Berge-Fulkerson coloring for some families of superposition snarks

Siyan Liu ${ }^{\text {a }}$, Rong-Xia Hao ${ }^{\text {a }}$, Cun-Quan Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

A R T I CLE INFO

Article history:

Received 16 November 2020
Accepted 30 March 2021
Available online xxxx

Abstract

It is conjectured by Berge and Fulkerson that every bridgeless cubic graph has six perfect matchings such that each edge is contained in exactly two of them. This conjecture has been verified for many families of snarks with small (≤ 5) cyclic edge-connectivity. An infinite family, denoted by \mathcal{S}_{K}, of cyclically 6-edge-connected superposition snarks was constructed in [European J. Combin. 2002] by Kochol. In this paper, the Berge-Fulkerson conjecture is verified for the family \mathcal{S}_{K}, and, furthermore, some larger families containing \mathcal{S}_{K}. This is the first paper about the Berge-Fulkerson conjecture for superposition snarks and cyclically 6-edge-connected snarks. Tutte's integer flow and Catlin's contractible configuration are applied here as the key methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The Berge-Fulkerson conjecture is one of the most famous open problems in graph theory.
Conjecture 1.1 (Berge-Fulkerson Conjecture, (simply say B-F-Conjecture) [16], or see [34,36]). Every bridgeless cubic graph has six perfect matchings such that each edge belongs to exactly two of them.

The six perfect matchings in the B-F-Conjecture are called a Fulkerson-cover (or B-F-coloring). The B-F-Conjecture can be restated as an edge coloring problem, that is, for every bridgeless cubic graph G, there exists a proper 6-edge-coloring of the graph $2 G$, where the graph $2 G$ is obtained from G by duplicating every edge to become a pair of parallel edges.

[^0]Although the statement of the B-F-Conjecture is very simple, the solution has eluded many mathematicians over five decades and remains beyond the horizon.

The B-F-Conjecture is equivalent to the statement that every bridgeless cubic graph has a family of six even subgraphs such that every edge is covered precisely four times. It was proved by Bermond, Jackson and Jaeger [2] that every bridgeless graph has a family of seven even subgraphs such that every edge is covered precisely four times. Fan [11] proved that every bridgeless graph has a family of ten even subgraphs such that every edge is covered precisely six times.

Similar to other major open problems, such as, Tutte's 5 -flow conjecture, cycle double cover conjecture, etc., the B-F-Conjecture is trivial for 3-edge-colorable cubic graphs, and remains widely open for snarks. And it is well-known that snarks play an essential role for the B-F-Conjecture, flow problems, and cycle cover problems in graph theory, see [45].

The relation between Berge-Fulkerson coloring and shortest cycle cover problems was discovered in [12,37]. Some generalizations and variations of the B-F-Conjecture have been proposed [15,34], such as, the 5-perfect matching covering problem (Berge conjecture), k-cycle double cover problems, etc. The structures of graphs with unique Berge-Fulkerson coloring were characterized in [35]. And a necessary and sufficient condition for the conjecture was obtained in [19] (and its integer flow version in [9]).

In $[5,7,19,20,30]$ etc., the B-F-Conjecture was verified for various families of snarks such as Petersen graph, generalized Blanuša snarks, Szekeres snarks and flower snarks, Watkins snarks, Celmins-Swart snarks, Szekeres-Watkins snarks, Goldberg snarks, Isaace snarks, Loupekine snarks, Lukot'ka-Máčajová-Mazák-Škoviera snarks, snarks with order at most 36, Abreu-Labbate-RizziSheehan snarks and Hägglund-Hoffmann-Ostenhof snarks etc. (See literature [1,3,5,8,17,18,22,29, 38,41-43] etc. for references or surveys of snarks.)

In [24,32,33] etc., Fan-Raspaud conjecture [12], a weaker version of the B-F-Conjecture, was verified partially by Kaiser, Raspaud, Máčajová, Škoviera and Steffen etc.

Note that all these snarks are of small (≤ 5) girth or small (≤ 5) cyclical edge-connectivity. It was shown in [31], a possible minimum counterexample for the B-F-Conjecture should have cyclic edge-connectivity at least 5 .

As we known, superposition, introduced by Kochol [27], is an effective method to construct infinite family of snarks (also see $[13,14]$ for a similar idea given by Fiol). For example, using superposition methods, Kochol [27] had obtained many snarks without small cycles. He also constructed a family, denoted by \mathcal{S}_{K}, of cyclically 6 -edge-connected snarks in $[26,28]$ (call them Kochol snarks). But there was no any result yet about the B-F-Conjecture for these superposition snarks in the literature.

In this paper, the Berge-Fulkerson conjecture is verified for this infinite family \mathcal{S}_{K} of snarks, see Definitions 2.17 for the constructions of \mathcal{S}_{K}.

Theorem 1.2. Every Kochol snark is Berge-Fulkerson colorable.
Actually, the Berge-Fulkerson conjecture can be verified for a larger family of snarks, (see Theorem 4.7 and Corollary 4.8), which contains the family \mathcal{S}_{K} and is a generalization of the construction in [26,28].

In Section 2, some notations, definitions and necessary lemmas are presented. Our main results and proofs are presented in Section 3. Further extensions and remarks are presented and discussed in Section 4.

The approach of this paper is different from almost all early works. Tutte's integer flow theory is applied here as the frame of the proof, and Catlin's lemma is used as one of the major techniques.

2. Preliminaries

2.1. Notations and terminology

For most standard notation and terminology, we follow Bondy and Murty [4], West [44] and Diestel [10].

A circuit is a 2-regular connected subgraph and an even subgraph is a graph with even degree at every vertex. For the sake of convenience, a circuit of length k is called a k-circuit, and a circuit of length at most k is called a k^{-}-circuit.

The suppressed graph, denote by \bar{G}, is the graph obtained from G by suppressing all degree-2 vertices. A k-factor of a graph G is a spanning k-regular subgraph of G. The set of edges of a 1 -factor of a graph G is called a perfect matching of G.

Let G be a graph, the degree of the vertex v in G is denoted by $d_{G}(v)$. Denote by $d(u, v)$ the distance between vertices u and v which is the length of a shortest path joining u and v in G. Denote by $[n]=\{1,2, \ldots, n\}$ and P_{10} the Petersen graph and K_{n} a complete graph with n vertices.

2.2. Key lemmas for the B-F-conjecture and integer 4-flows

Readers are referred to [45] for definitions and notations about Tutte's flow theory. The following are key lemmas in the proofs of the main theorems in this paper.

Lemma 2.1 ([19]). A cubic graph G is Berge-Fulkerson colorable if and only if there are two edge-disjoint matchings J_{1} and J_{2} such that
(1) $J_{1} \cup J_{2}$ is an even subgraph Q in G, and
(2) for each $i \in\{1,2\}$ and for each component X of $G \bigvee_{i}$, either the suppressed graph \bar{X} is 3-edge-colorable, or, X is a circuit.

