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a b s t r a c t

It is conjectured by Berge and Fulkerson that every bridgeless
cubic graph has six perfect matchings such that each edge is
contained in exactly two of them. This conjecture has been
verified for many families of snarks with small (≤5) cyclic
edge-connectivity. An infinite family, denoted by SK , of cycli-
cally 6-edge-connected superposition snarks was constructed
in [European J. Combin. 2002] by Kochol. In this paper, the
Berge–Fulkerson conjecture is verified for the family SK , and,
furthermore, some larger families containing SK . This is the first
paper about the Berge–Fulkerson conjecture for superposition
snarks and cyclically 6-edge-connected snarks. Tutte’s integer
flow and Catlin’s contractible configuration are applied here as
the key methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The Berge–Fulkerson conjecture is one of the most famous open problems in graph theory.

onjecture 1.1 (Berge–Fulkerson Conjecture, (simply say B-F-Conjecture) [16], or see [34,36]). Every
bridgeless cubic graph has six perfect matchings such that each edge belongs to exactly two of them.

The six perfect matchings in the B-F-Conjecture are called a Fulkerson-cover (or B-F-coloring).
The B-F-Conjecture can be restated as an edge coloring problem, that is, for every bridgeless cubic
graph G, there exists a proper 6-edge-coloring of the graph 2G, where the graph 2G is obtained from
G by duplicating every edge to become a pair of parallel edges.
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Although the statement of the B-F-Conjecture is very simple, the solution has eluded many
athematicians over five decades and remains beyond the horizon.
The B-F-Conjecture is equivalent to the statement that every bridgeless cubic graph has a family

f six even subgraphs such that every edge is covered precisely four times. It was proved by Bermond,
ackson and Jaeger [2] that every bridgeless graph has a family of seven even subgraphs such that
very edge is covered precisely four times. Fan [11] proved that every bridgeless graph has a family
f ten even subgraphs such that every edge is covered precisely six times.
Similar to other major open problems, such as, Tutte’s 5-flow conjecture, cycle double cover

onjecture, etc., the B-F-Conjecture is trivial for 3-edge-colorable cubic graphs, and remains widely
pen for snarks. And it is well-known that snarks play an essential role for the B-F-Conjecture, flow
roblems, and cycle cover problems in graph theory, see [45].
The relation between Berge–Fulkerson coloring and shortest cycle cover problems was discov-

red in [12,37]. Some generalizations and variations of the B-F-Conjecture have been proposed
15,34], such as, the 5-perfect matching covering problem (Berge conjecture), k-cycle double cover
roblems, etc. The structures of graphs with unique Berge–Fulkerson coloring were characterized
n [35]. And a necessary and sufficient condition for the conjecture was obtained in [19] (and its
nteger flow version in [9]).

In [5,7,19,20,30] etc., the B-F-Conjecture was verified for various families of snarks such as
etersen graph, generalized Blanuša snarks, Szekeres snarks and flower snarks, Watkins snarks,
elmins–Swart snarks, Szekeres–Watkins snarks, Goldberg snarks, Isaace snarks, Loupekine snarks,
ukot’ka-Máčajová-Mazák-Škoviera snarks, snarks with order at most 36, Abreu–Labbate–Rizzi–
heehan snarks and Hägglund–Hoffmann–Ostenhof snarks etc. (See literature [1,3,5,8,17,18,22,29,
8,41–43] etc. for references or surveys of snarks.)
In [24,32,33] etc., Fan–Raspaud conjecture [12], a weaker version of the B-F-Conjecture, was

erified partially by Kaiser, Raspaud, Máčajová, Škoviera and Steffen etc.
Note that all these snarks are of small (≤5) girth or small (≤5) cyclical edge-connectivity. It

was shown in [31], a possible minimum counterexample for the B-F-Conjecture should have cyclic
edge-connectivity at least 5.

As we known, superposition, introduced by Kochol [27], is an effective method to construct
infinite family of snarks (also see [13,14] for a similar idea given by Fiol). For example, using
superposition methods, Kochol [27] had obtained many snarks without small cycles. He also
constructed a family, denoted by SK , of cyclically 6-edge-connected snarks in [26,28] (call them
Kochol snarks). But there was no any result yet about the B-F-Conjecture for these superposition
snarks in the literature.

In this paper, the Berge–Fulkerson conjecture is verified for this infinite family SK of snarks, see
efinitions 2.17 for the constructions of SK .

Theorem 1.2. Every Kochol snark is Berge–Fulkerson colorable.

Actually, the Berge–Fulkerson conjecture can be verified for a larger family of snarks, (see
heorem 4.7 and Corollary 4.8), which contains the family SK and is a generalization of the
onstruction in [26,28].
In Section 2, some notations, definitions and necessary lemmas are presented. Our main results

nd proofs are presented in Section 3. Further extensions and remarks are presented and discussed
n Section 4.

