Factorizations of Regular Graphs

CUN-QUAN ZHANG

Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506

AND

Yong-Jin Zhu

Institute of System Science, Academia Sinica, Beijing 100080, China

Communicated by the Editors

Received July 27, 1987

Let G be a k-regular graph of order 2n such that $k \ge n$. Hilton (J. Graph Theory, 9 (1985), 193–196) proved that G contains at least $\lfloor k/3 \rfloor$ edge-disjoint 1-factors. Hilton's theorem is improved in this paper that G contains at least $\lfloor k/2 \rfloor$ edge-disjoint 1-factors. The following result is also proved in this paper: Let G be a 2-connected, k-regular, non-bipartite graph of order at most 3k-3 and x,y be a pair of distinct vertices. If $G \setminus \{x,y\}$ is connected, then G contains an (x,y)-Hamilton path. © 1992 Academic Press, Inc.

We use the notations of [BM]. Let G = (V, E) be a graph with vertex set V and edge set E. A p-factor of a graph G is a p-regular spanning subgraph. Let G be a k-regular graph of order 2n and $\{p_1, ..., p_r\}$ a set of positive integers such that $p_1 + \cdots + p_r = k$. If $H_1, ..., H_r$ are edge-disjoint regular spanning subgraphs of G with degree $p_1, ..., p_r$, respectively, then $\{H_1, ..., H_r\}$ is called a $(p_1, ..., p_r)$ -factorization of G.

The following theorem was proved by Hilton:

THEOREM A ([H] or See [Z]). Let G be a k-regular graph of order 2n. (i) If $k \ge n$, then G contains at least $\lfloor n/3 \rfloor$ edge-disjoint 1-factors. (ii) Let $p_1, ..., p_s$ be odd positive integers and $p_{s+1}, ..., p_r$ be even positive integers such that $p_1 + \cdots + p_r = k \ge n$ and $s \le \lfloor n/3 \rfloor$; then G is $(p_1, ..., p_r)$ -factorizable.

In this paper, we prove the following theorem which improves the theorem of Hilton.

THEOREM B (The Main Theorem). Every k-regular graph of order 2n contains at least $\lfloor k/2 \rfloor$ edge-disjoint 1-factors if $k \ge n$.

Let D be a subgraph of G and u a vertex of G. The set of vertices in D adjacent to u is denoted by $N_D(u)$. Let $P = v_1 \cdots v_p$ be a path of G. We denote

$$N_P^{+1}(u) = \{v_{i+1} \in V(P) : v_i \in N_P(u)\}$$

and

$$N_P^{-1}(u) = \{v_{i-1} \in V(P) : v_i \in N_P(u)\}.$$

Let H be a subgraph of G and X, Y a pair of disjoint vertex subsets of G. The set of edges of H joining X and Y is denoted by $E_H(X, Y)$ and the number of edges in the set $E_H(X, Y)$ is denoted by $e_H(X, Y)$. A graph G is called *Hamiltonian connected* if G contains an (x, y)-Hamilton path for every pair of vertices x and y of G.

The following results are basic lemmas in the proof of the main theorem.

Lemma 1 (Tutte [T]). If G is a graph containing no 1-factor, then G must have a vertex subset S such that the number of odd components of $G \setminus S$ is greater than the cardinality of S.

Lemma 2 (Wallis [W], or see [Pi]). Let G be a d-regular graph of even order which contains no 1-factor. Let S be a vertex subset of order s such that the number r of odd components of $G \setminus S$ is greater than s, and r^+ the number of odd components of order at least d+1 of $G \setminus S$. Then

- 1. $r \equiv s \mod 2$;
- 2. $r \ge s + 2$;
- 3. $r^+ \ge 3$ when $s \ge 1$;
- 4. $|V(G)| \ge s + r + dr^+$.

Lemma 3 (Dirac [D]). If G is a graph of order at most 2δ and δ is the minimum degree of G, then G contains a Hamilton cycle.

LEMMA 4 (Lovász [LL 10.24]). If G is a graph of order at most $2\delta - 1$ and δ is the minimum degree of G, then G is Hamiltonian connected.

Lemma 5 (Jung [J]). Every 3-connected, k-regular, non-bipartite graph of order at most 3k-1 is Hamiltonian connected.

LEMMA 6 Let G be a 2-connected graph with a 2-vertex-cut and minimum degree δ . Let x, y be a pair of distinct vertices such that $G\setminus\{x,y\}$ is connected. If G is of order at most $3\delta-3$, then G contains an (x,y)-Hamilton path.