Lemma 2.2 (Tutte [40]). The admission of a nowhere-zero 4-flow is equivalent to the 3-edge-coloring for cubic graphs.

By Lemma 2.2, Lemma 2.1 was restated in [9] as follows.
Lemma 2.3 ([9]). A cubic graph G is Berge-Fulkerson colorable if and only if there are two edge-disjoint matchings J_{1} and J_{2} such that
(1) $J_{1} \cup J_{2}$ is an even subgraph Q in G, and
(2) for each $i \in\{1,2\}$, the suppressed graph $\overline{G \bigvee_{i}}$ admits a nowhere-zero 4-flow.

Lemma 2.4 (Catlin [6], or see Lemma 3.8.11 of [45]). Let G be a 2-edge-connected graph containing a circuit C of length at most 4. If the contracted graph G/C admits a nowhere-zero 4-flow, then G also admits a nowhere-zero 4-flow.

Definition 2.5 ([21]). (i) Let G and H be two graphs. Then G is called (k, H)-girth-degenerate if and only if there are a sequence of graphs $G_{0}=G, G_{1}, \ldots, G_{m}$ and a sequence of circuits $C_{0}, C_{1}, \ldots, C_{m-1}$ such that
(1) $C_{i} \subseteq G_{i}$ and $\left|E\left(C_{i}\right)\right| \leq k$ for $i=0,1,2, \ldots, m-1$,
(2) $G_{i+1}=G_{i} / E\left(C_{i}\right)$ for $i=0,1,2, \ldots, m-1$ and
(3) $G_{m}=H$.
(ii) Specifically, a graph G is k-girth-degenerate if G is $\left(k, K_{1}\right)$-girth-degenerate.

The following lemma is a well known corollary of Lemma 2.4.
Lemma 2.6. Every 4-girth-degenerate graph G admits a nowhere-zero 4-flow.
Lemma 2.7 ([21]). Let G be a 2-edge connected graph with a vertex set U such that $G-U$ is acyclic and $d_{G}(v)>2$ for every $v \in V(G)-U$.

Suppose $|U| \leq 3$. Then
(1) G is 2 -girth-degenerate if $|U|=1$,
(2) G is 4-girth-degenerate if $|U|=2$, and
(3) G is 4-girth-degenerate or (4, P_{10})-girth-degenerate if $|U|=3$.

Theorem 2.8 (Jaeger [23]). Every 4-edge-connected graph admits a nowhere-zero 4-flow.

2.3. Superposition

Notation in this and the next subsections are about the superposition snarks, constructed by Kochol in [25-28].

Definition 2.9 (Kochol [25-28]). A multipole M is a triple (V, E, S) which consists of a set of vertices $V=V(M)$, a set of edges $E=E(M)$, and a set of semiedges $S=S(M)$ such that each semiedge is incident with either one vertex or another semiedge, in which case the two mutually incident semiedges form a so-called isolated edge.

All multipoles in superedge and supervertex considered here are cubic graphs, i.e., any vertex is incident with precisely three edges or semiedges.

Definition 2.10. (i) M is called a k-pole if $|S(M)|=k$. If $S(M)=\emptyset$, then M is an ordinary graph and is denoted by $M=(V, E)$ in this case.
(ii) If S is partitioned into pairwise disjoint non-empty sets S_{i} of order k_{i}, for $i=1,2, \ldots, m$, then the k-pole M is a $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$-pole, denoted by $M=\left(V, E, S_{1}, S_{2}, \ldots, S_{m}\right)$ for $k=k_{1}+k_{2}+\cdots k_{m}$. Each S_{j} is called a connector of M.
(iii) By a superedge we mean any multipole with two connectors and by a supervertex we mean any multipole with three connectors.

An example. A multipole with seven semiedges and two isolated edges is shown in Fig. 1, and the three connectors are S_{i} for $i \in[3]$.

Definition 2.11. Let G be a cubic graph and u_{1}, u_{2} be two non-adjacent vertices of G.
(i) Denote by $(G)_{u_{1}, u_{2}}$ a (3,3)-pole $\left(V, E, S_{1}, S_{2}\right)$ obtained from G by deleting u_{1} and u_{2} and replacing the edges incident with u_{i} by semiedges of S_{i} for $i \in\{1,2\}$.
(ii) The (3,3)-pole $(G)_{u_{1}, u_{2}}$ is a proper superedge if G is a snark.
(iii) The vertices u_{1}, u_{2} are called connector-vertices of the superedge $(G)_{u_{1}, u_{2}}$.

Following [27], we now present the notion of superposition.

Definition 2.12 ([27,28]). Let $G=(V, E)$ be a cubic graph, and replace each edge $e \in E$ by a superedge $\mathcal{E}(e)$ and each vertex $v \in V$ by a supervertex $\mathcal{V}(v)$. Assume that if $v \in V$ is incident with $e \in E$, then one connector of $\mathcal{V}(v)$ is accompanied with one connector of $\mathcal{E}(e)$ and that these two connectors have the same cardinality. Join the semiedges of the accompanying pairs of connectors. The resulting cubic graph is a superposition of G with \mathcal{V} and \mathcal{E}, denoted by $G(\mathcal{V}, \mathcal{E}) . G(\mathcal{V}, \mathcal{E})$ is a proper superposition of G if $\mathcal{E}(e)$ is proper for every $e \in E$.

Remark. Note, it is possible that some edge e is replaced by a "trivial superedge", the edge e itself.
The following lemma ensures the existence of superposition snarks.

Lemma 2.13 ([27]). If G is a snark and $G(\mathcal{V}, \mathcal{E})$ is a proper superposition of G, then $G(\mathcal{V}, \mathcal{E})$ is a snark.

2.4. Flower snarks, Kochol snarks

The first cyclically 6-edge-connected snark, denoted by G_{118}, was constructed in [26]. The snark G_{118} is further generalized to an infinite family \mathcal{S}_{K} of cyclically 6-edge-connected snarks in [28]. Each member of \mathcal{S}_{K} is a superposition in which superedges are obtained from flower snarks (Definition 2.15) and supervertices are constructed in Definition 2.14.

Definition 2.14 (Supervertices [28]). There are two types of supervertices used in the construction of snarks of \mathcal{S}_{K}. One of them is A, illustrated in Fig. 1. Another one A^{\prime}, illustrated in Fig. 2, is obtained from A by inserting two vertices x, y into two isolated edges, respectively, and joining the vertices x, y with an edge.

A
Fig. 1. The multipole A with seven semiedges and two isolated edges and three connectors.

Fig. 2. The multipole A^{\prime}.

Fig. 3. The first drawing of flower snark F_{n}.

