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Abstract Let G be a K1,3-free graph. A circuit of G is essential if it contains a
non-locally connected vertex v and passes through both components of N (v). The
essential girth of G, denoted by ge(G), is the length of a shortest essential circuit. It
can be seen easily that, by Ryjáček closure operation, the essential girth ofG is closely
related to the girth of H where H is the Ryjáček closure of G and is a line graph. A
generalized net, denoted by Ni1,i2,i3 , is a graph obtained from a triangle C3 and three
disjoint paths Piµ+1 (µ = 1, 2, 3), by identifying each vertex vµ of C3 = v1v2v3v1
with an end vertex of the path Piµ+1, for every µ = 1, 2, 3. In this paper, we prove
that every 2-connected {K1,3, N1,1,ge(G)−4}-free (and {K1,3, N1,0,ge(G)−3}-free) graph
G contains a Hamilton circuit. With the additional parameter ge, these results extend
some earlier theorems about Hamilton circuits in {K1,3, Na,b,c}-free graphs (for some
small integers a, b and c).
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1 Introduction

Let G be a graph. If a subgraph G ′ of G contains all edges xy ∈ E(G) with x, y ∈
V (G ′), then G ′ is called an induced subgraph of G. For a given graph H , we say that
G is H - f ree if G does not contain an induced subgraph isomorphic to H .

A claw is the complete bipartite graph K1,3. A simple graph G is claw-free if it has
no induced subgraph K1,3.

Let Pi be the path on i vertices, and Ci the circuit on i ≥ 3 vertices. We adopt
the definition of generalized net in [4]. A generalized net, denoted by Ni1,i2,i3 , is a
graph obtained from a triangle C3 and three disjoint paths Piµ+1 (µ = 1, 2, 3), by
identifying each vertex vµ of C3 = v1v2v3v1 with an end vertex of the path Piµ+1, for
every µ = 1, 2, 3.

We call a graph G hamiltonian if it contains a Hamilton circuit, i.e., a circuit
containing all its vertices. Regarding a graph to be hamiltonian, the following theorem
is one of the earliest results in this subject of forbidden pairs.

Theorem 1.1 [6] Let G be a {K1,3, N1,1,1}-free graph. If G is 2-connected, then G is
hamiltonian.

And it is followed by some other forbidden pairs.

Theorem 1.2 [3] If G is a 2-connected {K1,3, P6}-free graph, then G is hamiltonian.

Theorem 1.3 [10] If G is a 2-connected {K1,3, N0,0,2}-free graph, then G is hamil-
tonian.

Theorem 1.4 [1] If G is a 2-connected {K1,3, N0,1,2}-free graph, then G is hamil-
tonian.

Theorem 1.5 [7] If G is a 2-connected {K1,3, N0,0,3}-free graph, then G is hamil-
tonian.

Faudree and Gould [8] later refined this approach by the following classification
theorem.

Theorem 1.6 [8]Let G be a 2-connected, {K1,3, S}-free graph. ThenG is hamiltonian
if S is one of C3, N0,0,1, N0,0,2, N0,0,3, N0,1,1, N1,1,1, N0,1,2 (see Fig. 1).

The following is one of the major open problems in this subject.

Conjecture 1.1 [14] Every 4-connected claw-free graph is hamiltonian.

There are other related results about forbidden pairs or local structures for Hamilton
circuits in claw-free graphs regarding Conjecture 1.1, such as [2,5,12,15]. Lai et al.
[13] and Fujisawa [9] recently showed some results for the forbidden pairs including
a generalized net graph.
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N0,0,1 N0,0,2 N0,0,3 N0,1,1 N1,1,1 N0,1,2

Fig. 1 N0,0,1, N0,0,2, N0,0,3, N0,1,1, N1,1,1 and N0,1,2

Theorem 1.7 [13] If G is a 3-connected {K1,3, N0,0,8}-free graph, then G is hamil-
tonian.

Theorem 1.8 [9] If G is a 3-connected {K1,3, N0,0,9}-free graph, then G is hamil-
tonian unless G is the line graph of Q∗, where Q∗ is obtained from the Petersen graph
by adding one pendent edge to each vertex.