Proof. Let $\{u,v\}$ be a 2-vertex-cut of G. Since the minimum degree of G is δ and G contains at most $3\delta-3$ vertices, $G\setminus\{u,v\}$ has only two components. For each 2-cut $\{u,v\}$ of G, let C^1_{uv} and C^2_{uv} be the components of $G\setminus\{u,v\}$, and H^1_{uv} the subgraph of G induced by $C^i_{uv}\cup\{u,v\}$ (for i=1,2). Since each component of $G\setminus\{u,v\}$ contains at least $\delta-1$ vertices and $|V(G)| \leq 3\delta-3$, we have that $\delta \geqslant 3$. If $\delta=3$, then G is a graph H or H+uv (see Fig. 1). It is easy to see that the lemma is true in this case. Thus we assume that

$$\delta \geqslant 4$$

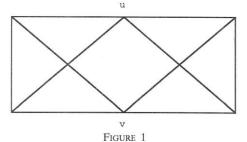
and therefore each component of $G\setminus\{u,v\}$ contains at least 3 vertices. It is also evident that the lemma is true if both subgraphs H^1_{uv} and H^2_{uv} are complete for some 2-cut $\{u,v\}$ of G. Let G be a 2-connected graph and $\{x,y\}$ a pair of vertices of G such that the following hold:

- (1) the minimum degree of G is δ and $|V(G)| \leq 3\delta 3$,
- (2) G has a 2-cut,
- (3) $G\setminus\{x,y\}$ is connected,
- (4) subject to (1), (2), and (3), G has no (x, y)-Hamilton path,
- (5) subject to (1), (2), (3), and (4), |E(G)| is as large as possible.
- I. For each 2-cut $\{u, v\}$ of G, we claim that $C_1 = C_{uv}^1$ and $C_2 = C_{uv}^2$ are cliques. Assume that there are a pair of non-adjacent vertices w' and w'' in C_1 . By the choice of the graph G, the graph G + w'w'' contains an (x, y)-Hamilton path P, where the edge w'w'' must an edge somewhere in P.

Let $H_i = H_{uv}^i$ (i = 1, 2). It is easy to see that

$$\delta + 1 \le |V(H_i)| \le 2\delta - 2$$

for i = 1, 2 because all neighbors of each vertex of C_i are contained in H_i .



Since G does not contain an (x, y)-Hamilton path,

$$N_Q^{+1}(w') \cap N_Q(w'') = \emptyset$$
 (see Fig. 2)

and

$$d_{Q}(w') + d_{Q}(w'') \leq |V(Q)| + 1$$

for any segment Q of $p \setminus \{w', w''\}$. Since w' and w'' belong to the same component $C_{\mu}(\mu = 1 \text{ or } 2)$, N(w') and $N(w'') \subseteq V(H_{\mu})$. For any $\{i, j\} = \{1, 2\}$, $P \setminus [\{w', w''\} \cup V(C_i)]$ consists of at most three segments in H_i . Thus

$$d_{H_u}(w') + d_{H_u}(w'') \le |V(H_u) \setminus \{w', w''\}| + 3 \le 2\delta - 1.$$

This contradicts the fact that $d_{H_{\mu}}(w') + d_{H_{\mu}}(w'') \ge 2\delta$.

II. By I, C_{uv}^1 and C_{uv}^2 are cliques for each 2-cut $\{u, v\}$ of G. We consider the following two representative cases.

Case 1.
$$\{x, y\} \subseteq H^1_{uv}$$
 for some 2-cut $\{u, v\}$ of G.

It is evident that H^2_{uv} contains a (u,v)-Hamilton path P_0 since C^2_{uv} is a clique and G is 2-connected. Since G is 2-connected again, there are a pair of disjoint paths P_1 and P_2 joining $\{x,y\}$ and $\{u,v\}$ in G. Obviously both P_1 and P_2 are contained in H^1_{uv} . Choose P_1 and P_2 such that $|V(P_1)|+|V(P_2)|$ is as large as possible. If $V(H^1_{uv})\backslash (P_1\cup P_2)=\varnothing$, then $P_0\cup P_1\cup P_2$ is an (x,y)-Hamilton path of G. This contradicts the assumption. Thus, we assume that $V(H^1_{uv})\backslash (P_1\cup P_2)\ne\varnothing$. Since C^1_{uv} is a clique, $|V(P_1)\cap V(C^1_{uv})|\leqslant 1$ and $|V(P_2)\cap V(C^1_{uv})|\leqslant 1$. This implies that $\{x,y\}$ is a 2-cut of G, a contradiction.

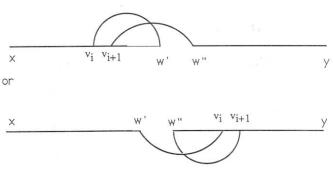


FIGURE 2

Since x and y cannot be in the same subgraph $H_{uv}^i = G(C_{uv}^i \cup \{u, v\})$ for each i = 1, 2 and each 2-cut $\{u, v\}$, we have that

- (i) neither x nor y belongs to any 2-cut of G,
- (ii) x and y belong to different components of $G \setminus \{u, v\}$ for any 2-cut $\{u, v\}$.

Hence, the following case is the only remaing case.

Case 2
$$z_1 \in C^1_{uv}$$
 and $z_2 \in C^2_{uv}$ for $\{z_1, z_2\} = \{x, y\}$.