The approach of this paper is different from almost all early works. Tutte’s integer flow theory is
pplied here as the frame of the proof, and Catlin’s lemma is used as one of the major techniques.

. Preliminaries

.1. Notations and terminology

For most standard notation and terminology, we follow Bondy and Murty [4], West [44] and
iestel [10].
2



S. Liu, R.-X. Hao and C.-Q. Zhang European Journal of Combinatorics 96 (2021) 103344

e

v
o

d
D

3

L

L

o

A circuit is a 2-regular connected subgraph and an even subgraph is a graph with even degree at
very vertex. For the sake of convenience, a circuit of length k is called a k-circuit, and a circuit of

length at most k is called a k−-circuit.
The suppressed graph, denote by G, is the graph obtained from G by suppressing all degree-2

ertices. A k-factor of a graph G is a spanning k-regular subgraph of G. The set of edges of a 1-factor
f a graph G is called a perfect matching of G.
Let G be a graph, the degree of the vertex v in G is denoted by dG(v). Denote by d(u, v) the

istance between vertices u and v which is the length of a shortest path joining u and v in G.
enote by [n] = {1, 2, . . . , n} and P10 the Petersen graph and Kn a complete graph with n vertices.

2.2. Key lemmas for the B-F-conjecture and integer 4-flows

Readers are referred to [45] for definitions and notations about Tutte’s flow theory. The following
are key lemmas in the proofs of the main theorems in this paper.

Lemma 2.1 ([19]). A cubic graph G is Berge–Fulkerson colorable if and only if there are two edge-disjoint
matchings J1 and J2 such that

(1) J1 ∪ J2 is an even subgraph Q in G, and
(2) for each i ∈ {1, 2} and for each component X of G\Ji, either the suppressed graph X is

-edge-colorable, or, X is a circuit.

emma 2.2 (Tutte [40]). The admission of a nowhere-zero 4-flow is equivalent to the 3-edge-coloring
for cubic graphs.

By Lemma 2.2, Lemma 2.1 was restated in [9] as follows.

Lemma 2.3 ([9]). A cubic graph G is Berge–Fulkerson colorable if and only if there are two edge-disjoint
matchings J1 and J2 such that

(1) J1 ∪ J2 is an even subgraph Q in G, and
(2) for each i ∈ {1, 2}, the suppressed graph G\Ji admits a nowhere-zero 4-flow.

emma 2.4 (Catlin [6], or see Lemma 3.8.11 of [45]). Let G be a 2-edge-connected graph containing a
circuit C of length at most 4. If the contracted graph G/C admits a nowhere-zero 4-flow, then G also
admits a nowhere-zero 4-flow.

Definition 2.5 ([21]). (i) Let G and H be two graphs. Then G is called (k,H)-girth-degenerate if and
nly if there are a sequence of graphs G0 = G,G1, . . . ,Gm and a sequence of circuits C0, C1, . . . , Cm−1

such that
(1) Ci ⊆ Gi and |E(Ci)| ≤ k for i = 0, 1, 2, . . . ,m − 1,
(2) Gi+1 = Gi/E(Ci) for i = 0, 1, 2, . . . ,m − 1 and
(3) Gm = H .
(ii) Specifically, a graph G is k-girth-degenerate if G is (k, K1)-girth-degenerate.

The following lemma is a well known corollary of Lemma 2.4.

Lemma 2.6. Every 4-girth-degenerate graph G admits a nowhere-zero 4-flow.

Lemma 2.7 ([21]). Let G be a 2-edge connected graph with a vertex set U such that G − U is acyclic
and dG(v) > 2 for every v ∈ V (G) − U.

Suppose |U | ≤ 3. Then
(1) G is 2-girth-degenerate if |U | = 1,
(2) G is 4-girth-degenerate if |U | = 2, and
(3) G is 4-girth-degenerate or (4, P10)-girth-degenerate if |U | = 3.

Theorem 2.8 (Jaeger [23]). Every 4-edge-connected graph admits a nowhere-zero 4-flow.
3
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2.3. Superposition

Notation in this and the next subsections are about the superposition snarks, constructed by
ochol in [25–28].

efinition 2.9 (Kochol [25–28]). A multipole M is a triple (V , E, S) which consists of a set of vertices
V = V (M), a set of edges E = E(M), and a set of semiedges S = S(M) such that each semiedge
is incident with either one vertex or another semiedge, in which case the two mutually incident
semiedges form a so-called isolated edge.

All multipoles in superedge and supervertex considered here are cubic graphs, i.e., any vertex is
ncident with precisely three edges or semiedges.

efinition 2.10. (i) M is called a k-pole if |S(M)| = k. If S(M) = ∅, then M is an ordinary graph and
s denoted by M = (V , E) in this case.