For odd integer $n \geq 5$, the flower snark F_{n} of order $4 n$ is constructed [22] as follows.
Definition 2.15 (Flower snarks [22]). Let n be an odd integer at least 5 . The flower snark F_{n} is constructed as follows (see Fig. 3).
(i) The vertex set $V\left(F_{n}\right)$ has a partition $\left\{V_{\mathrm{I}}, V_{\mathrm{II}}, V_{\mathrm{III}}, V_{\mathrm{C}}\right\}$ where

$$
\begin{aligned}
& V_{\mathrm{I}}=\left\{u_{i}^{1}: 1 \leq i \leq n\right\}, V_{\mathrm{II}}=\left\{u_{i}^{2}: 1 \leq i \leq n\right\}, \\
& V_{\mathrm{III}}=\left\{u_{i}^{3}: 1 \leq i \leq n\right\} \text { and } V_{\mathrm{C}}=\left\{v_{i}: 1 \leq i \leq n\right\} .
\end{aligned}
$$

(ii) The graph is comprised of a circuit $u_{1}^{1} u_{2}^{1} \cdots u_{n}^{1} u_{1}^{1}$ of length n and a circuit $u_{1}^{2} u_{2}^{2} \ldots$ $u_{n}^{2} u_{1}^{3} u_{2}^{3} \cdots u_{n}^{3} u_{1}^{2}$ of length $2 n$, and in addition,
(iii) each vertex $v_{i}(i \in[n])$ is adjacent to u_{i}^{1}, u_{i}^{2} and u_{i}^{3}.

Remark. Figs. 3 and 4 are two classical drawings of the flower snarks.
Definition 2.16 (Kochol Flower Superedges). Let F_{n} be a flower snark given in Definition 2.15, and u, v be two vertices with $d(u, v) \geq 3$. Let $\left(F_{n}\right)_{u, v}$ be a (3,3)-pole obtained from F_{n} by deleting the vertices u and v and retaining the resulting semiedges.
(i) $[26,28]$ A set \mathcal{B}_{K} of superedges is constructed as follows.

$$
\mathcal{B}_{K}=\left\{\left(F_{n}\right)_{u, v}: u \in V_{\mathrm{I}}, v \in V_{\mathrm{C}}, d(u, v) \geq 3 \text { for } n=2 k+1 \text { and } k \geq 2\right\},
$$

(see Fig. 5 for $n=5, u=v_{1}$ and $v=u_{3}^{1}$).
(ii) Superedges constructed in (i) are called Kochol flower superedges.

Fig. 4. The second drawing of flower snark F_{n}.

B
Fig. 5. A multipole B with two connectors S_{1} and S_{2}.

An infinite family \mathcal{S}_{K} of cyclically 6-edge-connected snarks [28] is constructed as follows.
Definition 2.17 ([28]). Let C^{*} be a 6 -circuit of the Petersen graph P_{10}. The set of vertices outside C^{*} is $\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$. Every member of \mathcal{S}_{K} is constructed from P_{10} by replacing every vertex of C^{*} with a copy of either A (see Fig. 1) or A^{\prime} (see Fig. 2), and every edge of C^{*} with a copy of any member of \mathcal{B}_{K}. Leaving the rest of P_{10} unchanged, and joining the corresponding semiedges of the copies of supervertices and of superedges (see Fig. 6).

The following two multipoles play an important role in the proof of our main results
Definition 2.18. Let M be a (3,3)-pole with connectors S_{1} and S_{2},
(1) M is called a star multipole and denoted by MS if it consists of a degree-6 vertex v and all semiedges incident with v (see the left one in Fig. 7).
(2) M is called a double star multipole and denoted by DMS if it consists of two adjacent vertices u and v such that each connector S_{i}, for $i \in\{1,2\}$, has two semiedges incident with u, and one semiedge incident with v (see the right one in Fig. 7).

2.5. Some technical lemmas

The following is a technical lemma that will be used in the proof of the main results.

Fig. 6. The Petersen graph and the graph G of \mathcal{S}_{K}.

Fig. 7. MS and DMS. (Legends: solid-lines are S_{1}-semiedges and dashed-lines are S_{2}-semiedges.)

Lemma 2.19. Let G be a 2 -edge-connected loopless graph with $n(1<n \leq 7)$ vertices and m edges. Further assume that G is simple when $n \geq 6$. If

$$
m \geq \begin{cases}n+1, & \text { if } n \leq 6 \\ n+2, & \text { if } n=7\end{cases}
$$

then G is 4-girth-degenerate.
Proof. Let G be a counterexample to the lemma with $|E(G)|$ as small as possible.
Claim 2.19.1. The girth of G is at least 5 .
Proof. Otherwise, a smaller counterexample could be obtained by contracting a 4^{-}-circuit.
By Claim 2.19.1, G is simple.
Claim 2.19.2. Every circuit of G is chordless and G has no Hamilton circuit.
Proof. Since $n \leq 7$, any circuit with a chord must contain a circuit of length ≤ 4. This contradicts Claim 2.19.1. Since $m \geq n+1$, every Hamilton circuit (if exists) must have a chord.

Claim 2.19.3. $n=7$.
Proof. By Claim 2.19.1, $n \geq 5$. Let C be a longest circuit of G.
If $n=5$, then, by Claim 2.19.1, C must be a Hamilton circuit. This contradicts Claim 2.19.2.
If $n=6$, then, by Claims 2.19.1 and 2.19.2, C is of length 5 . Since $n=6$, let $\{w\}=V(G)-V(C)$. Note that w has two neighbors in $V(C)$. Thus, G contains a circuit of length at most 4 consisting of w and a shorter segment of C. This contradicts Claim 2.19.1.

The final step. By Claims 2.19.1 and 2.19.2, $|V(C)|=5,6$.
Case $1 .|C|=6$. Since $m \geq 9$ and C is chordless, the only vertex w outside C is adjacent to three vertices of C. Then G must contain a circuit of length at most 4 consisting of w and a shorter segment of C. This contradicts Claim 2.19.1.

Type 1

Type 2

Type 3

Fig. 8. Three types.

Case 2. $|C|=5$. Let $C=v_{1} \cdots v_{5} v_{1}$ and $\left\{w_{1}, w_{2}\right\}=V(G)-V(C)$. Similar to Case 1 , $\left|N\left(w_{i}\right) \cap V(C)\right|=1$ for every $w_{i} \notin V(C)$, and, therefore, $w_{1} w_{2} \in E(G)$. Without loss of generality, G contains a path $P=v_{1} w_{1} w_{2} v_{3}$ (by avoiding shorter circuit). Note that $v_{1} w_{1} w_{2} v_{3} v_{4} v_{5} v_{1}$ is a circuit of length 6 . This contradicts that C is longest.

3. Main theorems

Lemma 3.1 is the key lemma in the proof of main results. Its lengthy proof is presented in Section 3.2.

Lemma 3.1. If $B \in \mathcal{B}_{K}$ (a Kochol flower-superedge in Definition 2.16), then
(1) B contains an even subgraph $Q=J_{1} \cup J_{2}$ with J_{i} being a matching,
(2) for each $i \in\{1,2\}, \overline{B \backslash}{ }_{i}$ is either (4, MS)-girth-degenerate or (4, DMS)-girth-degenerate. (See Definitions 2.18 and 2.5.)