By (i), $G \setminus \{z_i\}$ is 2-connected and there are two distinct vertices $\{a_{iu}, a_{iv}\}$ in $C^i_{uv} \setminus \{z_i\}$ such that $a_{iw} \in V(C^i_{uv}) \cap N(w)$ for each $w \in \{u, v\}$ and each i=1,2. Since each C^i_{uv} (i=1,2) is a clique, for each $w \in \{u,v\}$ and each C^i_{uv} (i=1,2), there is a (z_i,w) -Hamilton path $Q^i_w = z_i \cdots a_{iw} w$ in the subgraph of G induced by $C^i_{uv} \cup \{w\}$. Furthermore, uv is not an edge of G for otherwise $Q^i_u \cup Q^i_v \cup \{uv\}$ is an (x,y)-Hamilton path of G.

If $\{a_{2u}, a_{2v}\}$ is a 2-cut of G, then $\{u, v\}$ belong to a component of $G\setminus\{a_{2u}, a_{2v}\}$ which, by I, it is clique. This contradicts that uv is not an edge of G. Thus, $G\setminus\{a_{2u}, a_{2v}\}$ is connected. Since $|V(C_{uv}^2)| \ge 3$, there is a vertex b in $C_{uv}^2\setminus\{a_{2u}, a_{2v}\}$ adjacent to either u or v. Without loss of generality, let $b\in N(u)$. Since C_{uv}^2 is a clique, let $Q_1=z_2\cdots bu$ and $Q_2=va_{2v}\cdots a_{2u}u$ be two paths in H_{uv}^2 such that $V(Q_1)\cap V(Q_2)=\{u\}$ and $V(Q_1)\cup V(Q_2)=\{u\}$. Then $Q_1\cup Q_2\cup Q_v^1$ is a (z_1,z_2) -Hamilton path in G. This contradicts the assumption and completes the proof.

By applying Lemma 5 and Lemma 6, we have the following theorem which was originally proved in [ZZ].

THEOREM C (Zhang and Zhu [ZZ]). Let G be a 2-connected, k-regular, non-bipartite graph of order at most 3k-3 and x, y be a pair of distinct vertices. If $G\setminus\{x,y\}$ is connected, then G contains an (x,y)-Hamilton path.

Lemma 7. Let G be a graph of order at most $2\delta-4$ and δ be the minimum degree of G.

- (i) If u, v, w, x are four distinct vertices of G, then there are two disjoint paths P_1 and P_2 joining u and v, w and x, respectively, in G and the union of P_1 and P_2 spans G.
- (ii) If u, v, w are three distinct vertices of G, then there is a Hamilton path in $G \setminus \{w\}$ joining u and v.

Proof. (i) If $uv \in E(G)$, then let $G' = G \setminus \{u, v\}$. If $uv \notin E(G)$, then there is a vertex $z \in [N(u) \cap N(v)] \setminus \{w, x\}$ because

$$|N(u)\setminus\{w,x\}|+|N(v)\setminus\{w,x\}|\geqslant 2\delta-4>|V(G)\setminus\{u,v,w,x\}|.$$

Let $G'' = G \setminus \{u, v, z\}$. By Lemma 4, both G' and G'' are Hamiltonian connected and there exists a Hamilton path P_2 joining w and x in G' or G''. The path P_1 joining u and v is uv if $uv \in E(G)$ or uzv if $uv \notin E(G)$.

(ii) By Lemma 4, it is easy to see that $G^* = G \setminus \{w\}$ is Hamiltonian connected.

Lemma 8. Let G be a 2-connected d-regular grah of order at most 3d-4 and V' a vertex subset of G of order 3. If G is not a bipartite graph, then there is a Hamilton path of G joining two vertices of V'.

Proof. By Theorem C, it is sufficient to show that there must be two vertices x and y of V' such that $G \setminus \{x, y\}$ is connected.

Let $V' = \{v_1, v_2, v_3\}$. Assume that $G \setminus \{v_i, v_j\}$ is disconnected for any pair of $i, j \in \{1, 2, 3\}$. Let C_1, C_2 be two disconnected parts of $G \setminus \{v_1, v_2\}$ and D_1, D_2 be two disconnected parts of $G \setminus \{v_1, v_3\}$. Without loss of generality, let $v_3 \in C_2$ and $v_2 \in D_1$. Then $G \setminus V'$ has three disconnected parts C_1, D_2 , and $C_2 \cap D_1$. Obviously,

$$\begin{split} N(u) &\subseteq [C_1 \cup \{v_1, v_2\}] \setminus \{u\} & \text{for } u \in V(C_1), \\ N(u) &\subseteq [D_2 \cup \{v_1, v_3\}] \setminus \{u\} & \text{for } u \in V(D_2), \end{split}$$

and

$$N(u) \subseteq [(C_2 \cap D_1) \cup \{v_1, v_2, v_3\}] \setminus \{u\}$$
 for $u \in V(C_2 \cap D_1)$.