(ii) If S is partitioned into pairwise disjoint non-empty sets Si of order ki, for i = 1, 2, . . . ,m, then
the k-pole M is a (k1, k2, . . . , km)-pole, denoted by M = (V , E, S1, S2, . . . , Sm) for k = k1+k2+· · · km.
Each Sj is called a connector of M .

(iii) By a superedge we mean any multipole with two connectors and by a supervertex we mean
ny multipole with three connectors.

n example. A multipole with seven semiedges and two isolated edges is shown in Fig. 1, and the
hree connectors are Si for i ∈ [3].

Definition 2.11. Let G be a cubic graph and u1, u2 be two non-adjacent vertices of G.
(i) Denote by (G)u1,u2 a (3, 3)-pole (V , E, S1, S2) obtained from G by deleting u1 and u2 and

eplacing the edges incident with ui by semiedges of Si for i ∈ {1, 2}.
(ii) The (3, 3)-pole (G)u1,u2 is a proper superedge if G is a snark.
(iii) The vertices u1, u2 are called connector-vertices of the superedge (G)u1,u2 .

Following [27], we now present the notion of superposition.

Definition 2.12 ([27,28]). Let G = (V , E) be a cubic graph, and replace each edge e ∈ E by a
superedge E(e) and each vertex v ∈ V by a supervertex V(v). Assume that if v ∈ V is incident with
e ∈ E, then one connector of V(v) is accompanied with one connector of E(e) and that these two
connectors have the same cardinality. Join the semiedges of the accompanying pairs of connectors.
The resulting cubic graph is a superposition of G with V and E , denoted by G(V, E). G(V, E) is a
roper superposition of G if E(e) is proper for every e ∈ E.

emark. Note, it is possible that some edge e is replaced by a ‘‘trivial superedge", the edge e itself.

The following lemma ensures the existence of superposition snarks.

emma 2.13 ([27]). If G is a snark and G(V, E) is a proper superposition of G, then G(V, E) is a snark.

.4. Flower snarks, Kochol snarks

The first cyclically 6-edge-connected snark, denoted by G118, was constructed in [26]. The snark
118 is further generalized to an infinite family SK of cyclically 6-edge-connected snarks in [28].
ach member of SK is a superposition in which superedges are obtained from flower snarks
Definition 2.15) and supervertices are constructed in Definition 2.14.

efinition 2.14 (Supervertices [28]). There are two types of supervertices used in the construction of
narks of SK . One of them is A, illustrated in Fig. 1. Another one A′, illustrated in Fig. 2, is obtained
rom A by inserting two vertices x, y into two isolated edges, respectively, and joining the vertices
, y with an edge.
4
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Fig. 1. The multipole A with seven semiedges and two isolated edges and three connectors.

Fig. 2. The multipole A′ .

Fig. 3. The first drawing of flower snark Fn .

For odd integer n ≥ 5, the flower snark Fn of order 4n is constructed [22] as follows.

Definition 2.15 (Flower snarks [22]). Let n be an odd integer at least 5. The flower snark Fn is
onstructed as follows (see Fig. 3).
(i) The vertex set V (Fn) has a partition {VI, VII, VIII, VC} where

VI = {u1
i : 1 ≤ i ≤ n}, VII = {u2

i : 1 ≤ i ≤ n},
VIII = {u3

i : 1 ≤ i ≤ n} and VC = {vi : 1 ≤ i ≤ n}.

(ii) The graph is comprised of a circuit u1
1u

1
2 · · · u1

nu
1
1 of length n and a circuit u2

1u
2
2 · · ·

2
nu

3
1u

3
2 · · · u3

nu
2
1 of length 2n, and in addition,

(iii) each vertex vi (i ∈ [n]) is adjacent to u1
i , u

2
i and u3

i .

emark. Figs. 3 and 4 are two classical drawings of the flower snarks.

efinition 2.16 (Kochol Flower Superedges). Let Fn be a flower snark given in Definition 2.15, and
, v be two vertices with d(u, v) ≥ 3. Let (Fn)u,v be a (3,3)-pole obtained from Fn by deleting the
ertices u and v and retaining the resulting semiedges.
(i) [26,28] A set BK of superedges is constructed as follows.

BK = {(Fn)u,v : u ∈ VI, v ∈ VC, d(u, v) ≥ 3 for n = 2k + 1 and k ≥ 2},

see Fig. 5 for n = 5, u = v1 and v = u1
3).

(ii) Superedges constructed in (i) are called Kochol flower superedges.
5
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Fig. 4. The second drawing of flower snark Fn .

Fig. 5. A multipole B with two connectors S1 and S2 .

An infinite family SK of cyclically 6-edge-connected snarks [28] is constructed as follows.

efinition 2.17 ([28]). Let C∗ be a 6-circuit of the Petersen graph P10. The set of vertices outside C∗

s {t0, t1, t2, t3}. Every member of SK is constructed from P10 by replacing every vertex of C∗ with
a copy of either A (see Fig. 1) or A′ (see Fig. 2), and every edge of C∗ with a copy of any member
f BK . Leaving the rest of P10 unchanged, and joining the corresponding semiedges of the copies of
upervertices and of superedges (see Fig. 6).