3.1. Proof of Theorem 1.2

Assume Lemma 3.1 holds, we will prove Theorem 1.2.
Note that $C^{*}=x_{1} x_{2} \cdots x_{6} x_{1}$ is a 6 -circuit of the Petersen graph P_{10} and $U=V\left(P_{10}\right) \backslash V\left(C^{*}\right)$. By Definition 2.17, the superposition snark G is constructed from P_{10} by replacing every edge $x_{\mu} x_{\mu+1} \in E\left(C^{*}\right)$ with a superedge $B^{\mu} \in \mathcal{B}_{K}$ and every vertex $x_{\nu} \in V\left(C^{*}\right)$ with one of $\left\{A, A^{\prime}\right\}$ for each $\mu, v \in[6]$. (See Definitions 2.14 and 2.16 for \mathcal{B}_{K} and $\left\{A, A^{\prime}\right\}$ respectively.)

By Lemma 3.1, each B^{μ} contains an even subgraph Q^{μ} such that
(1) Q^{μ} is the union of two matchings J_{1}^{μ} and J_{2}^{μ} and
(2) $\overline{B^{\mu} \backslash J_{i}^{\mu}}$ is either (4, MS)-girth-degenerate or (4, DMS)-girth-degenerate.

Denote

$$
Q^{+}=\bigcup_{\mu=1}^{6} Q^{\mu}, \quad J_{1}^{+}=\bigcup_{\mu=1}^{6} J_{1}^{\mu}, \text { and } J_{2}^{+}=\bigcup_{\mu=1}^{6} J_{2}^{\mu}
$$

In the remaining part of the proof, we are to show that $\overline{G \bigvee_{i}^{+}}$, for each $i \in\{1,2\}$, is 4 -girthdegenerate. Thus, by Lemma 2.6 and Lemma 2.3, G admits a B-F-coloring.

Claim 3.1.1. For each $i \in\{1,2\},\left(\overline{G \backslash \backslash_{i}^{+}}\right) \backslash U$ is 4-girth-degenerate.
Proof. Recall that $U=V\left(P_{10}\right) \backslash V\left(C^{*}\right)$, and, for each $i \in\{1,2\},\left(\overline{G \backslash_{i}^{+}}\right) \backslash U$ is the subgraph obtained from the 6 -circuit C^{*} by replacing each edge $x_{\mu} x_{\mu+1}$ with $\overline{B^{\mu} \backslash _{i}^{\mu}}$ and each vertex x_{v} with $\mathcal{V}\left(x_{v}\right) \in$ $\left\{A, A^{\prime}\right\}$.

By Lemma 3.1, the graph $\overline{B^{\mu} \backslash J_{i}^{\mu}}$ is either (4, MS)-girth-degenerate or (4, DMS)-girth-degenerate. That is, by recursively contracting a sequence of circuits, say \mathcal{X}_{i}^{μ}, it becomes one of $\{M S, D M S\}$. Denote the resulting subgraph by H_{i}^{μ} which contains 1 or 2 vertices.

There are three types of pairs $\left\{H_{i}^{\mu}, H_{i}^{\mu+1}\right\}$ (illustrated in Fig. 8). Let $\mathcal{V}\left(x_{\mu+1}\right)$ be the supervertex between the superedges B^{μ} and $B^{\mu+1}$. Let L_{i} be the graph obtained from $\left(\overline{G \bigvee_{i}^{+}}\right) \backslash U$ by contracting

Fig. 9. Seven types with supervertex A.
$\bigcup_{\mu=1}^{6} \mathcal{X}_{i}^{\mu}$. The subgraph $H_{i}^{(\mu, \mu+1)}$ of L_{i} induced by vertices of $H_{i}^{\mu}, H_{i}^{\mu+1}$ and $\mathcal{V}\left(x_{\mu+1}\right)$ contains at most 7 vertices and satisfies all conditions of Lemma 2.19. (See Figs. 9 and 10.) By Lemma 2.19, $H_{i}^{(\mu, \mu+1)}$ is 4-girth-degenerate (by recursively contracting a sequence of circuits, say \mathcal{Y}_{i}^{μ}), which implies that $\left(\overline{G _{i}^{+}}\right) \backslash U$ is 4-girth-degenerate.

Claim 3.1.2. The graph P_{10} / C^{*}, obtained from Pertersen graph by contracting the 6 -circuit C^{*}, is 4-girth-degenerate.

Proof. This claim is straightforward since P_{10} / C^{*} (see Fig. 11) contains 5 vertices and 9 edges and satisfies all conditions of Lemma 2.19. By Lemma 2.19, the graph P_{10} / C^{*}, after recursively contracting a sequence of circuits, say \mathcal{Z}, becomes a single vertex. This completes the proof of the claim.

The final step. The combination of the above two claims yields that, for each $i \in\{1,2\}$, the suppressed graph $\overline{G _{i}^{+}}$, after recursively contracting the circuits in

$$
\bigcup_{\mu \in[6]} \mathcal{X}_{i}^{\mu} \cup \bigcup_{\mu \in[6]} \mathcal{Y}_{i}^{\mu} \cup \mathcal{Z}
$$

becomes a single vertex.
Thus, by Lemma 2.6, each $\overline{G \backslash_{i}^{+}}(i \in\{1,2\})$ admits a nowhere-zero 4-flow and, therefore, by Lemma 2.3, G admits a B-F-coloring.

3.2. Proof of Lemma 3.1

In order to apply Lemma 2.6, we are to find a sequence of 4^{-}-circuits recursively for a processing of repeated contractions as follows. Let $B \in \mathcal{B}_{K}$ and $\mu \in\{1,2\}$. We are going to find
(a) an integer m,
(b) a sequence \mathcal{X} of subgraphs $X_{0}, X_{1}, \ldots, X_{m-1}$ of $B \backslash{ }_{\mu}$ and
(c) a sequence of contracted subgraphs B_{0}, \ldots, B_{m} of $B \backslash_{\mu}$ such that
(1) $B_{0}=\overline{B \backslash_{\mu}}$,
(2) for every $i \in\{0,1, \ldots, m-1\}$,

Fig. 10. Seven types with supervertex A^{\prime}.

Fig. 11. The graph P_{10} / C^{*}.
(2-i) each subgraph X_{i} corresponds to a 4^{-}-circuit or a union of some 4^{-}-circuits in B_{i}.
(2-ii) $B_{i+1}=B_{i} / E\left(X_{i}\right)$, and,
(3) B_{m} is an MS or DMS (see Fig. 7).

Note that for any $B \in \mathcal{B}_{K}, B$ is a multipole $\left(F_{n}\right)_{u v}$, where u, v are two connector-vertices of the flower snark F_{n} with $d(u, v) \geq 3$, where $u \in V_{\mathrm{I}}, v \in V_{\mathrm{C}}$ and $\left\{V_{I}, V_{I I}, V_{I I}, V_{C}\right\}$ is the partition of $V\left(F_{n}\right)$. (See Definition 2.16.)