For a graph G and v ∈ G, denote the neighbor of v to be N (v) = {u ∈ V (G): u is
adjacent to v}.
Definition 1.1 For a claw free graph G = (V, E), a vertex v is locally connected
if the induced subgraph G[N (v)] is connected. And denote Vlc = {v ∈ V (G) : v is
locally connected}, Vnlc = {v ∈ V (G) : v is not locally connected}.

It is evident that if v is not locally connected, then the induced subgraph G[N (v)]
consists of two cliques Qv

1, Q
v
2 (see Lemma 2.2).

Definition 1.2 Let G be a claw-free graph. A circuit C = v1 . . . vrv1 of G is essential
if it contains a non-locally connected vertex vi and vi−1vi+1 /∈ E(G).

Notice that the essential circuit C , with a non-locally connected vertex vi , should
pass through both clique components of N (vi ) for otherwise there will be an edge
between vi−1 and vi+1.

Definition 1.3 The essential girth of a claw-free graph, denoted by ge(G), is the length
of a shortest essential circuit.

Furthermore, it can be seen easily that, by Ryjáček closure operation [16], the
essential girth of G is closely related to the girth of H where H is the line graph of
the Ryjáček closure of G.

Here is the main theorem of this paper.
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N1,0,ge(G)−3

N1,1,ge(G)−4

Fig. 2 N1,0,ge(G)−3 and N1,1,ge(G)−4

Theorem 1.9 (1) If a 2-connected graph G is claw-free and N1,1,ge(G)−4-free, then
G contains a Hamilton circuit.

(2) If a 2-connected graph G is claw-free and N1,0,ge(G)−3-free, then G contains a
Hamilton circuit (see Fig. 2).

With the additional parameter ge, these results extend some earlier theorems about
Hamilton circuits in {K1,3, Na,b,c}-free graphs (for some small integers a, b and c).

2 Preliminary Results and Lemmas

In this section, we present some early results and useful lemmas for the preparation
of the proof of Theorem 1.9.

If H is a graph, then the line graph of H , denoted by L(H), is the graph on vertex
set E(H) in which two vertices are adjacent if and only if their corresponding edges
in H share an end vertex. A graph G is a line graph if it is isomorphic to L(H) for
some graph H . Note that line graphs are claw-free.

We say a subgraph is even if the degree of each vertex in the subgraph is even. And
a dominating connected even subgraph of a graph H is a connected even subgraph
such that every edge of H has at least one end vertex contained in the connected
even subgraph. There is an intimate relationship between dominating connected even
subgraph in H andHamilton circuit in L(H), a result due toHarary andNash-Williams
[11] that is known since the 1960s.

Lemma 2.1 [11] Let H be a graph of size at least three. The line-graph L(H) has a
Hamilton circuit if and only if H has a dominating connected even subgraph.

123

Author's personal copy



Graphs and Combinatorics (2016) 32:311–321 315

Fig. 3 K4 − {e} v1 v2

v4 v3

A closure operation is to add edges to turnG[N (v)] into a complete graph for every
locally connected vertex v ∈ V (G) until it is impossible to add any more edges.

The following theorem due to Ryjáček [16] provides an opportunity to translate
questions on hamiltonicity of claw-free graphs to questions on hamiltonicity of line
graphs by using the concept of closure operation.

Theorem 2.1 [16] Let G be a claw-free graph. Then (1) G has a Hamilton circuit if
and only if the closure cl(G) has a Hamilton circuit. (2) Furthermore, cl(G) is the
line graph L(H) for some graph H.

The following is a well-known folklore result for claw-free graphs.

Lemma 2.2 Let G be a claw-free graph. For v ∈ Vnlc, the induced subgraph G[N (v)]
consists of two disjoint cliques Qv

1, Q
v
2. Furthermore, if the non-locally connected

vertex v is contained in a vertex-cut T with components R1, R2 of G − T , then
Qv

i ⊆ Ri ∪ T for i = 1, 2.

Lemma 2.3 Let v be a non-locally connected vertex of a claw-free graph G with
components Qv

1, Q
v
2 of G[N (v)]. Let C = vx1, . . . , xrv be a circuit of G containing v

and x1 ∈ Qv
1, xr ∈ Qv

2. If each xi is locally connected in G for every i ∈ {2, . . . , r−1},
then v is locally connected in the closure cl(G).

Proof Wefirst claim that, for each i, j ∈ {1, . . . , r}, there is an edge xi x j in the closure
cl(G).