Then $|V(C_1)| \ge d-1$, $|V(D_2)| \ge d-1$ and $|V(C_2 \cap D_1)| \ge d-2$. That is,

$$|V(G)| = |V(C_1)| + |V(D_2)| + |V(C_2 \cap D_1)| + |\{v_1, v_2, v_3\}| \ge 3d - 1.$$

This contradicts that $|V(G)| \leq 3d-4$.

LEMMA 9 (Peterson [P]). Every 2k-regular graph contains k edge-disjoint 2-factors.

The Proof of The Main Theorem. Let $\{F_1, ..., F_t\}$ be a maximum set of disjoint 1-factors in G. Let h = k - t and $H = G \setminus E(F_1 \cup \cdots \cup F_t)$ which is an h-regular graph. The proof of this theorem is by contradiction. Suppose that $t < \lfloor k/2 \rfloor$. Thus H is of order at most 4h - 4.

An even 2-factor is a 2-factor such that each component of it is a cycle of even length. Obviously, any even 2-factor is a union of two disjoint 1-factors. We claim that the following statement (*) holds for any $F_{\mu} \in \{F_1, ..., F_t\}$:

$$H \cup F_{\mu}$$
 contains no even 2-factor. (*)

Assume that $H \cup F_{\mu}$ contains an even 2-factor which is the union of two disjoint 1-factors F' and F''. We can replace F_{μ} of $\{F_1, ..., F_t\}$ by F', F'' and obtain a bigger set of disjoint 1-factors in G. This contradicts the choice of $\{F_1, ..., F_t\}$.

By Lemma 1, let S be a smallest vertex subset of order s such that the number of odd components if $H \setminus S$ is greater than s. Let $C_1, ..., C_r$ be the odd components of $H \setminus S$. Here r > s. If C is a component of $H \setminus S$ and v is a vertex of C, then $N(v) \subseteq [V(C) \cup S] \setminus \{v\}$. By the h-regularity of H, $|V(C) \cup S| \ge h + 1$ and hence

$$|V(C)V| \ge h - s + 1$$

for any component C of $H \setminus S$. By Lemma 2, we must have that

$$4h - 4 \ge |V(H)| \ge s + \left| \bigcup_{i=1}^{r} V(C_i) \right| \ge s + (h+1-s)r$$

$$\ge s + (h+1-s)(s+2).$$

That is $(s-2)(s-h+2) \ge 2$. Therefore either $s \le 1$ or $s \ge h-1$. If $s \ge h-1$, then

$$|V(H)| \ge s + r + hr^+$$

(by (4) of Lemma 2)

$$\geq (h-1) + (s+2) + 3h$$

(by (2) and (3) of Lemma 2)

$$\geq (h-1) + ((h-1)+2) + 3h$$

= 5h.

This contradicts that $|V(H)| \le 4h - 4$. So S must be either a single vertex or an empty set.

Case One. s=1. Let $S=\{w\}$. If H is disconnected, then each component of H is of even order because of the choice of S. So $H\setminus S$ has at least four components. Since each component of $H\setminus S$ is of order at least h, H contains at least 4h+1 vertices and this contradicts that $|V(H)| \le 4h-4$. Therefore, H must be connected in this case. Moreover, $H(C \cup S)$ is not a clique for any component C of $H\setminus S$ and hence $|V(C)| \ge h+1$. Thus $H\setminus S$ has exactly three components, C_1 , C_2 , and C_3 , each of which is of odd order and for any i=1,2,3,

$$|V(C_i)| \le |V(H)| - |S| - |V(C_i)| - |V(C_{i'})|$$

(where $j, j' \neq i$)

$$\leq |V(H)| - 1 - 2(h+1)$$

 $\leq |V(H)| - 2h - 3.$

Since $|V(H)|/2 \le 2h-2$, we have that

$$|V(C_i)| \le \frac{|V(H)|}{2} - 5 \le 2h - 7$$
 (1)

for any i = 1, 2, 3.

Since $|C_1|$ is odd, $e_{F_\mu}(C_1, V \setminus V(C_1))$ is odd for each $F_\mu \in \{F_1, ..., F_t\}$. We claim that there is $F_\mu \in \{F_1, ..., F_t\}$ such that $e_{F_\mu}(C_1, V \setminus V(C_1)) \geq 3$. If not, then $e_{F_\mu}(C_1, V \setminus V(C_1)) = 1$ for any $F_\mu \in \{F_1, ..., F_t\}$ and $\sum_\mu e_{F_\mu}(C_1, V \setminus (C_1)) = t < h + 1 \leq |V(C_1)|$. So there must be a vertex v of C_1 such that the neighbor of v in each F_μ is contained in C_1 , that is all vertices adjacent to v in G are contained in $V(C_1) \cup \{w\}$. But this implies that

$$|V(C_1)| \geqslant k \geqslant \frac{|V(H)|}{2}.$$

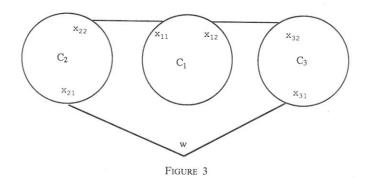
This contradicts that $|V(C_1)| \le |V(H)|/2 - 5$ and therefore, our claim holds. Without loss of generality, let $e_{F_1}(C_1, V \setminus V(C_1)) \ge 3$.