The following two multipoles play an important role in the proof of our main results

efinition 2.18. Let M be a (3,3)-pole with connectors S1 and S2,
(1) M is called a star multipole and denoted by MS if it consists of a degree-6 vertex v and all

emiedges incident with v (see the left one in Fig. 7).
(2) M is called a double star multipole and denoted by DMS if it consists of two adjacent vertices
and v such that each connector Si, for i ∈ {1, 2}, has two semiedges incident with u, and one

emiedge incident with v (see the right one in Fig. 7).

.5. Some technical lemmas

The following is a technical lemma that will be used in the proof of the main results.
6
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Fig. 6. The Petersen graph and the graph G of SK .

Fig. 7. MS and DMS. (Legends: solid-lines are S1-semiedges and dashed-lines are S2-semiedges.)

emma 2.19. Let G be a 2-edge-connected loopless graph with n (1 < n ≤ 7) vertices and m edges.
urther assume that G is simple when n ≥ 6. If

m ≥

{
n + 1, if n ≤ 6;
n + 2, if n = 7,

hen G is 4-girth-degenerate.

roof. Let G be a counterexample to the lemma with |E(G)| as small as possible.

laim 2.19.1. The girth of G is at least 5.

roof. Otherwise, a smaller counterexample could be obtained by contracting a 4−-circuit. ■

By Claim 2.19.1, G is simple.

laim 2.19.2. Every circuit of G is chordless and G has no Hamilton circuit.

roof. Since n ≤ 7, any circuit with a chord must contain a circuit of length ≤ 4. This contradicts
Claim 2.19.1. Since m ≥ n + 1, every Hamilton circuit (if exists) must have a chord. ■

laim 2.19.3. n = 7.

roof. By Claim 2.19.1, n ≥ 5. Let C be a longest circuit of G.
If n = 5, then, by Claim 2.19.1, C must be a Hamilton circuit. This contradicts Claim 2.19.2.
If n = 6, then, by Claims 2.19.1 and 2.19.2, C is of length 5. Since n = 6, let {w} = V (G) − V (C).

ote that w has two neighbors in V (C). Thus, G contains a circuit of length at most 4 consisting of
and a shorter segment of C . This contradicts Claim 2.19.1. ■

The final step. By Claims 2.19.1 and 2.19.2, |V (C)| = 5, 6.
Case 1. |C | = 6. Since m ≥ 9 and C is chordless, the only vertex w outside C is adjacent to

hree vertices of C . Then G must contain a circuit of length at most 4 consisting of w and a shorter

egment of C . This contradicts Claim 2.19.1.

7
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Fig. 8. Three types.

Case 2. |C | = 5. Let C = v1 · · · v5v1 and {w1, w2} = V (G) − V (C). Similar to Case 1,
N(wi) ∩ V (C)| = 1 for every wi /∈ V (C), and, therefore, w1w2 ∈ E(G). Without loss of generality, G
ontains a path P = v1w1w2v3 (by avoiding shorter circuit). Note that v1w1w2v3v4v5v1 is a circuit
f length 6. This contradicts that C is longest. □

. Main theorems

Lemma 3.1 is the key lemma in the proof of main results. Its lengthy proof is presented in
ection 3.2.

emma 3.1. If B ∈ BK (a Kochol flower-superedge in Definition 2.16), then
(1) B contains an even subgraph Q = J1 ∪ J2 with Ji being a matching,
(2) for each i ∈ {1, 2}, B\Ji is either (4,MS)-girth-degenerate or (4,DMS)-girth-degenerate. (See

efinitions 2.18 and 2.5.)

3.1. Proof of Theorem 1.2

Assume Lemma 3.1 holds, we will prove Theorem 1.2.
Note that C∗

= x1x2 · · · x6x1 is a 6-circuit of the Petersen graph P10 and U = V (P10)\V (C∗).
y Definition 2.17, the superposition snark G is constructed from P10 by replacing every edge
µxµ+1 ∈ E(C∗) with a superedge Bµ

∈ BK and every vertex xν ∈ V (C∗) with one of {A, A′
} for

ach µ, ν ∈ [6]. (See Definitions 2.14 and 2.16 for BK and {A, A′
} respectively.)

By Lemma 3.1, each Bµ contains an even subgraph Qµ such that
(1) Qµ is the union of two matchings Jµ1 and Jµ2 and
(2) Bµ\Jµi is either (4,MS)-girth-degenerate or (4,DMS)-girth-degenerate.
Denote

Q+
=

6⋃
µ=1

Qµ, J+1 =

6⋃
µ=1

Jµ1 , and J+2 =

6⋃
µ=1

Jµ2 .