We prove this claim by induction on | j − i |.
The claim is true for | j − i | = 1.
Now consider | j − i | ≥ 2. Let 1 ≤ i < j ≤ r . The vertex xi+1 remains locally

connected in cl(G) since the closure only adds edges. Notice that x j ∈ Ncl(G)(xi+1)

by the induction hypothesis. Then both xi , x j ∈ Ncl(G)(xi+1), so the edge xi x j must
appear in cl(G). This finishes the proof of the claim.

By the above claim, x1xr ∈ E(cl(G)), which joins Qv
1, Q

v
2. Thus, Ncl(G)(v) induces

a connected subgraph in cl(G), so v is locally connected in the closure cl(G). 	

Lemma 2.4 Let G be a claw-free graph. If Q is an induced subgraph of G isomorphic
to K4 − {e} (see Fig. 3) where V (K4) = {v1, . . . , v4} and e = v1v3, then both v2, v4
are locally connected vertices.
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Proof If v2 is not locally connected, by Lemma 2.2, vertices v1, v3, v4 are contained
in the same clique, which contradicts that v1v3 is a missing edge in G. Similarly v4 is
also locally connected. 	

Lemma 2.5 Let G be a claw-free graph with the essential girth ge(G) ≥ 5, if C =
v1v2v3v4v1 is an induced 4-circuit of G, then all vi are locally connected vertices for
1 ≤ i ≤ 4.

Proof Suppose that v1 is not locally connected. By the definition of the essential girth
ge(G) and the assumption that ge(G) ≥ 5, both vertices v2, v4 are in the same compo-
nent Qv

i for some i ∈ {1, 2}. And by Lemma 2.2, v2v4 ∈ E(G)which contradicts that
C is an induced circuit, so v1 is locally connected. Similar arguments can be applied
to v2, v3, and v4. 	

Lemma 2.6 Let T = {u, v} be a cut of a 2-connected claw-free graph G, then

(i) either both u and v are non-locally connected in G
(ii) or both u and v are locally connected, and adjacent to each other.

Proof Suppose that at least one of {u, v}, say u, is locally connected in G. Let R1, R2
be two components ofG−T . Since u is locally connected inG, let P be a shortest path
contained in G[N (u)] joining R1∩N (u) and R2∩N (u). It is obvious that P = x1vx2
where xi ∈ Ri ∩ N (u) (i = 1, 2). The subgraph G[u, v, x1, x2] is isomorphic to
K4 − {x1x2}. By Lemma 2.4, v is also locally connected. 	


3 Proof of the Main Theorem

In this section, we present the proof of Theorem 1.9.
We prove this result by contradiction. Let G be a counterexample to Theorem 1.9

with |V (G)| + |E(G)| as small as possible. This means G is a 2-connected, claw-free
and either N1,1,ge(G)−4-free or N1,0,ge(G)−3-free graph. For ge(G) = 4, 5, the theorem
is already proved in Theorem 1.6, so for the rest part of the proof, we will assume that
(∗) ge(G) ≥ 6.

If every vertex in the closure cl(G) is locally connected, then cl(G) is a complete
graph. By Ryjáček’s closure Theorem (Theorem 2.1), cl(G) has a Hamilton cycle.

Thus, we may assume that there exist non-locally connected vertices in cl(G).

Claim 3.1 For every non-locally connected vertex v of cl(G), v is contained in a
2-vertex cut of G.

Proof Let v be a non-locally connected vertex of cl(G) (and non-locally connected
in G, as well) and supposed that v is not contained in any 2-vertex cut of G.

By Lemma 2.2, let Qv
1, Q

v
2 be components of G[N (v)]. Without loss of generality,

let |Qv
2| ≤ |Qv

1|. Let F be the set of edges between v and Qv
2, that is F = [{v}, Qv

2].
And let

Wi = {x ∈ V (G) : distance(G−F)(x, v) = i}.
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Let r be the smallest integer that Qv
2 ∩ Wr �= ∅.

Since G − v is 2-connected, there exist two chordless paths P1 = x1 . . . xr−1xr ,
P2 = y1 . . . yr−1yr such that

(1) xi , yi ∈ Wi for 1 ≤ i ≤ r ,
(2) xi �= yi for 2 ≤ i ≤ r − 1,
(3) xr ∈ Qv

2.