Assume that $e_{F_1}(C_1, C_j) \neq 0$ for each j = 2, 3. Let $x_{21} \in N(w) \cap V(C_2)$, $x_{31} \in N(w) \cap V(C_2)$, and $x_{11}x_{22}$, $x_{12}x_{32}$ be edges of F_1 where $x_{ij} \in V(C_i)$ for i = 1, 2. By Lemmas 3 and 4, for i = 1, 2, 3, let P_i and Q_i be a pair of disjoint path and cycle in $H(C_i)$ such that either P_i is an (x_{i1}, x_{i2}) -Hamilton path of $H(C_i)$ and Q_i is empty if $x_{i1} \neq x_{i2}$, or P_i is a single vertex x_{i1} and Q_i is a Hamilton cycle in $H(C_i) \setminus \{x_{i1}\}$ if $x_{i1} = x_{i2}$. Thus we obtain an even 2-factor

$${P_1 \cup P_2 \cup P_3 \cup \{wx_{21}, wx_{31}, x_{22}, x_{11}, x_{12}, x_{32}\}, Q_2, Q_3}$$

in $H \cup F_1$ which contradicts the statement (*). So either $e_{F_1}(C_1, C_2) = 0$ or $e_{F_1}(C_1, C_3) = 0$. See Fig. 3.

Let $e_{F_1}(C_1, C_2) = 0$. Then $e_{F_1}(C_1, C_3) \geqslant 2$. If $e_{F_1}(C_2, C_3) \neq 0$, then the proof is the same as the case of $e_{F_1}(C_1, C_2) \neq 0$ and $e_{F_1}(C_1, C_3) \neq 0$ by exchanging C_1 and C_3 . So we assume that $e_{F_1}(C_3, C_2) = 0$. Let wy_{21} be and edge of H joining w and C_2 . Since C_2 is of odd order, $e_{F_1}(C_2, V \setminus V(C_2)) \neq 0$ and hence $e_{F_1}(C_2, w) \neq 0$. Let wy_{22} be an edge of F_1 joining w and C_2 , and y_{11} y_{31} and y_{12} y_{32} pair of distinct edges of F_1 joining C_1 and C_3 (where



 $y_{ij} \in V(C_i)$ for j = 1, 2). By Lemma 4, let R_i be a (y_{i1}, y_{i2}) -Hamilton path in $H(C_i)$ for i = 1, 2, 3. Then we obtain an even 2-factor

$$\{R_1 \cup R_3 \cup \{y_{11}y_{31}, y_{12}y_{32}\}, R_2 \cup \{wy_{21}, wy_{22}\}\}$$

in $H \cup F_1$ and this contradicts the statement (*). See Fig. 4.

Case Two. s=0. Since each component is of order at least h+1 and $|V(H)| \le 4h-4$, H has at most three components. By Lemma 2, two components must be of odd order. Thus

$$h+1 \le |V(C)| \le 3h-5$$
 (2)

for any component C of H. The degree h of H must be an even integer because H has some odd components.

If C is an odd component of order at most |V(H)|/2 of H, we claim that there is $F_{\mu} \in \{F_1, ..., F_t\}$ such that $e_{F_{\mu}}(C, V \setminus V(C)) \geqslant 3$. We have that $e_{F_{\mu}}(C, V \setminus V(C))$ is odd since |V(C)| is odd. Suppose that $e_{F_{\mu}}(C, V \setminus V(C)) = 1$ for every $F_{\mu} \in \{F_1, ..., F_t\}$. Then

$$|V(C)| \ge h+1 > t = \sum_{\mu} e_{F_{\mu}}(C, V \setminus V(C))$$



FIGURE 4

and there is a vertex v of C such that the neighbor of v in each F_{μ} is contained in C. Hence, all vertices adjacent to v in G are contained in C and

$$|V(C)| \ge k + 1 > \frac{|V(H)|}{2}$$

which contradicts the assumption that $|V(C)| \leq |V(H)|/2$.