In the remaining part of the proof, we are to show that G\J+i , for each i ∈ {1, 2}, is 4-girth-
degenerate. Thus, by Lemma 2.6 and Lemma 2.3, G admits a B-F-coloring.

Claim 3.1.1. For each i ∈ {1, 2}, (G\J+i )\U is 4-girth-degenerate.

roof. Recall that U = V (P10)\V (C∗), and, for each i ∈ {1, 2}, (G\J+i )\U is the subgraph obtained
rom the 6-circuit C∗ by replacing each edge xµxµ+1 with Bµ\Jµi and each vertex xν with V(xν) ∈

A, A′
}.

By Lemma 3.1, the graph Bµ\Jµi is either (4,MS)-girth-degenerate or (4,DMS)-girth-degenerate.
That is, by recursively contracting a sequence of circuits, say Xµ

i , it becomes one of {MS,DMS}.
Denote the resulting subgraph by Hµ

i which contains 1 or 2 vertices.
There are three types of pairs {Hµ

i ,Hµ+1
i } (illustrated in Fig. 8). Let V(xµ+1) be the supervertex

µ µ+1 G\J+)\U by contracting
between the superedges B and B . Let Li be the graph obtained from ( i

8
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Fig. 9. Seven types with supervertex A.

6
µ=1 X

µ

i . The subgraph H (µ,µ+1)
i of Li induced by vertices of Hµ

i ,Hµ+1
i and V(xµ+1) contains at most

vertices and satisfies all conditions of Lemma 2.19. (See Figs. 9 and 10.) By Lemma 2.19, H (µ,µ+1)
i

s 4-girth-degenerate (by recursively contracting a sequence of circuits, say Yµ

i ), which implies that
G\J+i )\U is 4-girth-degenerate. ■

laim 3.1.2. The graph P10/C∗, obtained from Pertersen graph by contracting the 6-circuit C∗, is
-girth-degenerate.

roof. This claim is straightforward since P10/C∗ (see Fig. 11) contains 5 vertices and 9 edges
nd satisfies all conditions of Lemma 2.19. By Lemma 2.19, the graph P10/C∗, after recursively

contracting a sequence of circuits, say Z , becomes a single vertex. This completes the proof of the
claim. ■

The final step. The combination of the above two claims yields that, for each i ∈ {1, 2}, the
suppressed graph G\J+i , after recursively contracting the circuits in⋃

µ∈[6]

Xµ

i ∪

⋃
µ∈[6]

Yµ

i ∪ Z,

becomes a single vertex.
Thus, by Lemma 2.6, each G\J+i (i ∈ {1, 2}) admits a nowhere-zero 4-flow and, therefore, by

emma 2.3, G admits a B-F-coloring. □

.2. Proof of Lemma 3.1

In order to apply Lemma 2.6, we are to find a sequence of 4−-circuits recursively for a processing
f repeated contractions as follows. Let B ∈ BK and µ ∈ {1, 2}. We are going to find

(a) an integer m,
(b) a sequence X of subgraphs X0, X1, . . . , Xm−1 of B\Jµ and
(c) a sequence of contracted subgraphs B0, . . . , Bm of B\Jµ such that

(1) B0 = B\Jµ,
(2) for every i ∈ {0, 1, . . . ,m − 1},
9
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Fig. 10. Seven types with supervertex A′ .

Fig. 11. The graph P10/C∗ .

(2-i) each subgraph Xi corresponds to a 4−-circuit or a union of some 4−-circuits in
Bi.

(2-ii) Bi+1 = Bi/E(Xi), and,

(3) Bm is an MS or DMS (see Fig. 7).

Note that for any B ∈ BK , B is a multipole (Fn)uv , where u, v are two connector-vertices of the
flower snark Fn with d(u, v) ≥ 3, where u ∈ VI, v ∈ VC and {VI , VII , VIII , VC } is the partition of V (Fn).
(See Definition 2.16.)

Consider B ∈ BK . That is, u ∈ VI and v ∈ VC .
Without loss of a generality, let v = v1. As d(u, v) ≥ 3, the vertex u is u1

j for 3 ≤ j ≤ n − 1. By
symmetry of the flower snark, it is sufficient to consider

3 ≤ j ≤
n + 1
2

. (1)

Case 1. Consider the flower snark Fn with n = 5. The inequality (1) implies that j = 3.
Let

Q = u3
2u

3
3u

3
4v4u2

4u
2
3u

2
2v2u3

2,

and J1, J2 be a pair of edge-disjoint perfect matchings of Q . (See Fig. 12, in which bold-lines are
J -edges and dashed-lines are J -edges.)
1 2

10
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c
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Fig. 12. Case 1: n = 5 and j = 3. (Legends: bold-lines are J1-edges, dashed-lines are J2-edges and thin-lines are edges not
n Q . Dotted-circles v1 and u1

3 are two connector-vertices, hollow-circles are vertices of Q and solid-circles are vertices
ot in Q .)