Notice that by the definition of the essential girth ge(G), we have r ≥ ge(G) − 1. 	

Subclaim 3.1.1 If xi yi+1 ∈ E(G) [or, yi xi+1 ∈ E(G)], for some i: 1 ≤ i ≤ r − 1,
then xi yi , xi+1yi+1 ∈ E(G).

Proof If xi+1yi+1 /∈ E(G), then G[xi , xi−1, yi+1, xi+1] is a claw by the definition of
the sets Wi . Hence, xi+1yi+1 ∈ E(G). Symmetrically, xi yi ∈ E(G). 	


Without confusion, let v = x0 = y0.
For an integer i ∈ {0, . . . , r − 1}, the pair {i, i + 1} is called a non-diagonal pair

if xi �= yi , xi+1 �= yi+1 and both xi yi+1, yi xi+1 /∈ E(G); the pair {i, i + 1} is called
a diagonal pair if both xi yi+1, yi xi+1 ∈ E(G) or xi = yi or xi+1 = yi+1. Note that
there may be pairs that are neither.

Subclaim 3.1.2 For each i ∈ {0, . . . , r − 2},
(1) if xi+1 �= yi+1, then xi+1yi+1 ∈ E(G), and
(2) if {i, i + 1} is a non-diagonal pair, then {i + 1, i + 2} is a diagonal pair.
Proof This proof is by induction on i .

For i = 0, there is nothing to prove for statement (1) since x1, y1 are in the clique
Qv

1. Also, there is nothing to prove for statement (2) either, since both vx1, vy1 ∈ E(G)

where v = x0 = y0. In the case that x1 = y1, to avoid a claw centered at x1 = y1, we
get x2y2 ∈ E(G).

Assume that there is an integer J (1 ≤ J ≤ r − 2) such that both statements hold
for every i with 0 ≤ i ≤ J − 1.

The following is the proof of the statements (1) and (2) for i = J .
Suppose that xi+1yi+1 /∈ E(G). By Subclaim 3.1.1, the assumption that xi+1yi+1 /∈

E(G) implies that both {i, i + 1} and {i + 1, i + 2} are non-diagonal pairs. The pair
{i − 1, i} cannot be non-diagonal pair, for otherwise, by inductive hypotheses of
statement (2), {i, i + 1} cannot be non-diagonal either.

In summary, xi+1yi+1 /∈ E(G), and, both {i, i + 1} and {i + 1, i + 2} are non-
diagonal pairs. And {i − 1, i} is not a non-diagonal pair. Without loss of generality,
let xi−1yi ∈ E(G). Thus, the subgraph induced by vertices

{v, x1, . . . , xr } − {xi+2} + {yi , yi+1}

contains a generalized net N1,1,ge(G)−4; and the subgraph induced by vertices

{v, x1, . . . , xr } − {xi+1} + {yi , yi+1}
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contains a generalized net N1,0,ge(G)−3. This is a contradiction and proves the state-
ment (1).

For the statement (2), assume that {i, i + 1} is a non-diagonal pair and assume that
xi+2 �= yi+2. Then yi+1xi+2 ∈ E(G) for otherwise, G[xi+1, xi , yi+1, xi+2] is a claw.
Similarly, yi+2xi+1 ∈ E(G). This proves the statement (2). 	

Subclaim 3.1.3 {xi , yi } are locally connected vertices of G for each i = 2, . . . , r−1.

Proof Consider i ∈ {2, . . . , r − 1}. By Lemma 2.5, we may assume that neither {i −
1, i} nor {i, i +1} is a non-diagonal pair. Hence, let u′ ∈ {xi−1, yi−1}∩N (xi )∩N (yi )
and u′′ ∈ {xi+1, yi+1}∩ N (xi )∩ N (yi ). The subgraph of G induced by {u′, u′′, xi , yi }
is K4 − e. By Lemma 2.4, both xi , yi are locally connected. 	

Proof Thus, we have a circuit C = vx1x2 . . . xrv passing through both Qv

1, Q
v
2 such

that every vertex xi is locally connected for every i ∈ {2, . . . , r − 1}. By Lemma 2.3,
v is locally connected in cl(G). And this completes the proof of Claim 3.1. 	


Thus, every non-locally connected vertex of cl(G) is contained in a 2-vertex cut of
G.

