (z;,z,)-Hamilton path in C; for
i=1,2. By (i) of Lemma 7 let Q;, Q, be a pair of disjoint (x;,;, y5,)- and
(X33, ¥32)-paths of C;. Thus the Hamilton cycle Q,uQ,uQ;uQ,u
{211X31, Z12X33, Z21V315Z2aVa2} 18 an even 2-factor in HUF,. This
contradicts the statement (*) and concludes our main theorem. See
Fig. 10. |

By applying Lemma 3, the main theorem can be slightly improved.

COROLLARY 1. Let G be a k-regular graph of order 2n and n <k. Then
G contains at least | n/2 |+ (k — n) disjoint 1-factors.

) (o

FIGURE 9
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(D

FiGure 10

By applying Lemma 9, we have the following corollary:

COROLLARY 2. Let G be a k-regular graph of order 2n and n<k. Let
D1, D, be odd positive integers and p, . ,, .., p, be even positive integers
such that p,+ --- +p,=k. If

S“BJ*”‘_")’

then G is (py, .., p,)-factorizable

Note Added in Proof. Theorem B was recently improved by H. Li for
large degree k (see [LH]).
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