Consider $B \in \mathcal{B}_{K}$. That is, $u \in V_{I}$ and $v \in V_{C}$.
Without loss of a generality, let $v=v_{1}$. As $d(u, v) \geq 3$, the vertex u is u_{j}^{1} for $3 \leq j \leq n-1$. By symmetry of the flower snark, it is sufficient to consider

$$
\begin{equation*}
3 \leq j \leq \frac{n+1}{2} \tag{1}
\end{equation*}
$$

Case 1. Consider the flower snark F_{n} with $n=5$. The inequality (1) implies that $j=3$.
Let

$$
Q=u_{2}^{3} u_{3}^{3} u_{4}^{3} v_{4} u_{4}^{2} u_{3}^{2} u_{2}^{2} v_{2} u_{2}^{3}
$$

and J_{1}, J_{2} be a pair of edge-disjoint perfect matchings of Q. (See Fig. 12, in which bold-lines are J_{1}-edges and dashed-lines are J_{2}-edges.)

Fig. 12. Case $1: n=5$ and $j=3$. (Legends: bold-lines are J_{1}-edges, dashed-lines are J_{2}-edges and thin-lines are edges not in Q. Dotted-circles v_{1} and u_{3}^{1} are two connector-vertices, hollow-circles are vertices of Q and solid-circles are vertices not in Q.)

Fig. 13. Case 1: $B \backslash \bigvee_{1}$ with $n=5$ and $j=3$. (Legends: $E\left(X_{0}\right)$ is red, $E\left(X_{1}\right)-E\left(X_{0}\right)$ is green.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Let $\pi: V\left(F_{n}\right) \rightarrow V\left(F_{n}\right)$ such that

$$
\pi(x)= \begin{cases}x, & \text { if } x \in V_{C} \cup V_{I} ; \tag{2}\\ u_{\mu}^{2}, & \text { if } x=u_{\mu}^{3} ; \\ u_{\mu}^{3}, & \text { if } x=u_{\mu}^{2}\end{cases}
$$

Note that π is an automorphism of the flower snark F_{n} with $\pi\left(J_{1}\right)=J_{2}$. Thus, $\overline{B \bigvee_{1}} \cong \overline{B \bigvee_{2}}$, and, therefore, it is sufficient to consider only $B \bigvee_{1}$ (see Fig. 13).

Let

$$
C_{0,1}=u_{5}^{3} v_{5} u_{5}^{1} u_{4}^{1} v_{4} u_{4}^{3} u_{5}^{3}, \quad C_{0,2}=u_{1}^{3} u_{5}^{2} u_{4}^{2} u_{3}^{2} v_{3} u_{3}^{3} u_{2}^{3} u_{1}^{3}, \quad C_{1,1}=u_{5}^{3} v_{5} u_{5}^{1} u_{1}^{1} u_{2}^{1} v_{2} u_{2}^{2} u_{1}^{2} u_{5}^{3},
$$

and

$$
X_{0}=C_{0,1} \cup C_{0,2}, \quad X_{1}=C_{1,1} .
$$

Claim 3.2.1. The subgraph X_{i} corresponds to a union of 4^{-}-circuits in B_{i} for $i=0,1$.
Proof. Although $C_{0,1}$ is a 6 -circuit and $C_{0,2}$ is a 7 -circuit in $B \backslash_{1}$, each of them corresponds to a 4^{-}-circuit in the suppressed subgraph $B_{0}=\overline{B \backslash 1}{ }_{1}$ since $\left\{v_{4}, u_{4}^{2}, u_{4}^{3}, u_{3}^{3}, u_{3}^{2}, u_{2}^{2}, v_{2}, u_{2}^{3}\right\}(=V(Q))$ is the set of degree-2 vertices of $B \bigvee_{1}$ (hollow-circles in the figure), each of these degree two vertices is suppressed in B_{0}.

It is similar for $C_{1,1}$. The circuit $C_{1.1}$ is of length 8 in $B \bigvee_{1}$ and corresponds to a 4-circuit in the contracted subgraph $B_{1}=B_{0} / X_{0}$ since the segment $u_{5}^{1} v_{5} u_{5}^{3}$ of $C_{0,1}$ is contracted to a single vertex and v_{2}, u_{2}^{2} are degree- 2 vertices of $B \bigvee_{1}$. Thus the claim is proved.

Fig. 14. Subcase 2.1: $n \geq 7$ and $j=3$. (Legends: Dotted-circles v_{1} and u_{3}^{1} are two connector-vertices, hollow-circles are vertices of Q and solid-circles are vertices not in Q.)

Fig. 15. Subcase 2.1: $B \backslash \bigvee_{1}$ with $n \geq 7$ and $j=3$. (Legends: $E\left(X_{0}\right)$ is red, $E\left(X_{1}\right)-E\left(X_{0}\right)$ is green, $E\left(X_{2}\right)-\left(E\left(X_{0}\right) \cup E\left(X_{1}\right)\right)$ is blue.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Since $X_{0} \cup X_{1}$ is a spanning subgraph of B_{0} with two components $C_{0,1} \cup C_{1,1}$ and $C_{0,2}$, by Claim 3.2.1, it is easy to see that $\overline{B \backslash_{1}} /\left(X_{0} \cup X_{1}\right)=B_{1} / X_{1}$ is a double star multipole. Thus, $\overline{B \backslash _{1}}$ is ($4, D M S$)-girth-degenerate.

Case 2. Consider the flower snark F_{n} for $n \geq 7$.
Subcase 2.1. $j=3$.
Let $Q=u_{2}^{3} u_{3}^{3} \cdots u_{n}^{3} v_{n} u_{n}^{2} u_{n-1}^{2} \cdots u_{2}^{2} v_{2} u_{2}^{3}$, and J_{1}, J_{2} be a pair of edge-disjoint perfect matchings of Q. (See Fig. 14, in which bold-lines are J_{1}-edges, and dashed-lines are J_{2}-edges.)

By the same reason as that π in Eq. (2) is an automorphism of the flower snark F_{n} with $\pi\left(J_{1}\right)=J_{2}$, one has that $\overline{B \bigvee_{1}} \cong \overline{B \backslash_{2}}$. It is sufficient to consider $B \bigvee_{1}$ (see Fig. 15).