Let T = {u, v} be a 2-vertex cut separating the graph G into two components
Q1(u, v) and Q2(u, v), let Gi (u, v) = Qi (u, v) ∪ T for each i = {1, 2}. [That is,
G1(u, v)∪ G2(u, v) = G and V (G1(u, v))∩ V (G2(u, v)) = T ]. We say Gi (u, v) is
path-trivial for i ∈ {1, 2} if Gi (u, v) is either a chordless path with ends at v and u or
a chordless circuit containing the edge vu.

Claim 3.2 At least one of {G1(u, v),G2(u, v)} is path-trivial.
Proof Let Pi (u, v) be a shortest path of Gi (u, v) joining v and u, for i = 1, 2. Let
G∗

i (u, v) = Gi (u, v) ∪ Pj (u, v), for every {i, j} = {1, 2}.
Prove by contradiction. Assume that G j (u, v) �= Pj (u, v), for every j ∈ {1, 2}.

Since G is a smallest counterexample, each G∗
i (u, v) contains a Hamilton circuit

Ci (u, v). Note that the circuit Ci (u, v) contains the non-trivial path Pj (u, v) for every
{i, j} = {1, 2}. Joining C1(u, v) and C2(u, v), we have a Hamilton circuit in G.

Thus, we may assume that G2(u, v) = P2(u, v). That is, G2(u, v) is a chordless
path or a chordless circuit containing the edge vu. 	


Now, for every 2-vertex cut T = {u, v} of G, at least one of {G1(u, v),G2(u, v)}
is path-trivial (suppose G2(u, v)). And furthermore, both v and u are non-locally
connected in both G and cl(G) due to Lemma 2.6.

Define T be the set of all 2-vertex cuts of G.
(∗∗) Choose T = {w,w′} ∈ T such that the path trivial part |V (Q2(w,w′))| is as
large as possible.

Note that every essential circuit passing through w (or w′, as well) must contain
G2(w,w′).
(∗ ∗ ∗) Let C be a shortest essential circuit passing through w and w′,

where C = v1 . . . vr . . . vsv1 with v1 = w, vr = w′, vr+1 . . . vs = Q2(w,w′), and
vrvr+1 . . . vsv1 = G2(w,w′). It is easy to see that r ≥ 2, s ≥ r + 1.

Define Yi = {y /∈ V (C) : distanceG(y, V (C)) = i}. By Claim 3.2, for each
i ≥ 1, Yi ⊆ Q1(v1, vr ).
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Fig. 4 N (y) ∩ V (C) =
{vi , vi+1} vi vi+1 vi+2vi−1 vi+3

y x

Claim 3.3 For each y ∈ Y1,

(i) if y is not locally connected, then N (y) ∩ V (C) = {vi , vi+1} for some i ∈
{1, . . . , r − 1}.

(ii) if y is locally connected, then {vi , vi+1} ⊆ N (y) ∩ V (C) ⊆ {vi , vi+1, vi+2} for
some i ∈ {1, . . . , r − 1}.

Proof Since G2(v1, vr ) = vr . . . vsv1 is path trivial, N (y) ∩ V (C) ⊆ {v1, . . . , vr }.
Choose vi ∈ N (y) ∩ V (C) with i as small as possible.

SinceC is a shortest essential circuit passing through v1 and vr , we have each vertex
v j /∈ N (y), where i + 3 ≤ j ≤ r , for otherwise, v1 . . . vi yv j . . . vr . . . vsv1 is shorter
than C .

If vi+1 /∈ N (y), then G[vi , y, vi−1, vi+1] is a claw. Hence, both vi , vi+1 ∈ N (y).
If vi+2 ∈ N (y) and y is not locally connected, then, by Lemma 2.2, C has a chord

vivi+2. This contradicts that C is chordless. 	

Claim 3.4 Y2 ∪ Y3 ∪ Y4 · · · = ∅
Proof We prove this result by contradiction. Let x ∈ Y2 and xyvi be a shortest path
joining x and V (C) and choose vi such that the subscript i is as small as possible.
Note that N (y) ∩ V (C) ⊆ {v1, v2, . . . , vr } since {vr+1, . . . , vs} = V (Q2(w,w′))
(see Fig. 4).