Fig. 13. Case 1: B\J1 with n = 5 and j = 3. (Legends: E(X0) is red, E(X1) − E(X0) is green.) (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

Let π : V (Fn) → V (Fn) such that

π (x) =

⎧⎨⎩
x, if x ∈ VC ∪ VI;

u2
µ, if x = u3

µ;

u3
µ, if x = u2

µ.

(2)

Note that π is an automorphism of the flower snark Fn with π (J1) = J2. Thus, B\J1 ∼= B\J2, and,
herefore, it is sufficient to consider only B\J1 (see Fig. 13).

Let

C0,1 = u3
5v5u1

5u
1
4v4u3

4u
3
5, C0,2 = u3

1u
2
5u

2
4u

2
3v3u3

3u
3
2u

3
1, C1,1 = u3

5v5u1
5u

1
1u

1
2v2u2

2u
2
1u

3
5,

nd

X0 = C0,1 ∪ C0,2, X1 = C1,1.

laim 3.2.1. The subgraph Xi corresponds to a union of 4−-circuits in Bi for i = 0, 1.

Proof. Although C0,1 is a 6-circuit and C0,2 is a 7-circuit in B\J1, each of them corresponds to a
4−-circuit in the suppressed subgraph B0 = B\J1 since {v4, u2

4, u
3
4, u

3
3, u

2
3, u

2
2, v2, u3

2} (= V (Q )) is the
et of degree-2 vertices of B\J1 (hollow-circles in the figure), each of these degree two vertices is
uppressed in B0.
It is similar for C1,1. The circuit C1.1 is of length 8 in B\J1 and corresponds to a 4-circuit in the

ontracted subgraph B1 = B0/X0 since the segment u1
5v5u3

5 of C0,1 is contracted to a single vertex
nd v , u2 are degree-2 vertices of B\J . Thus the claim is proved. ■
2 2 1

11
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i
t

i

C

Q

o

a

C

Fig. 14. Subcase 2.1: n ≥ 7 and j = 3. (Legends: Dotted-circles v1 and u1
3 are two connector-vertices, hollow-circles are

vertices of Q and solid-circles are vertices not in Q .)

Fig. 15. Subcase 2.1: B\J1 with n ≥ 7 and j = 3. (Legends: E(X0) is red, E(X1) − E(X0) is green, E(X2) − (E(X0) ∪ E(X1))
s blue.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

Since X0 ∪ X1 is a spanning subgraph of B0 with two components C0,1 ∪ C1,1 and C0,2, by
Claim 3.2.1, it is easy to see that B\J1/(X0 ∪ X1) = B1/X1 is a double star multipole. Thus, B\J1
s (4, DMS)-girth-degenerate.

ase 2. Consider the flower snark Fn for n ≥ 7.

Subcase 2.1. j = 3.
Let Q = u3

2u
3
3 · · · u3

nvnu2
nu

2
n−1 · · · u2

2v2u3
2, and J1, J2 be a pair of edge-disjoint perfect matchings of

. (See Fig. 14, in which bold-lines are J1-edges, and dashed-lines are J2-edges.)
By the same reason as that π in Eq. (2) is an automorphism of the flower snark Fn with π (J1) = J2,

ne has that B\J1 ∼= B\J2. It is sufficient to consider B\J1 (see Fig. 15).
Let

C0,l =

{
vlu1

l u
1
l+1vl+1u3

l+1u
3
l vl, if l is even and l ∈ {4, . . . , n − 1};

vlu1
l u

1
l+1vl+1u2

l+1u
2
l vl, if l is odd and l ∈ {5, . . . , n − 2},

C1,1 = u3
1u

2
nvnu1

nu
1
n−1 · · · u1

5u
1
4v4u2

4u
2
3v3u3

3u
3
2u

3
1, C2,1 = vn−1u3

n−1u
3
nu

2
1u

2
2v2u1

2u
1
1u

1
nu

1
n−1vn−1,

nd

X0 =

n−2⋃
l=4

C0,l, X1 = C1,1, X2 = C2,1.

laim 3.2.2. Each circuit C0,ℓ of Xi corresponds to a 4−-circuit in Bi for i = 0, 1, 2.
12
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X

S

a
a

o

u
t

m

Fig. 16. Subcase 2.2: n ≥ 7 and 4 ≤ j ≤
n+1
2 (Legends: Dotted-circles v1 and u1

j are two connector-vertices, hollow-circles
are vertices of Q and solid-circles are vertices not in Q .)