Let

$$
\begin{aligned}
& C_{0, l}= \begin{cases}v_{l} u_{l}^{1} u_{l+1}^{1} v_{l+1} u_{l+1}^{3} u_{l}^{3} v_{l}, & \text { if } l \text { is even and } l \in\{4, \ldots, n-1\} ; \\
v_{l} u_{l} u_{l+1}^{1} v_{l+1} u_{l+1}^{2} u_{l}^{2} v_{l}, & \text { if } l \text { is odd and } l \in\{5, \ldots, n-2\},\end{cases} \\
& C_{1,1}=u_{1}^{3} u_{n}^{2} v_{n} u_{n}^{1} u_{n-1}^{1} \cdots u_{5}^{1} u_{4}^{1} v_{4} u_{4}^{2} u_{3}^{2} v_{3} u_{3}^{3} u_{2}^{3} u_{1}^{3}, \quad C_{2,1}=v_{n-1} u_{n-1}^{3} u_{n}^{3} u_{1}^{2} u_{2}^{2} v_{2} u_{2}^{1} u_{1}^{1} u_{n}^{1} u_{n-1}^{1} v_{n-1},
\end{aligned}
$$

and

$$
X_{0}=\bigcup_{l=4}^{n-2} c_{0, l}, \quad X_{1}=C_{1,1}, \quad X_{2}=C_{2,1} .
$$

Claim 3.2.2. Each circuit $C_{0, \ell}$ of X_{i} corresponds to a 4^{-}-circuit in B_{i} for $i=0,1,2$.

Fig. 16. Subcase 2.2: $n \geq 7$ and $4 \leq j \leq \frac{n+1}{2}$ (Legends: Dotted-circles v_{1} and u_{j}^{1} are two connector-vertices, hollow-circles are vertices of Q and solid-circles are vertices not in Q.)

Proof. Since $\left\{u_{2}^{3}, u_{3}^{3}, \ldots, u_{n}^{3}, v_{n}, u_{n}^{2}, u_{n-1}^{2}, \ldots, u_{2}^{2}, v_{2}\right\}(=V(Q))$ is the set of degree- 2 vertices in $B \backslash V_{1}$ (hollow-circles in the figure), each circuit of X_{0} corresponds to a 4^{-}-circuit in B_{0}.

Note that $C_{1,1}$ corresponds to a 4^{-}-circuit in B_{1} since the path $u_{n-1}^{1} \cdots u_{5}^{1} u_{4}^{1} v_{4}$ in $C_{1,1}$ is contracted to a single vertex of $B_{1} ; C_{2,1}$ corresponds to a 4^{-}-circuit in B_{2} as the path $u_{n}^{1} u_{n-1}^{1} v_{n-1}$ in $C_{2,1}$ is contracted to a single vertex in B_{2}. Thus the claim is proved.

Since $X_{0} \cup X_{1} \cup X_{2}$ is a spanning subgraph of B_{0} with one components, by Claim 3.2.2, $\overline{B \backslash \bigvee_{1}} /\left(X_{0} \cup\right.$ $\left.X_{1} \cup X_{2}\right)=B_{2} / X_{2}$ is a star multipole, thus $\overline{B \backslash V_{1}}$ is (4, MS)-girth-degenerate.
Subcase 2.2. $4 \leq j \leq \frac{n+1}{2}$.
Let

$$
Q=u_{1}^{2} u_{2}^{2} \cdots u_{n}^{2} u_{1}^{3} u_{2}^{3} \cdots u_{n}^{3} u_{1}^{2}
$$

and J_{1}, J_{2} be a pair of edge-disjoint perfect matchings of Q. (See Fig. 16 , where bold-lines are J_{1}-edges and dashed-lines are J_{2}-edges.)

By the same reason as that π in Eq. (2) is an automorphism of the flower snark F_{n} with $\pi\left(J_{1}\right)=J_{2}$, one has that $\overline{B \bigvee_{1}} \cong \overline{B \backslash_{2}}$. It is sufficient to consider $B \bigvee_{1}$ (see Fig. 17).

Let

$$
\begin{aligned}
& C_{0, l}= \begin{cases}v_{l} u_{l}^{1} u_{l+1}^{1} v_{l+1} u_{l+1}^{3} u_{l}^{3} v_{l}, & \text { if } l \text { is even and } l \in\{2, \ldots, j-2\} \cup\{j+1, \ldots, n-1\} ; \\
v & u_{l}^{1} u_{l+1}^{1} v_{l+1} u_{l+1}^{2} u_{l}^{2} v_{l}, \\
\text { if } l \text { is odd and } l \in\{3, \ldots, j-2\} \cup\{j+1, \ldots, n-2\},\end{cases} \\
& C_{1,1}= \begin{cases}u_{1}^{1} u_{2}^{1} \cdots u_{j-1}^{1} v_{j-1} u_{j-1}^{3} u_{j}^{3} v_{j} u_{j}^{2} u_{j+1}^{2} v_{j+1} u_{j+1}^{1} u_{j+2}^{1} \cdots u_{n}^{1} u_{1}^{1}, & \text { if } j \text { is odd; } \\
u_{1}^{1} u_{2}^{1} \cdots u_{j-1}^{1} v_{j-1} u_{j-1}^{2} u_{j}^{2} v_{j} u_{j}^{3} u_{j+1}^{3} v_{j+1} u_{j+1}^{1} u_{j+2}^{1} \cdots u_{n}^{1} u_{1}^{1}, & \text { if } j \text { is even, },\end{cases}
\end{aligned}
$$

and

$$
X_{0}=\left(\bigcup_{l=2}^{j-2} c_{0, l}\right) \cup\left(\bigcup_{l=j+1}^{n-1} c_{0, l}\right), \quad X_{1}=C_{1,1}
$$

Claim 3.2.3. The subgraph X_{i} corresponds to a union of 4^{-}-circuits in B_{i} for $i=0,1$.
Proof. Since each one in $\left\{u_{1}^{2}, u_{2}^{2}, \ldots, u_{n}^{2}, u_{1}^{3}, u_{2}^{3}, \ldots, u_{n}^{3}\right\}(=V(Q))$ is a degree-2 vertex of $B \backslash _{1}$ (hollow-circles in the figure). Hence, it is easy to see that X_{0} corresponds to the union of 4^{-}-circuit in $B_{0}=\overline{B \backslash_{1}}$.

Note that $C_{1,1}$ corresponds to a 4^{-}-circuit in B_{1} since each of the paths $u_{2}^{1} u_{3}^{1} \cdots u_{j-1}^{1}$ and $u_{j+1}^{1} u_{j+2}^{1} \cdots u_{n}^{1}$ in $C_{1,1}$ is contracted to a single vertex in B_{1} and $u_{1}^{2}, u_{2}^{2}, u_{1}^{3}$ are degree- 2 vertices. Thus the subgraph X_{1} corresponds to a union of 4^{-}-circuits in B_{1}.

Since $X_{0} \cup X_{1}$ is a spanning subgraph of B_{0} with one component, by Claim 3.2.3, B_{1} / X_{1} is a star multipole, thus, $\overline{B \bigvee_{1}}$ is (4, MS)-girth-degenerate.

Fig. 17. Subcase 2.2: $B \backslash_{1}$ with $n \geq 7$ and $4 \leq j \leq \frac{n+1}{2}$. The top one: j is odd, the bottom one: j is even. (Legends: $E\left(X_{0}\right)$ is red, $E\left(X_{1}\right)-E\left(X_{0}\right)$ is green.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Extensions and remarks

The method introduced in $[26,27]$ can be further generalized to construct a large family of superposition snarks (see Definition 4.1 and Theorem 4.2). And, as an extension of Theorem 1.2, the B-F-Conjecture is also verified for some larger families of such snarks.