By Claim 3.3, {vi , vi+1} ⊆ N (y) ∩ V (C) ⊆ {vi , vi+1, vi+2} for some i ∈
{1, . . . , r − 1}. Furthermore, if vi+2 ∈ N (y) ∩ V (C), then G[y, x, vi , vi+2] is a
claw. Therefore, N (y) ∩ V (C) = {vi , vi+1}. Hence, it is easy to see that induced
subgraphs N1,1,ge(G)−4 and N1,0,ge(G)−3 are contained in the subgraph G[x, y, V (C)]
which contradicts the assumption. 	

Claim 3.5 Every vertex in Y1 is locally connected in G.

Proof Assume not. Choose z ∈ Y1 and vi ∈ V (C) such that z is not locally connected
in G and vi z ∈ E(G) and i is as small as possible. By Claim 3.3, N (z) ∩ V (C) =
{vi , vi+1} and 1 ≤ i ≤ r − 1. Here, assume that {vi , vi+1} ⊆ Qz

1. By Lemma 2.2 and
Claim 3.3, let z′ ∈ Qz

2 and z′ /∈ V (C) (see Fig. 5).
By Claim 3.4, z′ ∈ Y1 and let z′vk ∈ E(G) where vk ∈ V (C) with k as large as

possible. Since ge(G) ≥ 6, the length of the essential circuit zvi+1vi+2 . . . vk−1vk z′z
is at least 6. Thus, we obtain another essential circuit zz′vkvk+1 . . . vi z of w = v1 that
is of length shorter than C , a contradiction. 	
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vi vi+1 vi+2

z z

vk−1 vk vk+1· · ·

Fig. 5 Every vertex in Y1 is locally connected in G

Claim 3.6 Furthermore, every vertex v of the component Q1(v1, vr ) is locally con-
nected in cl(G).

Proof Prove by contradiction. Let v be a non-locally connected vertex in cl(G). By
Claim 3.5, v /∈ Y1. That is, v = vi ∈ V (C). Here, 1 < i < r . Choose vi such that i is
as small as possible.

By Claim 3.1, vi is contained in a 2-vertex cut T ′ = {vi , x}.
Case 1. x ∈ V (C).

We may assume that x = vh with h as small as possible. That is, by the choice of i ,
we have i +1 ≤ h ≤ r . Let Q1(vi , vh) and Q2(vi , vh) be components of G−{vi , vh}.
By Claim 3.2, let Q2(vi , vh) be path trivial. If Q2(vi , vh) contains Q2(v1, vr ), then it
contradicts (∗∗). Since every vertex in the path trivial part Q2(vi , vh) is non-locally
connected, by Claim 3.5, it is not in Y1. That is, Q2(vi , vh) is the segment vi . . . vh of
C and therefore, i + 1 < h ≤ r .

By (∗∗), let P∗ be a shortest path ofG−Q2(v1, vr )−Q2(vi , vh) joining {v1, . . . , vi }
and {vh, . . . , vr }. By Claim 3.4, P∗ − V (C) has only two vertices z1, z2 where z1 is
adjacent to va with 1 ≤ a ≤ i while z2 is adjacent to vb with h ≤ b ≤ r . By (∗) and
Claim 2.2, the essential circuit va . . . vbz2z1va is of length at least 6. And by (∗ ∗ ∗),
|{va, . . . , vb}| = 4.

Reroute the circuit C by replacing the segment va . . . vb with the path P∗, and
apply Claim 3.5 to both vertices of {va+1, vb−1}. This contradicts that each vertex of
Q2(vi , vh) = vi+1 . . . vh−1 is non-locally connected in G.

Case 2. x /∈ V (C).
By Claim 3.4, x ∈ Y1. Thus, V (C) − vi ⊆ Q1(vi , x). By Claim 3.5, x is locally

connected in G which contradicts Lemma 2.6 that x must be non-locally connected
in G as vi is non-locally connected. 	


So, every vertex of G, except for V (G2(v1, vr )) = {vr , . . . , vs, v1}, is locally
connected and Q2(v1, vr ) is a path attaching v1, vr . Then, in the closure cl(G), the
subgraph induced by V (Q1(v1, vr )) is a complete graph, and the subgraph induced
by V (Q2(v1, vr )) remains as the path attaching v1, vr or a circuit containing the edge
v1vr . It is easy to see that cl(G) has a Hamilton circuit and, by Theorem 2.1, so is G.
It contradicts that G is a counterexample and, therefore, completes the proof of the
Theorem 1.9.
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