Subcase 1. H has two components and both components are blocks. Let C_1 and C_2 be two odd components of H. Without loss of generality, let $|V(C_1)| \leq |V(H)|/2$ and F_1 a 1-factor such that $e_{F_1}(C_1, V \setminus V(C_1)) = e_{F_1}(C_1, C_2) \geqslant 3$ and $u_\mu v_\mu \in E_{F_1}(C_1, C_2)$ for $\mu = 1, 2, 3$. Note that

$$h+1\leqslant |V(C_1)|\leqslant \frac{|V(H)|}{2}\leqslant 2h-2$$

and

$$\frac{|V(H)|}{2} \leqslant |V(C_2)| \leqslant 3h - 5.$$

Since $H(C_2)$ is regular and of odd order, $H(C_2)$ cannot be a bipartite graph. By Lemma 8, there is a Hamilton path P_2 joining two vertices of $\{v_1, v_2, v_3\}$ in $H(C_2)$ and without loss of generality, let P_2 join v_1 and v_2 . By Lemma 4, let P_1 be a (u_1, u_2) -Hamilton path in $H(C_1)$. Then $H \cup F_1$ contains a Hamilton cycle $P_1 \cup P_2 \cup \{u_1v_1, u_2v_2\}$ which is an even 2-factor and contradicts the statement (*).

Subcase 2. H has two components and one component is not a block. Let C_1 and C_2 be two components of H. Without loss of generality, let C_2 be a non-block component and w a cut vertex of C_2 . $C_2 \setminus \{w\}$ can have only two components because $|V(C_2)| \leq 3h-5$. Let D_1 and D_2 be the two components of $C_2 \setminus \{w\}$. Since H is h-regular and $H(D_i \cup w)$ is not a clique for $i=1,2,\ |V(C_1)|,\ |V(D_1)|,\$ and $|V(D_2)| \geq h+1$. Hence, for any $\{A,A',A''\}=\{C_1,D_1,D_2\},$

$$|A| \le |V(H)| - |\{w\}| - |A'| - |A''|$$

 $\le |V(H)| - 1 - 2h - 2$

(since $|V(H)|/2 \leq 2h-2$)

$$\leq |V(H)| - 5 - \frac{|V(H)|}{2}$$

$$= \frac{|V(H)|}{2} - 5$$

$$\leq 2h - 7.$$

Since the degree h of H is an even number and the number of odd degree vertices in the subgraph $H(D_i \cup w)$ is even, $e_H(D_i, w)$ is even for i = 1, 2. Let x_{i1}, x_{i2} be two vertices of D_i adjacent to w in H for i = 1, 2. Since $|V(C_1)| \leq |V(H)|/2$, let F_1 be a 1-factor such that $e_{F_1}(C_1, V \setminus V(C_1)) \geq 3$.

If $e_{F_1}(C_1, D_1) \neq 0$ for both i = 1 and 2, then let $y_1 z_1$ and $y_2 z_2$ be two edges of F_1 joining C_1 and D_1 and D_2 where $y_1, y_2 \in C_1$ and $z_i \in D_1$ for i = 1, 2. Without loss of generality, assume that $x_{i1} \neq z_i$ for i = 1, 2. By Lemma 4, let P_i be an (x_{i1}, z_i) -Hamilton path in $H(D_i)$ for i = 1, 2 and P_0 be a (y_1, y_2) -Hamilton path in $H(C_1)$. Then $H \cup F_1$ contains a Hamilton cycle $P_0 \cup P_1 \cup P_2 \cup \{x_{11}w, x_{21}w, y_1z_1, y_2z_2\}$. This contradicts that $H \cup F_1$ contains no even 2-factor. See Fig. 5.

So we assume that $e_{F_1}(C_1, D_1) \ge 2$ and $e_{F_1}(C_1, D_2) = 0$. Let $E_{F_1}(C_1, D_1) = \{u_\mu, v_\mu\}: \mu = 1, 2, \dots \}$.

(i) If $|V(D_2)|$ is odd, then by Lemma 4, let Q_0 be a (u_1, u_2) -Hamilton path in $H(C_1)$, Q_1 a (v_1, v_2) -Hamilton path in $H(D_1)$, and Q_2 an (x_{21}, x_{22}) -Hamilton path in $H(D_2)$. Thus

$${Q_0 \cup Q_1 \cup \{u_1v_1, u_2v_2\}, Q_2 \cup \{x_{21}w, x_{22}w\}}$$

is an even 2-factor in $H \cup F_1$ and this contradicts the statement (*). See Fig. 6.

(ii) If $|V(D_2)|$ is even and $e_{F_1}(C_1,w)\neq 0$ then let $u_0w\in F_1$. Without loss of generality, assume that $v_1\neq x_{11}$. By Lemma 4, let R_0 and R_1 be (u_0,u_1) - and (v_1,x_{11}) -Hamilton paths in $H(C_1)$ and $H(D_1)$, respectively; and let R_2 be a Hamilton cycle in $H(D_2)$. Then $\{R_0\cup R_1\cup\{u_0w,wx_{11},u_1v_1\},R_2\}$ is an even 2-factor in $H\cup F_1$ and this contradicts (*) again. See Fig. 7.