Definition 4.1. (1) Let G be a snark and R be an even subgraph of G, \mathcal{V} be a set of supervertices and \mathcal{E} be a set of proper superedges. The graph $K(G, R, \mathcal{V}, \mathcal{E})$ is a superposition snark if it is obtained from G by replacing vertices and edges of R with members of \mathcal{V} and \mathcal{E}.
(2) The graph G is called the frame of $K(G, R, \mathcal{V}, \mathcal{E})$.
(3) And $R(\mathcal{V}, \mathcal{E})$ is the subgraph of $K(G, R, \mathcal{V}, \mathcal{E})$ induced by all superedges and supervertices around R. That is, $R(\mathcal{V}, \mathcal{E})=K(G, R, \mathcal{V}, \mathcal{E})-(G-V(R))$.

By Lemma 2.13, we have the following theorem.
Theorem 4.2. Every graph $K(G, R, \mathcal{V}, \mathcal{E})$ defined in Definition 4.1-(1) is a snark.

4.1. Berge-Fulkerson coloring for flower-expanded superposition snarks

The family \mathcal{B}_{K} of Kochol flower superedges is generalized as follows.
Definition 4.3 (Flower Superedges). Let F_{n} be a flower snark given in Definition 2.15, and u, v be two vertices with $d(u, v) \geq 3$. $\left(F_{n}\right)_{u, v}$ is the same as Definition 2.16.
(i) The set \mathcal{B}_{K} (see Definition 2.16) of superedges can be further extended as follows.

$$
\mathcal{B}=\left\{\left(F_{n}\right)_{u, v}: u, v \in V\left(F_{n}\right), d(u, v) \geq 3 \text { for } n=2 k+1 \text { and } k \geq 2\right\} .
$$

That is, connector-vertices u and v can be located in any subset $V_{\mathrm{I}}, V_{\mathrm{II}}, V_{\mathrm{III}}$ and V_{C}.

-a symbolic representation of a superedge

Fig. 18. A graph $K(G, R, \mathcal{V}, \mathcal{E})$ given in Definition 4.5.
(ii) Superedges constructed in (i) are called flower superedges.

It is obvious that $\mathcal{B}_{K} \subsetneq \mathcal{B}$.
With a similar proof of Lemma 3.1, we have the general lemma.
Lemma 4.4. If $B \in \mathcal{B}$ (a flower-superedge in Definition 4.3), then
(1) B contains an even subgraph $Q=J_{1} \cup J_{2}$ with J_{i} being a matching,
(2) for each $i \in\{1,2\}, \overline{B \backslash}{ }_{i}$ is either (4, MS)-girth-degenerate or (4, DMS)-girth-degenerate.

Definition 4.5. Let $K(G, R, \mathcal{V}, \mathcal{E})$ be a superposition snark with the frame G and the even subgraph R. Then $K(G, R, \mathcal{V}, \mathcal{E})$ (see Definition 4.1-(1)) is flower-expanded if $\mathcal{V} \subseteq\left\{A, A^{\prime}\right\}$ and $\mathcal{E}=\mathcal{B}$ (defined in Definitions 2.14 and 4.3). That is,
(1) every edge of R is replaced with a flower-superedge $B \in \mathcal{B}$,
(2) and every vertex of R is replaced with A (Fig. 1) or A^{\prime} (Fig. 2).

Fig. 18 is an example of $K(G, R, \mathcal{V}, \mathcal{E})$, where G is the flower snark F_{5}, R is a circuit of length 10 induced by the vertices in level II and level III, the set of supervertices \mathcal{V} consists of A and A^{\prime}, and superedges are any member of \mathcal{B}.

With the same proof of Theorem 1.2, we have the following general lemma.
Lemma 4.6. Let $K(G, R, \mathcal{V}, \mathcal{E})$ be a superposition snark defined in Definition 4.1-(1) with the frame G and the even subgraph R. If
(1) the subgraph $R(\mathcal{V}, \mathcal{E})$ (defined in Definition 4.1-(3)) contains an even subgraph $Q=J_{1} \cup J_{2}$ with J_{i} being a matching,
(2) for every $i \in\{1,2\}$ and for every superedge B (contained in $R(\mathcal{V}, \mathcal{E})$), the suppressed multipole $\overline{B \backslash J_{i}}$ is either (4, MS)-girth-degenerate or (4, DMS)-girth-degenerate.

Then, for each $i \in\{1,2\}, \bar{K}(G, R, \mathcal{V}, \mathcal{E}) \backslash_{i}$ is $(4, G / R)$-girth-degenerate.
By Lemma 2.1 or Lemma 2.2, the combination of Lemmas 4.4 and 4.6 implies the following result, which generalizes Theorem 1.2.

Theorem 4.7. Let $K(G, R, \mathcal{V}, \mathcal{E})$ be a superposition snark defined in Definition 4.1-(1) with the frame G and the even subgraph R. If
(1) G / R admits nowhere-zero 4-flow and
(2) $K(G, R, \mathcal{V}, \mathcal{E})$ is flower-expanded (see Definition 4.5), then $K(G, R, \mathcal{V}, \mathcal{E})$ is Berge-Fulkerson colorable.

Proof. Similar to the final step of the proof of Theorem 1.2.
By Theorem 4.7, we may verify the B-F-conjecture for a flower-expanded superposition snark $K(G, R, \mathcal{V}, \mathcal{E})$ as long as G / R admits a nowhere-zero 4-flow (by applying Lemma 2.6). There are many graphs G satisfying such property. The following is a short list of flower-expanded superposition
snark families (certainly, they contain the family of superposition snarks in our main theorem, and the most noticeable family of cyclically 6-edge-connected superposition snarks constructed by Kochol in [26,28]).

Corollary 4.8. Let $K(G, R, \mathcal{V}, \mathcal{E})$ be a flower-expanded superposition snark with the frame G and the even subgraph R. Then $K(G, R, \mathcal{V}, \mathcal{E})$ admits a B-F-coloring if one of the followings holds.
(1) G is the flower snark, and R is the circuit induced by vertices in level II and level III in Fig. 3.
(2) R has at most 2 components, $G-E(R)$ is acyclic.
(3) R has 3 components, $G-E(R)$ is acyclic, and, G / R is not the Petersen graph.
(4) G is a permutation graph and R is either the chordless 2-factor or one component of the 2-factor.
(5) G is any cyclically 4-edge-connected snark and R is any 2-factor of G.
(6) G is critical and R is any even subgraph of G. (A snark G is critical if G / e admits a nowhere zero 4 -flow for any edge $e \in E(G)$.)