Proof. Since {u3
2, u

3
3, . . . , u

3
n, vn, u2

n, u
2
n−1, . . . , u

2
2, v2} (= V (Q )) is the set of degree-2 vertices in B\J1

(hollow-circles in the figure), each circuit of X0 corresponds to a 4−-circuit in B0.
Note that C1,1 corresponds to a 4−-circuit in B1 since the path u1

n−1 · · · u1
5u

1
4v4 in C1,1 is contracted

to a single vertex of B1; C2,1 corresponds to a 4−-circuit in B2 as the path u1
nu

1
n−1vn−1 in C2,1 is

contracted to a single vertex in B2. Thus the claim is proved. ■

Since X0 ∪ X1 ∪ X2 is a spanning subgraph of B0 with one components, by Claim 3.2.2, B\J1/(X0 ∪

1 ∪ X2) = B2/X2 is a star multipole, thus B\J1 is (4, MS)-girth-degenerate.

ubcase 2.2. 4 ≤ j ≤
n+1
2 .

Let

Q = u2
1u

2
2 · · · u2

nu
3
1u

3
2 · · · u3

nu
2
1,

nd J1, J2 be a pair of edge-disjoint perfect matchings of Q . (See Fig. 16, where bold-lines are J1-edges
nd dashed-lines are J2-edges.)
By the same reason as that π in Eq. (2) is an automorphism of the flower snark Fn with π (J1) = J2,

ne has that B\J1 ∼= B\J2. It is sufficient to consider B\J1 (see Fig. 17).
Let

C0,l =

{
vlu1

l u
1
l+1vl+1u3

l+1u
3
l vl, if l is even and l ∈ {2, . . . , j − 2} ∪ {j + 1, . . . , n − 1};

vlu1
l u

1
l+1vl+1u2

l+1u
2
l vl, if l is odd and l ∈ {3, . . . , j − 2} ∪ {j + 1, . . . , n − 2},

C1,1 =

{
u1
1u

1
2 · · · u1

j−1vj−1u3
j−1u

3
j vju2

j u
2
j+1vj+1u1

j+1u
1
j+2 · · · u1

nu
1
1, if j is odd;

u1
1u

1
2 · · · u1

j−1vj−1u2
j−1u

2
j vju3

j u
3
j+1vj+1u1

j+1u
1
j+2 · · · u1

nu
1
1, if j is even,

and

X0 = (
j−2⋃
l=2

C0,l) ∪ (
n−1⋃
l=j+1

C0,l), X1 = C1,1.

Claim 3.2.3. The subgraph Xi corresponds to a union of 4−-circuits in Bi for i = 0, 1.

Proof. Since each one in {u2
1, u

2
2, . . . , u

2
n, u

3
1, u

3
2, . . . , u

3
n} (= V (Q )) is a degree-2 vertex of B\J1

(hollow-circles in the figure). Hence, it is easy to see that X0 corresponds to the union of 4−-circuit
in B0 = B\J1.

Note that C1,1 corresponds to a 4−-circuit in B1 since each of the paths u1
2u

1
3 · · · u1

j−1 and
1
j+1u

1
j+2 · · · u1

n in C1,1 is contracted to a single vertex in B1 and u2
1, u

2
2, u

3
1 are degree-2 vertices. Thus

he subgraph X1 corresponds to a union of 4−-circuits in B1. ■

Since X0 ∪ X1 is a spanning subgraph of B0 with one component, by Claim 3.2.3, B1/X1 is a star
ultipole, thus, B\J is (4, MS)-girth-degenerate. □
1

13
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v

T

Fig. 17. Subcase 2.2: B\J1 with n ≥ 7 and 4 ≤ j ≤
n+1
2 . The top one: j is odd, the bottom one: j is even. (Legends: E(X0)

s red, E(X1) − E(X0) is green.) (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

. Extensions and remarks

The method introduced in [26,27] can be further generalized to construct a large family of
uperposition snarks (see Definition 4.1 and Theorem 4.2). And, as an extension of Theorem 1.2,
he B-F-Conjecture is also verified for some larger families of such snarks.

efinition 4.1. (1) Let G be a snark and R be an even subgraph of G, V be a set of supervertices
and E be a set of proper superedges. The graph K (G, R,V, E) is a superposition snark if it is obtained
from G by replacing vertices and edges of R with members of V and E .

(2) The graph G is called the frame of K (G, R,V, E).
(3) And R(V, E) is the subgraph of K (G, R,V, E) induced by all superedges and supervertices

round R. That is, R(V, E) = K (G, R,V, E) − (G − V (R)).

By Lemma 2.13, we have the following theorem.

heorem 4.2. Every graph K (G, R,V, E) defined in Definition 4.1-(1) is a snark.

.1. Berge–Fulkerson coloring for flower-expanded superposition snarks

The family BK of Kochol flower superedges is generalized as follows.

Definition 4.3 (Flower Superedges). Let Fn be a flower snark given in Definition 2.15, and u, v be two
ertices with d(u, v) ≥ 3. (Fn)u,v is the same as Definition 2.16.
(i) The set BK (see Definition 2.16) of superedges can be further extended as follows.