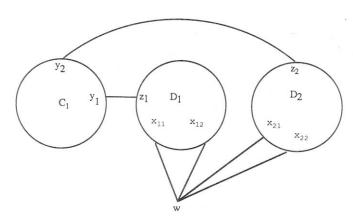


FIGURE 5

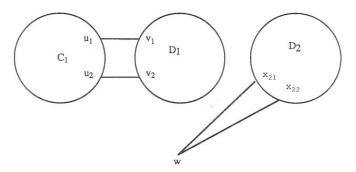


Figure 6

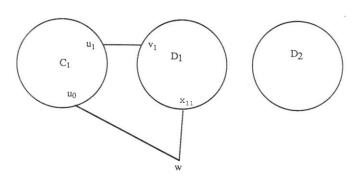


Figure 7

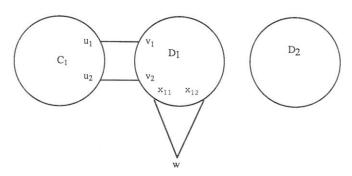


FIGURE 8

(iii) If $|V(D_2)|$ is even and $e_{F_1}(C_1, w) = 0$, then $e_{F_1}(C_1, D_1) = e_{F_1}(C_1, V \setminus V(C_1)) \geqslant 3$. When $\{v_1, v_2, v_3\} \cap \{x_{11}, x_{12}\} \neq \emptyset$, let $v_1 = x_{11}$ be a vertex in this intersection and $v_2 \in \{v_1, v_2, v_3\} \setminus \{x_{11}, x_{12}\}$. By (ii) of Lemma 7, let $S' = v_1$ and let S'' be a (v_2, x_{12}) -Hamilton path in $H(D_1) \setminus \{v_1\}$. When $\{v_1, v_2, v_3\} \cap \{x_{11}, x_{12}\} = \emptyset$, by (i) of Lemma 7, let S' and S'' be a pair of disjoint paths joining v_1 and v_1 , v_2 and v_1 , respectively, in $H(D_1)$. By Lemma 3 and Lemma 4, let v_1 be a v_2 be a Hamilton cycle in v_3 . Then v_4 contains an even 2-factor $\{v_1, v_2, v_3\} \cap \{v_1, v_2, v_3, v_3\} \cap \{v_1, v_2, v_3, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_2, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_2, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_2, v_3\} \cap \{v_1, v_2, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v_2, v_3\} \cap \{v_1, v_2, v_3\} \cap \{v_1, v_2, v_3\} \cap \{v_1, v_3, v_3\} \cap \{v_1, v$

Subcase 3. H has three components, C_1 , C_2 , and C_3 . Let C_1 and C_2 be the odd components and C_3 the even component of H. Obviously,

$$\begin{split} h+1 &\leqslant |V(C_i)| \\ &\leqslant |V(H)| - V(C_j)| - |V(C_{j'})| \qquad \text{for} \quad j,j' \neq 1 \\ &\leqslant |V(H)| - 2(h+1) \\ &\leqslant |V(H)| - \frac{|V(H)|}{2} - 4 \\ &= \frac{|V(H)|}{2} - 4 \\ &\leqslant 2h-6 \end{split}$$

for any i=1,2,3. We claim that there is an $F_{\mu} \in \{F_1,...,F_t\}$ such that $e_{F_{\mu}}(C_1,V\setminus V(C_1))\geqslant 3$ and $e_{F_{\mu}}(C_2,V\setminus V(C_2))\geqslant 3$. If not, we have that either $e_{F_{\mu}}(C_1,V\setminus V(C_1))=1$ or $e_{F_{\mu}}(C_2,V\setminus V(C_2))=1$ for any $F_{\mu}\in \{F_1,...,F_t\}$ because C_1 and C_2 are odd components and $e_{F_{\mu}}(C_i,V\setminus V(C_i))$ is odd for i=1,2. Let

$$I_1 = \{ \mu : e_{F_u}(C_1, V \setminus V(C_1)) = 1 \}$$

and

$$I_2 = \{ \mu : e_{F_u}(C_2, V \setminus V(C_2)) = 1 \}.$$

Here $\{1, ..., t\} = I_1 \cup I_2$ and $t \le |I_1| + |I_2|$. The graph $H_i = H \cup (\bigcup_{\mu \in I_i} F_{\mu})$ is $(h + |I_i|)$ -regular for i = 1, 2. Since $e_{F_u}(C_1, V \setminus V(C_1)) = 1$ for any $\mu \in I_1$ and

$$|V(C_1)| \ge h + 1 > t \ge |I_1| = \sum_{\mu \in I_1} e_{F_{\mu}}(C_1, V \setminus V(C_1)),$$

there must exist a vertex v of C_1 such that $e_{F_{\mu}}(v, V \setminus V(C_1)) = 0$ for each $\mu \in I_1$. Hence all vertices adjacent to v in H_1 are contained in C_1 and $|V(C_1)| \ge h + |I_1| + 1$. Similarly $|V(C_2)| \ge h + |I_2| + 1$. But

$$\begin{split} |V(C_3| = |V(G)| - |V(C_1)| - |V(C_2)| \\ & \leq 2k - (h + |I_1| + 1) - (h + |I_2| + 1) \\ &= 2k - 2h - |I_1| - |I_2| - 2 \\ &\leq 2k - 2h - t - 2 \\ &= k - h - 2 \end{split}$$

(as h + t = k)

$$< h-2$$

(as k < 2h). This contradicts that $|V(C_3)| \ge h + 1$ and our claim holds.