Proof. For (1) and (4), the contracted graph G / R is obviously 4-girth-degenerate. (2) and (3) are proved by Lemma 2.7. For (5), by Jaeger Theorem (Theorem 2.8), every 4-edge-connected graph admits a nowhere-zero 4-flow, and G / R is 4-edge-connected which implies G / R admits a nowhere zero 4 -flow. For (6), the contracted graph G / R admits a nowhere-zero 4 -flow obviously.

Remark. The main theorem (Theorem 1.2) of the paper is a special case of (1) in Corollary 4.8 (Petersen graph is obtained from the flower snark F_{3} by contracting the triangle). If R is a dominating circuit, then it is a special case of (2) in Corollary 4.8. It was conjectured by Thomassen that every cyclically 4 -edge connected cubic graph contains a dominating circuit [39].

Acknowledgments

This work was supported by the National Science Foundation, USA (No. DMS-1700218) and the National Natural Science Foundation of China (Nos. 11971054, 11731002).

References

[1] M. Abreu, D. Labbate, R. Rizzi, J. Sheehan, Odd 2-factored snarks, European J. Combin. 36 (2014) 460-472.
[2] J.C. Bermond, B. Jackson, F. Jaeger, Shortest coverings of graphs with cycles, J. Combin. Theory Ser. B 35 (1983) 297-308.
[3] D. Blanuša, Problem ceteriju boja (the problem of four colors), Hrvatsko Prirodosl. Društvo Glasnik Mat.-Fiz. Astr. Ser. II 1 (1946) 31-42.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2007.
[5] G. Brinkmann, J. Goedgebeur, J. Hägglund, K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (4) (2013) 468-488.
[6] P.A. Catlin, Double cycle covers and the Petersen graph, J. Graph Theory 13 (1989) 465-483.
[7] U.A. Celmins, A study of three conjecture on an infinite family of snarks, Technical Report CORR-79-19, University of Waterloo, 1979.
[8] U.A. Celmins, E.R. Swart, The construction of snarks, Research Report CORR, Department of Combinatorics and Optimization, University of Waterloo, 1979.
[9] F. Chen, G. Fan, Fulkerson-covers of hypohamiltonian graphs, Discrete Appl. Math. 186 (2015) 66-73.
[10] R. Diestel, Graph Theory, Springer-Verlag Heidelberg, New York, 1997, 2000, 2005.
[11] G. Fan, Covering graphs by cycles, SIAM J. Discrete Math. 5 (4) (1992) 491-496.
[12] G. Fan, A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory Ser. B 61 (1994) 133-138.
[13] M.A. Fiol, c-Critical graphs with maximum degree three, in: Graph Theory, Combinatorics, and Applications (Proc. 7th Int. Conf. on the Theory and Appl. of Graphs, Kalamazoo'92), vol. 1, New York, 1995, pp. 403-411.
[14] M.A. Fiol, Some contributions to the theory of regular graphs P.F.C. (Master Dissertation), Universitat Politècnica de Barcelona, 1979, (in Spanish).
[15] J.L. Fouquet, J.M. Vanherpe, On Fulkerson conjecture, Discuss. Math. Graph Theory 31 (2) (2011) 253-272.
[16] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1 (1971) 168-194.
[17] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory Ser. B 31 (1981) 282-291.
[18] J. Hägglund, A. Hoffmann-Ostenhof, Construction of permutation snarks, J. Combin. Theory Ser. B 122 (2017) 55-67.
[19] R. Hao, J. Niu, X. Wang, C.-Q. Zhang, T. Zhang, A note on Berge-Fulkerson coloring, Discrete Math. 309 (2009) 4235-4240.
[20] R. Hao, C.-Q. Zhang, T. Zheng, Berge-Fulkerson coloring for $C_{(8)}$-linked graphs, J. Graph Theory 88 (2018) 46-60.
[21] A. Hoffmann-Ostenhof, C.-Q. Zhang, Z. Zhang, Cycle double covers and non-separating cycles, European J. Combin. 81 (2019) 276-284.
[22] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239.
[23] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979) 205-216.
[24] T. Kaiser, A. Raspaud, Perfect matchings with restricted intersection in cubic graphs, European J. Combin. 31 (2010) 1307-1315.
[25] M. Kochol, Construction of cyclically 6-edge-connected snarks, Technical Report TR-II-SAS-07/93-5, Slovak Academy of Sciences, Bratislava, Slovakia, 1993.
[26] M. Kochol, A cyclically 6-edge-connected snark of order 118, Discrete Math. 161 (1996) 297-300.
[27] M. Kochol, Snarks without small cycles, J. Combin. Theory Ser. B 67 (1996) 34-47.
[28] M. Kochol, Superposition and constructions of graphs without nowhere-zero k-flows, European J. Combin. 23 (2002) 281-306.
[29] R. Lukot’ka, E. Máčajová, J. Mazák, M. Škoviera, Small snarks with large oddness, Electron. J. Combin. 22 (1) (2015) \#P1.51.
[30] P. Manuel, A.S. Shanthi, Berge-Fulkerson conjecture on certain snarks, Math. Comput. Sci. 9 (2015) 209-220.
[31] E. Máčajová, G. Mazzuoccolo, Reduction of the Berge-Fulkerson conjecture to cyclically 5-edge-connected snarks, Proc. Amer. Math. Soc. 148 (2020) 4643-4652.
[32] E. Máčajová, M. Škoviera, On a conjecture of Fan and Raspaud, Electron. Notes Discrete Math. 34 (2009) $237-241$.
[33] E. Máčajová, M. Škoviera, Sparsely intersecting perfect matchings in cubic graphs, Combinatorica 34 (1) (2014) 61-94.
[34] G. Mazzuoccolo, The equivalence of two conjectures of Berge and Fulkerson, J. Graph Theory 68 (2011) $125-128$.
[35] Zhengke Miao, Xiaofeng Wang, Cun-Quan Zhang, Unique Fulkerson coloring of Petersen minor-free cubic graphs, European J. Combin. 43 (2015) 165-171.
[36] P.D. Seymour, On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. Lond. Math. Soc. 38 (1979) 423-460.
[37] E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78 (3) (2015) 195-206.
[38] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Aust. Math. Soc. 8 (1973) 367-387.
[39] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.
[40] W.T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math. 6 (1954) 80-91.
[41] J.J. Watkins, On the construction of snarks, ARS Comb. 16B (1983) 111-123.
[42] J.J. Watkins, Snarks, graph theory and its applications east and west: Proceedings of the first China-USA international graph theory conference, Ann. New York Acad. Sci. 576 (1989) 606-622.
[43] J.J. Watkins, R.J. Wilson, A survey of snarks, in: Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley, New York, 1991, pp. 1129-1144.
[44] D. West, Introduction To Graph Theory, Prentice Hall, 1996, 2002.
[45] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York, 1997.

[^0]: E-mail addresses: 18121580@bjtu.edu.cn (S. Liu), rxhao@bjtu.edu.cn (R.-X. Hao), cqzhang@mail.wvu.edu (C.-Q. Zhang).