B = {(Fn)u,v : u, v ∈ V (Fn), d(u, v) ≥ 3 for n = 2k + 1 and k ≥ 2}.

hat is, connector-vertices u and v can be located in any subset V , V , V and V .
I II III C

14
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D
R

w

T
G

c

P

g

Fig. 18. A graph K (G, R,V, E) given in Definition 4.5.

(ii) Superedges constructed in (i) are called flower superedges.

It is obvious that BK ⊊ B.
With a similar proof of Lemma 3.1, we have the general lemma.

Lemma 4.4. If B ∈ B (a flower-superedge in Definition 4.3), then
(1) B contains an even subgraph Q = J1 ∪ J2 with Ji being a matching,
(2) for each i ∈ {1, 2}, B\Ji is either (4,MS)-girth-degenerate or (4,DMS)-girth-degenerate.

efinition 4.5. Let K (G, R,V, E) be a superposition snark with the frame G and the even subgraph
. Then K (G, R,V, E) (see Definition 4.1-(1)) is flower-expanded if V ⊆ {A, A′

} and E = B (defined in
Definitions 2.14 and 4.3). That is,

(1) every edge of R is replaced with a flower-superedge B ∈ B,
(2) and every vertex of R is replaced with A (Fig. 1) or A′ (Fig. 2).

Fig. 18 is an example of K (G, R,V, E), where G is the flower snark F5, R is a circuit of length 10
induced by the vertices in level II and level III , the set of supervertices V consists of A and A′, and
superedges are any member of B.

With the same proof of Theorem 1.2, we have the following general lemma.

Lemma 4.6. Let K (G, R,V, E) be a superposition snark defined in Definition 4.1-(1) with the frame G
and the even subgraph R. If

(1) the subgraph R(V, E) (defined in Definition 4.1-(3)) contains an even subgraph Q = J1 ∪ J2 with
Ji being a matching,

(2) for every i ∈ {1, 2} and for every superedge B (contained in R(V, E)), the suppressed multipole
B\Ji is either (4,MS)-girth-degenerate or (4,DMS)-girth-degenerate.

Then, for each i ∈ {1, 2}, K (G, R,V, E)\Ji is (4,G/R)-girth-degenerate.

By Lemma 2.1 or Lemma 2.2, the combination of Lemmas 4.4 and 4.6 implies the following result,
hich generalizes Theorem 1.2.

heorem 4.7. Let K (G, R,V, E) be a superposition snark defined in Definition 4.1-(1) with the frame
and the even subgraph R. If
(1) G/R admits nowhere-zero 4-flow and
(2) K (G, R,V, E) is flower-expanded (see Definition 4.5), then K (G, R,V, E) is Berge–Fulkerson

olorable.

roof. Similar to the final step of the proof of Theorem 1.2. □

By Theorem 4.7, we may verify the B-F-conjecture for a flower-expanded superposition snark
K (G, R,V, E) as long as G/R admits a nowhere-zero 4-flow (by applying Lemma 2.6). There are many

raphs G satisfying such property. The following is a short list of flower-expanded superposition

15
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e

snark families (certainly, they contain the family of superposition snarks in our main theorem,
and the most noticeable family of cyclically 6-edge-connected superposition snarks constructed by
Kochol in [26,28]).

Corollary 4.8. Let K (G, R,V, E) be a flower-expanded superposition snark with the frame G and the
ven subgraph R. Then K (G, R,V, E) admits a B-F-coloring if one of the followings holds.
(1) G is the flower snark, and R is the circuit induced by vertices in level II and level III in Fig. 3.
(2) R has at most 2 components, G − E(R) is acyclic.
(3) R has 3 components, G − E(R) is acyclic, and, G/R is not the Petersen graph.
(4) G is a permutation graph and R is either the chordless 2-factor or one component of the 2-factor.
(5) G is any cyclically 4-edge-connected snark and R is any 2-factor of G.
(6) G is critical and R is any even subgraph of G. (A snark G is critical if G/e admits a nowhere zero

4-flow for any edge e ∈ E(G).)

Proof. For (1) and (4), the contracted graph G/R is obviously 4-girth-degenerate. (2) and (3) are
proved by Lemma 2.7. For (5), by Jaeger Theorem (Theorem 2.8), every 4-edge-connected graph
admits a nowhere-zero 4-flow, and G/R is 4-edge-connected which implies G/R admits a nowhere
zero 4-flow. For (6), the contracted graph G/R admits a nowhere-zero 4-flow obviously. □

Remark. The main theorem (Theorem 1.2) of the paper is a special case of (1) in Corollary 4.8
(Petersen graph is obtained from the flower snark F3 by contracting the triangle). If R is a dominating
circuit, then it is a special case of (2) in Corollary 4.8. It was conjectured by Thomassen that every
cyclically 4-edge connected cubic graph contains a dominating circuit [39].
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