Without loss of generality, let F_1 be a 1-factor such that $e_{F_1}(C_1, V \setminus V(C_1)) \ge 3$ and $e_{F_1}(C_2, V \setminus V(C_2)) \ge 3$. If $e_{F_1}(C_1, C_2) \ge 2$, then let edges $x_{11}x_{21}, x_{12}x_{22} \in E_{F_1}(C_1, C_2)$. By Lemmas 3 and 4, let P_i be an (x_{i1}, x_{i2}) -Hamilton path in C_i for i = 1, 2, and let P_3 be a Hamilton cycle in C_3 . Thus $\{P_1 \cup P_2 \cup \{x_{11}x_{21}, x_{12}x_{22}\}, P_3\}$ is an even 2-factor in $H \cup F_1$ and this contradicts the statement (*). See Fig. 9.

So we have that $e_{F_1}(C_1, C_2) \le 1$ and hence $e_{F_1}(C_1, C_3) \ge 2$ and $e_{F_1}(C_2, C_3) \ge 2$. Let edges $z_{11}x_{31}, z_{12}x_{32} \in E_{F_1}(C_1, C_2)$ and $z_{21}y_{31}, z_{22}y_{32} \in E_{F_1}(C_2, C_3)$. By Lemma 4, et Q_i be a (z_{i1}, z_{i2}) -Hamilton path in C_i for i = 1, 2. By (i) of Lemma 7 let Q_3, Q_4 be a pair of disjoint (x_{31}, y_{31}) - and (x_{32}, y_{32}) -paths of C_3 . Thus the Hamilton cycle $Q_1 \cup Q_2 \cup Q_3 \cup Q_4 \cup \{z_{11}x_{31}, z_{12}x_{32}, z_{21}y_{31}, z_{22}y_{32}\}$ is an even 2-factor in $H \cup F_1$. This contradicts the statement (*) and concludes our main theorem. See Fig. 10.

By applying Lemma 3, the main theorem can be slightly improved.

COROLLARY 1. Let G be a k-regular graph of order 2n and $n \le k$. Then G contains at least $\lfloor n/2 \rfloor + (k-n)$ disjoint 1-factors.

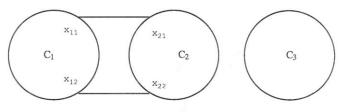


FIGURE 9

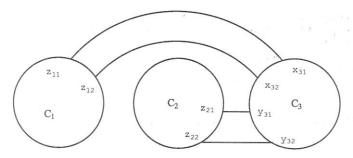


FIGURE 10

By applying Lemma 9, we have the following corollary:

COROLLARY 2. Let G be a k-regular graph of order 2n and $n \le k$. Let $p_1, ..., p_s$ be odd positive integers and $p_{s+1}, ..., p_r$ be even positive integers such that $p_1 + \cdots + p_r = k$. If

$$s \leqslant \left[\frac{n}{2}\right] + (k - n),$$

then G is $(p_1, ..., p_r)$ -factorizable

Note Added in Proof. Theorem B was recently improved by H. Li for large degree k (see [LH]).

ACKNOWLEDGMENT

The authors thank the referee who corrected some mistakes in this paper.

REFERENCES

- [BM] J. A. BONDY AND U. S. R. MURTY, "Graph Theory with Applications," Macmillan, London and Elsevier, New York, 1976.
- [D] G. A. DIRAC, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
- [H] A. J. W. Hilton, Factorizations of regular graphs of high degree, J. Graph Theory 9 (1985), 193–196.
- [J] H. A. Jung, Longest, ab-paths in regular graphs, Ann. Discrete Math. 41 (1989), 281-298.
- [LL] L. Lovász, "Combinatorial Problems and Exercises," North-Holland, Amsterdam, 1979.
- [LH] H. Li, "Edge Disjoint Hamiltonian Paths Connecting Any Two Vertices of Graphs," Rapports de Recherche L. R. I., No. 405.

- [P] J. Petersen, Die Theorie der regularen Graphen, Acta Math. 15 (1891), 193-220.
- [Pi] J. Pila, Connected regular graphs without one-factors, Ars Combin. 18 (1947), 161-172.
- [T] W. T. TUTTE, The factorizations of linear graphs, J. London Math. Soc. 22 (1947), 459-474.
- [W] W. D. Wallis, The smallest regular graphs without one-factors, Ars Combin. 11 (1981), 295–300.
- [Z] C. Q. ZHANG, On a theorem of Hilton, Ars Combin. 27 (1989), 66-68.
- [ZZ] C. Q. ZHANG AND Y. J. ZHU, Hamilton connectivity and factorization, preprint.